










reading (𝛼𝑘 , 𝛽𝑘 ). By previous arguments, we know that

𝑇𝑊 will not get stuck and reject along 𝑝𝑃 . Once𝑇𝑊 enters

𝑞𝐴 it stays in 𝑞𝐴 , an accepting state. Therefore𝑇𝑊 accepts

the path 𝑝 = 𝑝𝑃 · 𝑝 ′
(2) The second case is when 𝑝 can be factored as 𝑝𝑃 · 𝑝 𝑗 ·

𝑝 ′, with 𝑝𝑃 finite but possibly empty and 𝑝 𝑗 finite and

nonempty. For every label-direction pair (𝛼𝑖 , 𝛽𝑖 ) in 𝑝𝑃 we

have that 𝛼𝑖 = 𝛽𝑖 . For some 𝑗 ∈ Ω \𝑊 we have that

𝛼𝑖 [− 𝑗] = 𝛽𝑖 [− 𝑗] for every label-direction pair (𝛼𝑖 , 𝛽𝑖 ) in
𝑝 𝑗 , again noting that only one choice of 𝑗 is appropri-

ate. Finally, at the first point (𝛼𝑘 , 𝛽𝑘 ) of 𝑝 ′ we have that
𝛼𝑘 [− 𝑗] ≠ 𝛽𝑘 [− 𝑗]. By previous arguments, we know that

𝑇𝑊 will not get stuck and reject along 𝑝𝑃 or 𝑝 𝑗 . And since

𝑇𝑊 transitions to 𝑞𝐴 at the beginning of 𝑝 ′, we know that

it cannot get stuck and reject along 𝑝 ′. Therefore 𝑇𝑊 will

accept on 𝑝 = 𝑝𝑃 · 𝑝 𝑗 · 𝑝 ′.
□

Corollary 3.5. Let 𝐺 be an iBG and𝑊 ⊆ Ω be a set of agents.
Then, a𝑊 -NE strategy exists in 𝐺 iff the automaton 𝑇𝑊 constructed
with respect to 𝐺 is nonempty.

4 ALGORITHMIC FRAMEWORK
In the previous section, we constructed an automaton 𝑇𝑊 that rec-

ognizes the set of Nash equilibrium strategy profiles with winning

set𝑊 in an iBG 𝐺 , which we denoted as𝑊 -NE strategies. The

problem of determining whether a𝑊 -NE strategy exists is equiva-

lent to testing 𝑇𝑊 for nonemptiness. The standard algorithm for

testing nonemptiness of Büchi tree automata involves Büchi games

[9]. In this section, we prove that testing 𝑇𝑊 for nonemptiness is

equivalent to solving safety games and then testing a Büchi word

automata for nonemptiness. This gives us a simpler path towards

constructing an algorithm to decide our central question.

4.1 Safety Game for Deviating Agents
Note that the Büchi condition on the j-Deviant traces simply con-

sists of avoiding the set of final states in 𝐴 𝑗
, making it simpler than

a general Büchi acceptance condition. In order to characterize this

condition precisely, we now construct a 2-player safety game that

partitions the states of𝑄 𝑗
(for ab agent 𝑗 ∉𝑊 ) in𝑇𝑊 for 𝑗 ∈ Ω \𝑊

into two sets - states in which 𝑇𝑊 started in state 𝑞 ∈ 𝑄 𝑗
is empty

and states in which 𝑇𝑗 started in state 𝑞 ∈ 𝑄 𝑗
is nonempty. We

construct the safety game𝐺 𝑗 = (𝑄 𝑗 , 𝑄 𝑗 × Σ, 𝐸 𝑗 ). The safety set can

intuitively be thought of as all the vertices not in 𝐹 𝑗 , but for our

purposes it is more convenient to not define outgoing transitions

from these states - thus making them losing for player 0 by violating

the infinite play condition. Player 0 owns 𝑄 𝑗
and player 1 owns

𝑄 𝑗 × Σ. Here we retain our 𝛼 and 𝛽 notation in so far as they are

both elements of Σ. The edge relation 𝐸 𝑗 is defined as follows:

(1) (𝑞, ⟨𝑞, 𝛼⟩)) ∈ 𝐸 𝑗 for 𝑞 ∈ 𝑄 𝑗 \ 𝐹 𝑗 and 𝛼 ∈ Σ.
(2) (⟨𝑞, 𝛼⟩, 𝑞′) ∈ 𝐸 𝑗 for 𝑞 ∈ 𝑄 𝑗

and 𝑞′ ∈ 𝑄 𝑗
, where 𝑞′ = 𝛿 𝑗 (𝑞, 𝛽)

for some 𝛽 ∈ Σ such that 𝛼 [− 𝑗] = 𝛽 [− 𝑗].
Note as defined above, if 𝑞 ∈ 𝐹 𝑗 , then 𝑞 has no successor node, and

player 0 is stuck and loses the game. Since𝐺 𝑗 is a safety game, player

0’s goal is to avoid states in 𝐹 𝑗 and not get stuck. Let𝑊𝑖𝑛0 (𝐺 𝑗 ) be
the set of winning states for Player 0 in the safety game 𝐺 𝑗 .

Theorem 4.1. A state 𝑞 ∈ 𝑄 𝑗 \ 𝐹 𝑗 belongs to𝑊𝑖𝑛0 (𝐺 𝑗 ) iff 𝑇𝑊 is
nonempty when started in state 𝑞.

Proof. (→) Suppose 𝑞 ∈ 𝑄 𝑗 \ 𝐹 𝑗 and 𝑞 ∈ 𝑊𝑖𝑛0 (𝐺 𝑗 ). We con-

struct a tree 𝜋𝑞 : Σ∗ → Σ that is accepted by 𝑇𝑊 starting in

state 𝑞. To show that 𝜋𝑞 is accepted, we also construct an accept-

ing run 𝑟𝑞 : Σ∗ → (𝑄 𝑗 \ 𝐹 𝑗 ) ∪ {𝑞𝐴}. By construction, we have

𝑟𝑞 (𝑥) ∈𝑊𝑖𝑛0 (𝐺 𝑗 ) for all 𝑥 ∈ Σ∗. We proceed by induction on the

length of the run.

For the basis of the induction, we start by defining 𝜋𝑞 (𝜀) and
𝑟𝑞 (𝜀). First, we let 𝑟𝑞 (𝜀) = 𝑞. By the assumption that 𝑞 ∉ 𝐹 𝑗 , the

run cannot get stuck and reject here.

For the step case, suppose now that we have constructed 𝑟𝑞 (𝑦) =
𝑝 ∈ 𝑊𝑖𝑛0 (𝐺 𝑗 ) for some 𝑦 ∈ Σ∗. Now, since 𝑝 ∈ 𝑊𝑖𝑛0 (𝐺 𝑗 ) and
cannot get stuck, there must be a node ⟨𝑞, 𝛼𝑦⟩ contained in both

𝑄 𝑗 × Σ and𝑊𝑖𝑛0 (𝐺 𝑗 ), so we let 𝜋𝑞 (𝑦) = 𝛼𝑦 . Recall that the direc-
tions of 𝜋 are Σ. Divide the possible directions 𝛽 ∈ Σ into two types:

either 𝛼𝑦 [− 𝑗] = 𝛽 [− 𝑗] or 𝛼𝑦 [− 𝑗] ≠ 𝛽 [− 𝑗]. If 𝛼𝑦 [− 𝑗] = 𝛽 [− 𝑗],
then this corresponds to a legal move by player 1 in 𝐺 𝑗 . Since

⟨𝑞, 𝛼𝑦⟩ ∈ 𝑊𝑖𝑛0 (𝐺 𝑗 ), moves by player 1 must stay in𝑊𝑖𝑛0 (𝐺 𝑗 ).
It follows that 𝑞′ = 𝛿 𝑗 (𝑞, 𝛽) ∈ 𝑊𝑖𝑛0 (𝐺 𝑗 ), so 𝑞′ ∉ 𝐹 𝑗 . We let

𝑟𝑞 (𝑦 · 𝛽) = 𝑞′. If, on the other hand, 𝛼𝑦 [− 𝑗] ≠ 𝛽 [− 𝑗], we let

𝑟𝑞 (𝑦 ·𝛽) = 𝑞𝐴 . Once we have reached a node 𝑧 ∈ Σ∗ with 𝑟𝑞 (𝑧) = 𝑞𝐴 ,
we define 𝑟𝑞 (𝑧′) = 𝑞𝐴 for all descendants 𝑧′ of 𝑧 and we can define

𝜋𝑞 (𝑧′) arbitrarily. Since we can never get stuck, we never reach a

state in 𝐹 𝑗 , so the run 𝑟𝑞 is accepting.

(←) Suppose now that 𝑇𝑊 started in state 𝑞 accepts a tree 𝜋𝑞 :

Σ∗ → Σ. Since the automaton𝑇𝑊 is deterministic, it accepts with a

unique run of 𝑇𝑊 on 𝜋𝑞 as 𝑟𝑞 : Σ∗ → (𝑄 𝑗 \ 𝐹 𝑗 ) ∪ {𝑞𝐴}. We claim

that 𝜋𝑞 is a winning strategy for player 0 in 𝐺 𝑗 from the state 𝑞.

Consider a play 𝜋 = 𝑝0, 𝛼0, 𝛽0, 𝑝1, 𝛼1, 𝛽1, . . ., where 𝑝𝑖 ∈ 𝑄 𝑗
, 𝑝0 =

𝑞, and 𝛼𝑖 , 𝛽𝑖 ∈ Σ. In round 𝑖 ≥ 0, player 0 moves from 𝑝𝑖 to ⟨𝑝𝑖 , 𝛼𝑖 ⟩,
for 𝛼𝑖 = 𝜋𝑞 (⟨𝛽0, . . . , 𝛽𝑖−1⟩), and then player 1 moves from ⟨𝑝𝑖 , 𝛼𝑖 ⟩
to 𝑝𝑖+1 = 𝛿 𝑗 (𝑝𝑖 , 𝛽𝑖 ), for some 𝛽𝑖 such that 𝛼𝑖 [− 𝑗] = 𝛽𝑖 [− 𝑗]. Let
𝑥𝑖 = ⟨𝛽0, . . . , 𝛽𝑖−1⟩, so we have that 𝛼𝑖 = 𝜋𝑞 (𝑥𝑖 ). By induction on

the length of 𝑥𝑖 it follows that 𝑝𝑖 = 𝑟𝑞 (𝑥𝑖 ). Since 𝑟𝑞 is an accepting

run of 𝑇𝑊 on 𝜋𝑞 , it follows that 𝑝𝑖 = 𝑟𝑞 (𝑥𝑖 ) ∉ 𝐹 𝑗 . Thus, the play
𝜋 is a winning play for player 0. It follows that 𝜋𝑞 is a winning

strategy for player 0 in 𝐺 𝑗 from the state 𝑞. □

4.2 A Büchi Automaton for 𝑇𝑊 Nonemptiness
Recall that the tree automaton 𝑇𝑊 , which recognizes𝑊 -NE strate-

gies, emulates the Büchi automaton 𝐴𝑊 = (𝑄,𝑞0, Σ, 𝛿, 𝐹 ) along the

primary trace and the goal automaton 𝐴 𝑗
along 𝑗-deviant traces.

We have constructed the above games 𝐺 𝑗 to capture nonemptiness

of𝑇𝑊 from states in𝑄 𝑗
, in terms of the winning sets𝑊𝑖𝑛0 (𝐺 𝑗 ). We

now modify𝐴𝑊 to take these safety games into account. Let𝐴′
𝑊

=

(𝑄 ′, 𝑞0, Σ, 𝛿 ′, 𝐹 ∩𝑄 ′) be obtained from 𝐴𝑊 by restricting states to

𝑄 ′ ⊆ 𝑄 , where 𝑄 ′ = >
𝑖∈𝑊 𝑄𝑖 ×>𝑗 ∈Ω\𝑊 {𝑊𝑖𝑛0 (𝐺 𝑗 ) ∩𝑄 𝑗 } × 2Ω .

In other words, the 𝑗𝑡ℎ-component 𝑞𝑖 𝑗 of a state 𝑞 = ⟨𝑞𝑖1 , . . . , 𝑞𝑖𝑛 ⟩ ∈
𝑄 ′ must be in𝑊𝑖𝑛0 (𝐺 𝑗 ) for all 𝑗 ∈ Ω\𝑊 , otherwise the automaton

𝐴′
𝑊

gets stuck.

Theorem 4.2. The Büchi word automaton 𝐴′
𝑊

is nonempty iff the
tree automaton 𝑇𝑊 is nonempty.
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Proof. (→) Assume𝐴′
𝑊

is nonempty. Then, it accepts an infinite

word 𝑤 = 𝑤0𝑤1 . . . ∈ Σ𝜔 with a run 𝑟 = 𝑞0, 𝑞1, . . . ∈ 𝑄 ′𝜔 . We

use 𝑤 and 𝑟 to create a tree 𝜋 : Σ∗ → Σ with an accepting run

𝑟𝜋 : Σ∗ → 𝑄 ∪ {𝑞𝐴} with respect to 𝑇𝑊 .

Let 𝑥0 = 𝜀. We start by setting 𝜋 (𝑥0) = 𝑤0 and 𝑟𝜋 (𝑥0) = 𝑞0.

Suppose now that we have just defined 𝜋 (𝑥𝑖 ) = 𝛼 and 𝑟𝜋 (𝑥𝑖 ) = 𝑞,
and, by construction, 𝑥𝑖 is on the primary trace. Consider now the

node 𝑥𝑖 · 𝛽 . There are three cases to consider:

(1) If 𝜋 (𝑥𝑖 ) = 𝛽 , then we set 𝑥𝑖+1 = 𝑥𝑖 · 𝛽 , 𝜋 (𝑥𝑖+1) = 𝑤𝑖+1
and 𝑟𝜋 (𝑥𝑖+1) = 𝑞𝑖+1. Note that 𝑥𝑖+1 is, by construction, the

successor of 𝑥𝑖 on the primary trace. Thus, the projection of

𝑟𝜋 on the primary trace of 𝜋 is precisely 𝑟 , so 𝑟𝜋 is accepting

along the primary path.

(2) If 𝜋 (𝑥𝑖 ) [− 𝑗] = 𝛽 [− 𝑗] and 𝜋 (𝑥𝑖 ) ≠ 𝛽 for some 𝑗 ∈ Ω \𝑊 ,

then we set 𝑟𝜋 (𝑥𝑖 · 𝛽) = 𝑞′
𝑗
= 𝛿 𝑗 (𝑞 𝑗 , 𝛽), where 𝑞 𝑗 is the

𝑗-th component of 𝑞. Since 𝑞 𝑗 ∈ 𝑊𝑖𝑛0 (𝐺 𝑗 ), we have that

𝑞′
𝑗
∈ 𝑊𝑖𝑛0 (𝐺 𝑗 ). By Theorem 4.1, 𝑇𝑊 is nonempty when

started in state𝑞′
𝑗
. That is, there is a tree 𝜋𝑞′

𝑗
and an accepting

run 𝑟𝑞′
𝑗
of𝑇𝑊 on 𝜋𝑞′

𝑗
, starting from𝑞′

𝑗
. So we take the subtree

of 𝜋 rooted at the node 𝑥𝑖 · 𝛽 to be 𝜋𝑞′
𝑗
, and the run of 𝑇𝑊

from 𝑥𝑖 · 𝛽 is 𝑟𝑞′
𝑗
. So all paths of 𝑟𝜋 that go through 𝑥𝑖 · 𝛽 are

accepting.

(3) Finally, if 𝜋 (𝑥𝑖 ) [− 𝑗] ≠ 𝛽 [− 𝑗] for all 𝑗 ∈ Ω \𝑊 , then 𝑥𝑖 · 𝛽
is neither on the primary trace nor on a 𝑗-deviant trace

for some 𝑗 ∈ Ω \𝑊 . So we set 𝑟𝜋 (𝑥𝑖 · 𝛽) = 𝑞𝐴 as well as

𝑟𝜋 (𝑦) = 𝑞𝐴 for all descendants 𝑦 of 𝑥𝑖 · 𝛽 . The labels of 𝑥𝑖 · 𝛽
and it descendants can be set arbitrarily. So all paths of 𝑟𝜋
that go through 𝑥𝑖 · 𝛽 are accepting.

(←) Assume 𝑇𝑊 is nonempty. Then, we know that it accepts at

least one tree 𝜋 : Σ∗ → Σ. In particular, since 𝑇𝑊 accepts on all

branches of 𝜋 it accepts on the primary trace, denoted as 𝜋𝑝 .

Since 𝑇𝑊 accepts on 𝜋𝑝 , we can consider the run of 𝑇𝑊 on 𝜋

which we denote 𝑟 : Σ∗ → 𝑄 . Let the image of 𝑟 (𝜋𝑝 ) be 𝑄∗ ⊆ 𝑄 .
We claim that 𝑄∗ ⊆ 𝑄 ′.

Assume otherwise, that for some finite prefix of the primary trace

of 𝜋 denoted 𝑝 we have that 𝑟 (𝑝) ∉ 𝑄 ′. Since 𝑟 (𝑝) clearly is inside

𝑄 , it must be the case that for some 𝑗 ∈ Ω \𝑊 𝑟 (𝑝) [ 𝑗] ∉𝑊𝑖𝑛0 (𝐺 𝑗 ).
Since 𝑟 (𝑝) [ 𝑗] is not in𝑊𝑖𝑛0 (𝐺 𝑗 ), it must be in𝑊𝑖𝑛1 (𝐺 𝑗 ). This
means that, upon observing 𝑝 , a direction 𝛽 exists that transitions

𝑇𝑊 into a state 𝑞′ ∈𝑊𝑖𝑛1 (𝐺 𝑗 ). From here player 1 has a winning

strategy in 𝐺 𝑗 . Following one of the paths created by player 1

playing directions according to this winning strategy and player 0

playing anything in response, we get that player 1 will eventually

win the game, forcing𝑇𝑊 to attempt a transition into 𝐹 𝑗 and getting

stuck. Therefore 𝑇𝑊 does not actually accept 𝜋 , a contradiction.

Since the image of 𝑟 (𝜋𝑝 ) is contained within 𝑄 ′, we claim that

𝐴′
𝑊

accepts the word formed by the labels along 𝜋𝑝 , which we

denote by 𝛼 (𝜋𝑝 ). Since 𝑇𝑊 accepts along 𝜋𝑝 and the run 𝑟 (𝜋𝑝 )
never leaves 𝑄 ′, we have that there are infinitely many members

of the set 𝐹 ∩𝑄 ′ in the run 𝑟 (𝜋𝑝 ), satisfying the Büchi condition of

𝐴′
𝑊
. And since any states in which some 𝑄 𝑗

for 𝑗 ∈ Ω \𝑊 reaches

a final state are excluded from 𝑄 ′, 𝐴′
𝑊

will never get stuck reading

𝛼 (𝜋𝑝 ). Therefore, 𝐴′𝑊 accepts 𝛼 (𝜋𝑝 ) and is therefore nonempty.

□

Corollary 4.3. Let 𝐺 be an iBG and𝑊 ⊆ Ω be a set of agents.
Then, a𝑊 -NE strategy exists in 𝐺 iff the automaton 𝐴′

𝑊
constructed

with respect to 𝐺 is nonempty.

5 COMPLEXITY AND ALGORITHMS
5.1 Complexity
The algorithm outlined by our previous constructions consists of

two main part. First, we construct and solve a safety game for

each agent. Second, for𝑊 ⊆ Ω, we check the automaton 𝐴′
𝑊

for

nonemptiness. The input to this algorithm consists of 𝑘 goal DFAs

with alphabet Σ and a set of 𝑘 alphabets Σ𝑖 corresponding to the

actions available to each agent. Therefore, the size of the input is

the sum of the sizes of these 𝑘 goal DFAs.

In the first step, we construct a safety game for each of the

agents. The size of the state space of the safety game for agent 𝑗 is

|𝑄 𝑗 | ( |Σ| + 1). The size of the edge set for the safety game can be

bounded by ( |𝑄 𝑗 | ∗ |Σ|) + (|𝑄 𝑗 |2 ∗ |Σ|), where |𝑄 𝑗 | ∗ |Σ| represents
the |Σ| outgoing transitions from each state in 𝑄 𝑗

owned by player

0 and |𝑄 𝑗 |2 ∗ |Σ| is an upper bound assuming that each of the states

in 𝑄 𝑗 × Σ owned by player 1 can transition to each of the states in

𝑄 𝑗
owned by player 0. Since safety games can be solved in linear

time with respect to the number of the edges [2], each safety game

is solved in polynomial time. We solve one such safety game for

each agent which represents a linear blow up. Therefore, solving

the safety games for all agents can be done in polynomial time.

For a given𝑊 ⊆ Ω, querying the automaton 𝐴′
𝑊

for nonempti-

ness can be done in PSPACE, as the state space of 𝐴′
𝑊

consists of

tuples from the product of input DFAs. We can then test 𝐴′
𝑊

on the

fly by guessing the prefix of the lasso and then guessing the cycle,

which can be done in polynomial space [30].

Theorem 5.1. The problem of deciding whether there exists a𝑊 -
NE strategy profile for an iBG 𝐺 and a set𝑊 ⊆ Ω of agents is in
PSPACE.

5.2 PSPACE Lower Bound
In this section we show that the problem of determining whether a

𝑊 -NE exists in an iBG is PSPACE-hard by providing a reduction

from the PSPACE-complete problem of DFA Intersection Emptiness

(DFAIE). TheDFAIE problem is as follows: Given𝑘 DFAs𝐴0 . . . 𝐴𝑘−1

with a common alphabet Σ, decide whether
⋂

0≤𝑖≤𝑘−1𝐴
𝑖 ≠ ∅ [15].

Given a DFA 𝐴𝑖 = ⟨𝑄𝑖 , 𝑞𝑖
0
, Σ, 𝛿𝑖 , 𝐹 𝑖 ⟩, we define the goal DFA

𝐴𝑖 = ⟨�̂�𝑖 , 𝑞𝑖
0
, Σ̂, ˆ𝛿𝑖 , 𝐹 𝑖 ⟩ as follows:

(1) Σ̂ = Σ ∪ {𝐾}, where 𝐾 is a new symbol, i.e. 𝐾 ∉ Σ
(2) �̂�𝑖 = 𝑄𝑖 ∪ {accept, reject},
(3) 

ˆ𝛿𝑖 (𝑞, 𝑎) = 𝑞 for 𝑞 ∈ {accept, reject} and 𝑎 ∈ Σ̂
ˆ𝛿𝑖 (𝑞, 𝑎) = 𝛿𝑖 (𝑞, 𝑎) for 𝑞 ∈ 𝑄𝑖

and 𝑎 ∈ Σ
ˆ𝛿𝑖 (𝑞, 𝐾) = accept for 𝑞 ∈ 𝐹 𝑖
ˆ𝛿𝑖 (𝑞, 𝐾) = reject for 𝑞 ∈ 𝑄𝑖 \ 𝐹 𝑖

(4) 𝐹 𝑖 = {accept}
Intuitively, accept and reject are two new accepting and rejecting

states that have no outgoing transitions. The new symbol 𝐾 takes

accepting states to accept and rejecting states to reject. The purpose
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of 𝐾 is to synchronize acceptance by all goal automata. We call the

process of modifying 𝐴𝑖 into ˆ𝐴𝑖 transformation.

The transformation from 𝐴𝑖 to 𝐴𝑖 can be done in linear time

with respect to the size of 𝐴𝑖 , as the process only involves adding

two new states. Furthermore, if 𝐴𝑖 is a DFA then 𝐴𝑖 is also a DFA.

Given an instance of DFAIE, i.e., 𝑘 DFAs 𝐴0 . . . 𝐴𝑘−1, we create
an iBG 𝐺 , defined in the following manner.

(1) Ω = {0, 1 . . . 𝑘 − 1}
(2) The goal for agent 𝑖 is 𝐴𝑖

(3) Σ0 = Σ ∪ {𝐾}
(4) Σ𝑖 = {∗} for 𝑖 ≠ 0. Here ∗ represents a fresh symbol, i.e.,

∗ ∉ Σ and ∗ ≠ 𝐾 .
Clearly, the blow-up of the construction is linear. Since each

agent except 0 is given control over a set consisting solely of ∗,
the common alphabet of the 𝐴𝑖 is technically Σ̂ × {∗}𝑘−1. This
alphabet is isomorphic to Σ̂, so by a slight abuse of notation we

keep considering the alphabet of the 𝐴𝑖 to be Σ̂.
Before stating and proving the correctness of the reduction, we

make two observations. We are interested here in Nash equilibria

in which every agent is included in𝑊 . This implies the following:

(1) The existence of an Ω-NE is defined solely by the Primary-

Trace Condition. Since there are no agents in Ω \𝑊 , there is

no concept of a 𝑗-Deviant-Trace. If we are given an infinite

word that satisfies the Primary-Trace Condition, we can

extend it to a full Ω-NE strategy tree by labeling the nodes

that do not occur on the primary trace arbitrarily.

(2) Since there are no 𝑗-Deviant-Traces in this specific instance

of the Ω-NE Nonemptiness problem, we can relax our as-

sumption that |Σ 𝑗 | ≥ 2 for all 𝑗 ∈ Ω, since there is no

meaningful concept of deviation in an Ω-NE. Recall that this
assumption was made only for simplicity of presentation

regarding 𝑗-Deviant Traces.

Theorem 5.2. Let 𝐴0 . . . 𝐴𝑘−1 be 𝑘 DFAs with alphabet Σ. Then,⋂
0≤𝑖≤𝑘−1 𝐿(𝐴𝑖 ) ≠ ∅ iff there exists anΩ-NE in the iBG𝐺 constructed

from 𝐴0 . . . 𝐴𝑘−1.

Proof. In this proof, we introduce the notation 𝑆 to denote an

infinite suffix, which is an arbitrarily chosen element of {Σ ∪ 𝐾}𝜔 .
(→) Assume that

⋂
0≤𝑖≤𝑘−1 𝐿(𝐴𝑖 ) ≠ ∅. Then, there is a word

𝑤 ∈ Σ∗ that is accepted by each of 𝐴0 . . . 𝐴𝑘−1. We now show that

𝑤 · 𝐾 · 𝑆 satisfies all goals 𝐴0 . . . 𝐴𝑘−1. Since each of 𝐴0 . . . 𝐴𝑘−1

accepts 𝑤 , each of 𝐴0 . . . 𝐴𝑘−1 reaches a final state of 𝐴0 . . . 𝐴𝑘−1,
respectively, after reading 𝑤 . Then, after reading 𝐾 , 𝐴0 . . . 𝐴𝑘−1

all simultaneously transition to accept. Therefore all goals 𝐴𝑖 are

satisfied on 𝑤 · 𝐾 · 𝑆 and 𝑤 · 𝐾 · 𝑆 satisfies the Primary-Trace

Condition. Since we are considering an Ω-NE, there is no need to

check deviant traces and𝑤 · 𝐾 · 𝑆 can be arbitrarily extended to a

full Ω-NE strategy profile tree.

(←) Assume that the iBG 𝐺 with goals 𝐴0 . . . 𝐴𝑘−1 admits an

Ω-NE. We claim that its primary trace must be of the form𝑤 ·𝐾 · 𝑆 ,
where 𝑤 ∈ Σ∗ does not contain 𝐾 . This is equivalent to saying

that a satisfying primary trace must have at least one 𝐾 . This is

easy to see, as the character 𝐾 is the only way to transition into an

accepting state for each 𝐴𝑖 , therefore it must occur at least once if

all 𝐴𝑖 are satisfied on this trace.

We now claim that each of 𝐴0 . . . 𝐴𝑘−1 accept𝑤 . Assume this is

not the case, and some 𝐴𝑖 does not accept𝑤 . Then, while reading

𝑤 , 𝐴𝑖 never reaches accept, as𝑤 does not contain 𝐾 . Furthermore,

upon seeing the first 𝐾 , 𝐴𝑖 transitions to reject, since 𝐴𝑖 is not in a

final state in 𝐹 𝑖 after reading 𝑤 . Thus, 𝐴𝑖 can never reach accept,

contradicting the assumption that𝑤 ·𝐾 · 𝑆 was an Ω-NE. Therefore
all 𝐴𝑖 must accept𝑤 , and

⋂
0≤𝑖≤𝑘−1 𝐿(𝐴𝑖 ) ≠ ∅.

□

This establishes a polynomial time reduction from DFAIE to𝑊 -

NE Nonemptiness; therefore𝑊 -NE Nonemptiness is PSPACE-hard.

In fact this reduction has shown that checking the Primary-Trace

Condition is itself PSPACE-hard. Combining this with our PSPACE

decision algorithm yields PSPACE-completeness.

Theorem 5.3. The problem of deciding whether there exists a
𝑊 -NE strategy profile for an iBG 𝐺 and a set𝑊 ⊆ Ω of agents is
PSPACE-complete.

6 CONCLUDING REMARKS
The main contribution of this work is Theorem 5.3, which charac-

terizes the complexity of deciding whether a𝑊 -NE strategy profile

exists for an iBG 𝐺 and𝑊 ⊆ Ω is PSPACE-complete.

Separation of Strategic and Temporal Reasoning. : The main ob-

jectives of this work is to analyze equilibria in finite-horizon multi-

agent concurrent games, focusing on the strategic-reasoning aspect

of the problem, separately from temporal reasoning. In order to

accomplish this, we used DFA goals instead of goals expressed in

some finite-horizon temporal logic. For these finite-horizon tempo-

ral logics, previous analysis [12] consisted of two steps. First, the

logical goals are translated into a DFA, which involves a doubly

exponential blow up [6, 17]. The second step was to perform the

strategic reasoning, i.e., finding the Nash equilibria with the DFA

from the first step as input. In terms of computational complexity,

the first step completely dominated the second step, in which the

strategic reasoning was conducted with respect to the DFAs. Here

we eliminated the doubly exponential-blow up from consideration

by starting with DFA goals and provided a PSPACE-completeness

result for the second step.

Future Work. : Our immediate next goals are to analyze problems

such as verification (deciding whether a given strategy profile is

a𝑊 -NE) and strategy extraction (i.e., construction a finite-state

controller that implements the𝑊 -NEs found) within the context

of our DFA based iBGs. Furthermore, we are interested in imple-

mentation, i.e. a tool based on the theory developed in this paper.

Further points of interest can be motivated from a game-theory

lens, such as introducing imperfect information. Earlier work has

already introduced imperfect information to problems in synthesis

and verification - see [3, 8, 28]. Finally, the work can be extended

to both the general CGS formalism (as opposed to iBGs) and to

querying other properties/equilibrium concepts outside of the Nash

equilibria. Strategy Logic [21] has been introduced as a way to

query general game theoretic properties on concurrent game struc-

tures, and a version of strategy logic with finite goals would be a

promising place to start for these extensions.
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