
AlwaysSafe: Reinforcement Learning without Safety Constraint
Violations during Training

Thiago D. Simão
Delft University of Technology

The Netherlands
t.diassimao@tudelft.nl

Nils Jansen
Radboud University

Nijmegen, The Netherlands
n.jansen@science.ru.nl

Matthijs T. J. Spaan
Delft University of Technology

The Netherlands
m.t.j.spaan@tudelft.nl

ABSTRACT
Deploying reinforcement learning (RL) involves major concerns
around safety. Engineering a reward signal that allows the agent
to maximize its performance while remaining safe is not trivial.
Safe RL studies how to mitigate such problems. For instance, we
can decouple safety from reward using constrained Markov deci-
sion processes (CMDPs), where an independent signal models the
safety aspects. In this setting, an RL agent can autonomously find
tradeoffs between performance and safety. Unfortunately, most RL
agents designed for CMDPs only guarantee safety after the learning
phase, which might prevent their direct deployment. In this work,
we investigate settings where a concise abstract model of the safety
aspects is given, a reasonable assumption since a thorough under-
standing of safety-related matters is a prerequisite for deploying
RL in typical applications. Factored CMDPs provide such compact
models when a small subset of features describe the dynamics rele-
vant for the safety constraints. We propose an RL algorithm that
uses this abstract model to learn policies for CMDPs safely, that is
without violating the constraints. During the training process, this
algorithm can seamlessly switch from a conservative policy to a
greedy policy without violating the safety constraints. We prove
that this algorithm is safe under the given assumptions. Empirically,
we show that even if safety and reward signals are contradictory,
this algorithm always operates safely and, when they are aligned,
this approach also improves the agent’s performance.

KEYWORDS
Reinforcement Learning; CMDP; Safe Reinforcement Learning
ACM Reference Format:
Thiago D. Simão, Nils Jansen, and Matthijs T. J. Spaan. 2021. AlwaysSafe:
Reinforcement Learning without Safety Constraint Violations during Train-
ing. In Proc. of the 20th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2021), Online, May 3–7, 2021, IFAAMAS,
10 pages.

1 INTRODUCTION
Despite all the astonishing successes in Reinforcement Learning [RL;
45], safe exploration is still a major concern preventing its deploy-
ment in real-world tasks [5]. This problem has motivated the study
of constrained RL to ensure safety [16]. In this framework, an agent
interacts with an environment modeled as a Constrained Markov
Decision Process [CMDP; 4] without knowledge about the transi-
tion, reward, and cost functions. In safe RL, the cost function is used

Proc. of the 20th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2021), U. Endriss, A. Nowé, F. Dignum, A. Lomuscio (eds.), May 3–7, 2021, Online.
© 2021 International Foundation for Autonomous Agents and Multiagent Systems
(www.ifaamas.org). All rights reserved.

as a proxy to distinguish between safe and unsafe behaviors [19].
Therefore, the agent must find a policy with maximum expected re-
ward among the safe (feasible) policies, namely those with expected
cost smaller than a safety threshold.

We would like to distinguish between two constrained RL set-
tings. The first is the common setting, where the agent trains in an
assumed perfect simulator and only cares about constraint viola-
tions later, when deployed in the real environment. In this case, safe
exploration is not a major issue, since the agent is free to explore
during the learning period. The second, which is the focus of this
work, is what we may call the true setting, where the agent inter-
acts directly with the environment and is not allowed to violate the
constraints while learning.

Following the optimism in the face of uncertainty framework to
trade off exploration and exploitation, Efroni et al. [17] proposed
different algorithms for constrained RL with bounded regret in
terms of performance and in terms of constraint violation. How-
ever, these algorithms may still violate the constraints, since they
encourage the agent to explore unknown parts of the environment,
making them unsuitable for the true RL setting. We aim to develop
RL algorithms that can learn without violating the constraints, that
is, with no regret in terms of constraint violation.

We observe that often most of the state description is only rel-
evant to the reward signal and does not influence the safety of
the agent. In this setting, it can be easy for an expert to define the
dynamics relevant for safety. Consider for instance imposing a limit
on the consecutive movements of a robot arm to avoid overheating
or indicating unsafe areas such as stairs on a mobile robot’s map,
in these situations the target location is not relevant for safety.
Such constraints may be represented in a compact model and are a
prerequisite for deploying RL in practice. Without such knowledge,
typical RL algorithms would need to perform random exploration,
which is not an option in safety-critical applications. Hence, we
assume that this compact model is known and is represented by
an abstract CMDP M̄. This assumption allows us to safely trade
off exploration and exploitation, so the agent has an incentive to
explore, but always within a set of safe policies. Figure 1 shows a
CMDP where this kind of abstraction can be found. In this example,
we observe that the variable 𝑦 does not influence the cost function.
We will use this problem as a running example henceforth.

This work has a novel perspective on the use of abstractions.
The literature usually focuses on building a policy for M̄ that will
later be executed in the ground CMDPM. Our approach, however,
focuses on computing a policy in the ground CMDPM and uses
the abstract model M̄ to guarantee safety, which decouples the
safety concerns from the reward signal.

Main Track AAMAS 2021, May 3-7, 2021, Online

1226

Our contribution is four-fold: (i) we study the kind of abstraction
sufficient to concisely describe and distill safety dynamics. Using
factored MDPs [8], (ii) we devise an example of such abstract model.
Assuming such model is given, (iii) we propose a safe algorithm
that learns an optimal policy for the CMDP without violating the
constraints. Finally, (iv) we show that this algorithm is always safe
and has no regrets in terms of constraint violation.

The empirical analysis showcases the capabilities of the proposed
always safe algorithm: (i) as expected it respects the constraints dur-
ing training; (ii) it eventually achieves optimal performance; and (iii)
when the cost function is aligned with the reward it reduces the per-
formance regret. Code: https://github.com/AlgTUDelft/AlwaysSafe.

2 BACKGROUND
We start by reviewing the MDP, the constrained MDP and the
factored MDP formalisms. Next, we discuss the constrained RL
problem and an algorithm to solve it.

2.1 Constrained MDPs
A Markov Decision Process [MDP; 36] models the interaction be-
tween an agent and its environment. Let Π(Y) be the set of prob-
ability distributions over the finite set Y. We consider an MDP
with a finite state space S, a finite action space A, a transition func-
tion 𝑃 : S × A→ Π(S) that represents the conditional probability
distribution 𝑃 (𝑠 ′ |𝑠, 𝑎) of moving to a successor state 𝑠 ′ ∈ S after
executing action 𝑎 ∈ A in state 𝑠 ∈ S, a bounded reward function
𝑅 : S × A→ [0, 1], and an initial state distribution 𝜇 ∈ Π(S). We
focus on finite-horizon problems, where the agent interacts𝐻 times
with the environment.

A Constrained Markov Decision Process [CMDP; 4] has the same
elements as an MDP plus a bounded cost function𝐶 : S×A→ [0, 1]
and an upper bound on the expected cost 𝑐 ∈ [0, 𝐻]. We consider a
policy with expected cost larger than 𝑐 unsafe. Although we present
CMDPs with a single cost function in favor of clarity, our results
can easily be extended to problems with multiple cost functions.

A factored CMDP [8] can compactly represent a CMDP using
a dynamic Bayesian network [14]. It uses a set of state variables
𝑋 = {𝑋1, . . . , 𝑋 |𝑋 |} to represent the state space, where each vari-
able assumes a value 𝑥𝑖 from its domain 𝑑𝑜𝑚(𝑋𝑖). Assuming the
outcome of each variable 𝑋𝑖 is conditionally independent of the
outcome of the other variables given its parents Pa𝑎 (𝑋𝑖) ⊆ 𝑋 (the
set of variables on which the value of 𝑋𝑖 depends when executing
action 𝑎), the transition function is represented by the product of a
set of conditional probability distributions

𝑃 (𝑠 ′ | 𝑠, 𝑎) =
∏
𝑋𝑖 ∈𝑋

𝑃 (𝑠 ′[𝑋𝑖] | 𝑠 [Pa𝑎 (𝑋𝑖)], 𝑎),

where 𝑠 [𝑋𝑖] ∈ 𝑑𝑜𝑚(𝑋𝑖) denotes the value of the variable 𝑋𝑖 ∈ 𝑋
(or the set of variables Δ ⊆ 𝑋) in state 𝑠 ∈ S. Let N𝑛 = {1, . . . , 𝑛},
∀𝑛 ∈ N. We can also succinctly represent the reward and cost
functions by the sum of𝑚 and 𝑛 local functions, respectively:

𝑅(𝑠, 𝑎) =
∑
𝑖∈N𝑚

𝑅𝑖 (𝑠 [Δ𝑅𝑖], 𝑎) and 𝐶 (𝑠, 𝑎) =
∑
𝑖∈N𝑛

𝐶𝑖 (𝑠 [Δ𝐶𝑖], 𝑎),

where 𝑅𝑖 (𝐶𝑖) is the 𝑖-th local reward (cost) function that only de-
pends on the subset of variables Δ𝑅

𝑖
(Δ𝐶
𝑖
) ⊆ 𝑋 .

𝑠00 𝑠10 𝑠20

𝑠01 𝑠11 𝑠21

𝑎,𝑏
𝑝

1−
𝑝

𝑎
𝑟 = 1
𝑐 = 1

𝑏

𝑎,𝑏

𝑝

1−𝑝 𝑎 𝑐 = 1

𝑏 𝑟 = 1

𝑠0 𝑠1 𝑠2𝑎,𝑏

𝑎 𝑐 = 1

𝑏

Figure 1: A factored CMDP with 2 features (𝑥,𝑦) and 6 states
(left) and the corresponding abstract CMDP built with a
model-cost-irrelevant abstraction that ignores the feature 𝑦
(right). Costs and rewards with value 0 are omitted as well
as the probability of deterministic transitions.

A policy 𝜋 : S×N𝐻 → Π(A) defines the behavior of the agent. It
induces a state-action occupancy 𝑦𝑡 (𝑠, 𝑎) = 𝜇𝑡 (𝑠)𝜋 (𝑎 | 𝑠, 𝑡), where
𝜇𝑡 (𝑠) is the occupancy of the state 𝑠 at time step 𝑡 :

𝜇𝑡 (𝑠) =
{
𝜇 (𝑠) if 𝑡 = 1,∑
𝑠◦,𝑎◦∈S×A 𝑦𝑡−1 (𝑠◦, 𝑎◦)𝑃 (𝑠 | 𝑠◦, 𝑎◦) otherwise.

An optimal policy 𝜋∗ for a CMDP maximizes the expected accu-
mulated reward while the expected accumulated cost is below the
upper bound 𝑐:

max
𝜋
𝑉 𝜋
𝑅
(𝜇) =

∑
𝑠∈S

𝜇 (𝑠)𝑉 𝜋
𝑅
(𝑠, 1) = E𝜋


∑
𝑡 ∈N𝐻

𝑅𝑡 | 𝜇


s. t. 𝑉 𝜋
𝐶
(𝜇) =

∑
𝑠∈S

𝜇 (𝑠)𝑉 𝜋
𝐶
(𝑠, 1) = E𝜋


∑
𝑡 ∈N𝐻

𝐶𝑡 | 𝜇
 ≤ 𝑐,

where 𝑅𝑡 and 𝐶𝑡 are random variables indicating the reward and
cost the agent receives at time step 𝑡 , respectively. The expected
cost of following a policy 𝜋 starting from state 𝑠 at time step 𝑡 can
be computed according to its occupancy measure 𝑦 as follows:

𝑉 𝜋
𝐶
(𝑠, 𝑡) =

∑
𝑠,𝑎,𝑘∈S×A×{𝑡, · · · ,𝐻 }

𝑦𝑘 (𝑠, 𝑎)𝐶 (𝑠, 𝑎) .

The expected value 𝑉 𝜋
𝑅
(𝑠, 𝑡) is defined similarly replacing the cost

function 𝐶 by the reward function 𝑅.

Example 2.1 (The optimal policy). Consider the CMDP from Fig-
ure 1. In state 𝑠11 action 𝑏 has no cost and gives a reward of 1, so the
optimal policy always assigns 𝜋 (𝑏 | 𝑠11) = 1, which maximizes the
reward and does not incur any cost. This way, all the cost would
come from the state 𝑠10: so we have 𝑉 𝜋

𝐶
(𝜇) = 𝑝𝜋 (𝑎 | 𝑠10). Since

only action 𝑎 gives a reward in state 𝑠10, the problem reduces to
max𝜋 (𝑎 | 𝑠10) s. t. 𝑝𝜋 (𝑎 | 𝑠10) ≤ 𝑐. For 𝑝 = 0 the solution is trivial
and 𝜋 (𝑎 | 𝑠10) might assume any value, while for 𝑝 > 0 we can
reformulate the constraint, obtaining 𝜋 (𝑎 | 𝑠10) ≤ 𝑐

𝑝 . Since our
objective is to maximize 𝜋 (𝑎 | 𝑠10), we find that the optimal policy
for this problem is 𝜋∗ (𝑎 | 𝑠10) = 𝑐

𝑝 .

The following Linear Program (LP) solves a CMDP:

max
∑

𝑠,𝑎,𝑡 ∈S×A×N𝐻
𝑦𝑡 (𝑠, 𝑎)𝑅(𝑠, 𝑎) s. t. C1–C5. (LP1)

∑
𝑠,𝑎,𝑡 ∈S×A×N𝐻

𝑦𝑡 (𝑠, 𝑎)𝐶 (𝑠, 𝑎) ≤ 𝑐. (C1)

Main Track AAMAS 2021, May 3-7, 2021, Online

1227

https://github.com/AlgTUDelft/AlwaysSafe

𝑦𝑡 (𝑠, 𝑎) =
∑
𝑠′∈S

𝑥𝑡 (𝑠, 𝑎, 𝑠 ′) : ∀𝑠, 𝑎, 𝑡 ∈ S × A × N𝐻 . (C2)

∑
𝑠◦,𝑎◦∈S×A

𝑥𝑡−1 (𝑠◦, 𝑎◦, 𝑠)=
∑
𝑎∈A

𝑦𝑡 (𝑠, 𝑎) : ∀𝑠, 𝑡 ∈ S×N𝐻\{1}. (C3)

∑
𝑎∈A

𝑦1 (𝑠, 𝑎) = 𝜇 (𝑠) : ∀𝑠 ∈ S. (C4)

𝑥𝑡 (𝑠, 𝑎, 𝑠 ′)=𝑃 (𝑠 ′ | 𝑠, 𝑎)𝑦𝑡 (𝑠, 𝑎) : ∀𝑠, 𝑎, 𝑠 ′, 𝑡 ∈ S×A×S×N𝐻 . (C5)

In LP1, C1 bounds the expected cost, C2 shows the linear relation
between 𝑦 and 𝑥 , C3 controls the inflow and outflow of each state at
each time step, C4 is the initial state distribution and C5 ensures the
flow respects the transition function. A solution for LP1 induces an
optimal stochastic policy

𝜋 (𝑎 | 𝑠, 𝑡) = 𝑦𝑡 (𝑠, 𝑎)∑
𝑎′∈A 𝑦𝑡 (𝑠, 𝑎′)

: ∀𝑠, 𝑎, 𝑡 ∈ S × A × N𝐻 . (1)

2.2 Constrained RL
In Reinforcement Learning [RL; 45] the agent does not have access
to the description of the underlying MDP, so it must find a balance
between exploration, to learn about the environment potentially
increasing its performance, and exploitation, taking advantage of
its current knowledge to collect reward. The difference between
the value of the policy executed and the value of the optimal policy,
called regret, is one measure of the efficiency of RL algorithms.
Intuitively, an agent with bounded regret can make a good trade-off
between exploration and exploitation.

To evaluate the efficiency of constrained RL algorithms we may
consider two types of regret: performance regret and constraint
violation regret [17]. The performance regret is similar to the one
in traditional episodic RL settings [6, 26, 32]:

Reg(𝐾, 𝑅) =
∑
𝑘∈[𝐾]

[
𝑉 𝜋

∗
𝑅
(𝜇) −𝑉 𝜋𝑘

𝑅
(𝜇)

]
+
,

where [𝑥]+ = max{𝑥, 0} and 𝐾 is the number of episodes. Note
that this definition ignores values larger than the value of the opti-
mal policy (this is only possible if the constraint is violated). The
constraint violation regret is the cumulative cost violation:

Reg(𝐾,𝐶) =
∑
𝑘∈[𝐾]

[
𝑉
𝜋𝑘
𝐶
(𝜇) − 𝑐

]
+ .

In this case we note that there is only regret when the expected
cost is larger the given bound, so a policy has no regret for having
an expected cost lower or equal to the bound. In the next section,
we describe an algorithm for constrained RL with bounded regret.

2.3 Solving CMDPs with Optimism
OptCMDP [17, Algorithm 1 with M̄ = ∅] is an extension of the
UCRL2 algorithm [26] to the CMDP setting. This algorithm requires
no knowledge about the components of the CMDP and bounds the
performance regret with respect to the optimal policy as well as
the constraint violation regret.

Intuitively, at the beginning of each episode, OptCMDP defines
a set of CMDPs Ξ that contains the true CMDPM with high prob-
ability 1 − 𝛿 . It computes an optimistic policy, assuming it can also

Algorithm 1 OptCMDP / AbsOptCMDP / AlwaysSafe
Input: 𝛿 ∈ (0, 1) : confidence level;
Input: M̄ ∈ {∅, ⟨S̄,A, 𝑃, 𝑅, 𝜇,𝐶, 𝑐⟩}

1: for 𝑘 ∈ [1, · · · , 𝐾] do
2: Update the empirical model.
3: if M̄ = ∅ then
4: Compute 𝜋𝑘 with LP2.
5: else
6: Compute 𝜋𝑘 using M̄ and (5), (6), (7) or Algorithm 2.
7: Execute policy 𝜋𝑘 for one episode.

choose the best CMDP in Ξ:
arg max
𝑃 ′,𝑅′,𝐶′∈Ξ,𝜋

𝑉
𝜋𝑘
𝑅′ (𝜇) s. t. 𝑉 𝜋𝑘

𝐶′ (𝜇) ≤ 𝑐. (2)

Then the algorithm executes the computed policy for one episode,
collecting data to update Ξ. Over time the set Ξ shrinks and the
computed policy approaches the optimal policy.

Efroni et al. [17] show that, under an optimistic perspective, we
can simplify (2) by choosing the upper bound of the reward function
and the lower bound of the cost function. Therefore, using 𝑓 to
denote the maximum likelihood estimate of the function 𝑓 , we only
consider a set of transition functions when defining Ξ:

Ξ = {𝑃 ′, 𝑅′,𝐶 ′ :

𝑃 ′ ∈ [𝑃 (𝑠 ′ | 𝑠, 𝑎) − 𝑒𝑃
𝛿
(𝑠, 𝑎, 𝑠 ′), 𝑃 (𝑠 ′ | 𝑠, 𝑎) + 𝑒𝑃

𝛿
(𝑠, 𝑎, 𝑠 ′)],

𝑅′ = 𝑅(𝑠, 𝑎) + 𝑒𝑅
𝛿
(𝑠, 𝑎),

𝐶 ′ = 𝐶 (𝑠, 𝑎) − 𝑒𝐶
𝛿
(𝑠, 𝑎),∀𝑠, 𝑎, 𝑠 ′ ∈ S,A, S},

where the confidence intervals 𝑒𝑃
𝛿

, 𝑒𝑅
𝛿

and 𝑒𝐶
𝛿

are based on the
Bernstein inequality (for the transition function) and Hoeffding
inequality (for the cost and reward function) [25]. We refer to [17,
Equation 20] for a detailed derivation of the confidence intervals
such that 𝑃 (M ∈ Ξ) ≥ 1 − 𝛿 . Now we can solve (2) with the
following optimistic LP [17, 24, 39]:

max
∑

𝑠,𝑎,𝑡 ∈S×A×N𝐻
𝑦𝑡 (𝑠, 𝑎) (𝑅(𝑠, 𝑎) + 𝑒𝑅𝛿 (𝑠, 𝑎))

s. t. C2–C4 (LP1), C6–C8.
(LP2)

∑
𝑠,𝑎,𝑡 ∈S×A×N𝐻

𝑦𝑡 (𝑠, 𝑎) (𝐶 (𝑠, 𝑎) − 𝑒𝐶𝛿 (𝑠, 𝑎)) ≤ 𝑐. (C6)

𝑥𝑡 (𝑠, 𝑎, 𝑠 ′) ≤ (𝑃 (𝑠 ′ |𝑠, 𝑎) + 𝑒𝑃𝛿 (𝑠, 𝑎, 𝑠
′))𝑦𝑡 (𝑠, 𝑎)

∀(𝑠, 𝑎, 𝑠 ′, 𝑡) ∈ S × A × S × N𝐻 . (C7)

𝑥𝑡 (𝑠, 𝑎, 𝑠 ′) ≥ (𝑃 (𝑠 ′ |𝑠, 𝑎) − 𝑒𝑃𝛿 (𝑠, 𝑎, 𝑠
′))𝑦𝑡 (𝑠, 𝑎)

∀(𝑠, 𝑎, 𝑠 ′, 𝑡) ∈ S × A × S × N𝐻 . (C8)
Compared to LP1, LP2 replaces the equality C5 by two inequalities,
which ensure that the chosen transition function is close to the
true transition function with high probability. Besides an optimistic
policy, computed by (1), a solution for this LP also gives us the
optimistic transition function picked for problem (2):

𝑃 ′𝑡 (𝑠 ′ | 𝑠, 𝑎) =
𝑥𝑡 (𝑠, 𝑎, 𝑠 ′)
𝑦𝑡 (𝑠, 𝑎)

,∀𝑡 ∈ N𝐻 .

Main Track AAMAS 2021, May 3-7, 2021, Online

1228

Over the episodes, as the agent collects more experiences, the esti-
mate 𝑃 improves as the confidence interval 𝑒𝑃

𝛿
narrows. This way,

𝑃 ′ approaches 𝑃 and the policy computed by LP2 gets closer to an
optimal one.

Even though the OptCMDP algorithm has a bounded constraint
violation regret, in safety-critical applications even a small regret
would not be acceptable, so this algorithm could not be directly
deployed to real-world tasks. In the next section, we present a model
that allow us to compactly represent a CMDP. Later, we will use
this model to define a compact abstraction of the dynamics that are
relevant for the safety constraints and use it to build a constrained
RL algorithm with no constraint violation regret.

3 ABSTRACTION FOR EXPECTED COST
Before describing our method, let us consider again the robot with
an arm that can overheat. In this example, we could keep track of
how often the motor was activated in the last hour and constraint
the RL agent’s policies to avoid excessive consecutive movements.
This is a simple example of an abstraction that lets the robot act
safely. In this section, we will formalize an abstract version of the
problem that captures the knowledge required to ensure safety in
the constrained RL setting. As an example, we explore factored
CMDPs where the cost function is independent of some variables,
that is, only a subset of the variables are relevant for the constraints.

Following the definitions by Li et al. [31], we denote a state ab-
straction function by 𝜙 : S→ S̄, where S̄ is the finite abstract state
space. The inverse of 𝜙 is denoted by 𝜙−1 : S̄→ 2S, that is 𝜙−1 (𝑠)
is the set of ground states whose abstract state is 𝑠 according to 𝜙 .
Given a CMDP M = ⟨S,A, 𝑃, 𝑅, 𝜇,𝐶, 𝑐⟩ and an abstraction func-
tion 𝜙 , the respective abstract CMDP is M̄𝜙 = ⟨S̄,A, 𝑃, 𝑅, 𝜇,𝐶, 𝑐⟩,
where

𝑃 (𝑠 ′ | 𝑠, 𝑎) = ∑
𝑠∈𝜙−1 (𝑠)

∑
𝑠′∈𝜙−1 (𝑠′) 𝑤 (𝑠)𝑃 (𝑠 ′ | 𝑠, 𝑎),

𝑅(𝑠, 𝑎) = ∑
𝑠∈𝜙−1 (𝑠) 𝑤 (𝑠)𝑅(𝑠, 𝑎),

𝐶 (𝑠, 𝑎) = ∑
𝑠∈𝜙−1 (𝑠) 𝑤 (𝑠)𝐶 (𝑠, 𝑎),

𝜇 (𝑠) = ∑
𝑠∈𝜙−1 (𝑠) 𝜇 (𝑠)

and𝑤 (𝑠) indicates the contribution of each state 𝑠 ∈ 𝜙−1 (𝑠) to the
abstract state 𝑠 , with the constraint that

∑
𝑠∈𝜙−1 (𝑠) 𝑤 (𝑠) = 1.

3.1 Cost-model Irrelevance
Li et al. [31, Definition 3] use the above formalism to define differ-
ent types of abstractions. For instance, 𝑄𝜋

𝑅
-irrelevant abstractions

preserve the𝑄𝜋
𝑅

function. This may be useful when solving an MDP,
as we could compute 𝑄𝜋

𝑅
over the abstract state space, which can

speed up the convergence of an MDP solver [21] or an RL agent [49].
Following this idea, we define an abstraction related to the model
necessary to compute the expected cost 𝑉 𝜋

𝐶
.

Definition 3.1. Given an CMDPM = ⟨S,A, 𝑃, 𝑅, 𝜇,𝐶, 𝑐⟩, we say
that an abstraction function 𝜙 is cost-model-irrelevant when

𝜙 (𝑠1) = 𝜙 (𝑠2) ⇒∑
𝑠′∈𝜙−1 (𝑠)

𝑃 (𝑠 ′ | 𝑠1, 𝑎) =
∑

𝑠′∈𝜙−1 (𝑠)
𝑃 (𝑠 ′ | 𝑠2, 𝑎) and

𝐶 (𝑠1, 𝑎) = 𝐶 (𝑠2, 𝑎) ∀𝑎, 𝑠1, 𝑠2, 𝑠 ∈ A × S × S × S̄. (3)

Definition 3.1 is similar to model-irrelevance [31] considering
the cost function instead of the reward function. It says that if a cost-
model-irrelevant abstraction maps two states to the same abstract
state then the cost of executing action 𝑎 ∈ A and the distribution
over the next abstract state is the same in both states.

We would like to use prior knowledge of a model of the abstract
CMDP to guarantee that a policy for the ground CMDP will not
violate the cost constraints. So, while most literature on abstraction
for RL is interested in deploying the policy computed in the abstract
CMDP to the ground CMDP, we use the abstract CMDP to test the
safety of a policy defined in the ground CMDP.

3.2 A Cost-model-irrelevant Abstraction
In factored CMDPs, we can define a cost-model-irrelevant abstrac-
tion by considering only the subset of state variables that influence
the cost function. Given a set of variables Δ ⊆ 𝑋 , we define their
parents as Pa(Δ) = ⋃

𝑋𝑖 ,𝑎∈Δ×A Pa𝑎 (𝑋𝑖) and their ancestors as:

Anc(Δ) =
{
Δ if Pa(Δ) ⊆ Δ,

Anc(Pa(Δ) ∪ Δ) otherwise.

Intuitively, the set Anc(Δ) might influence Δ over multiple time
steps, while the set Pa(Δ) are only variables that have an imme-
diate influence on Δ. Let Pa(𝐶) = ∪𝑖∈N𝑛Δ𝐶𝑖 be the set of variable
that directly influences the cost function, we define a cost-model-
irrelevant abstraction 𝜙𝐶 based on their ancestors Anc(Pa(𝐶)):

𝜙𝐶 (𝑠 [𝑋]) = 𝑠 [Anc(𝐶)] . (4)

Our running example (Figure 1) shows an instance of such abstrac-
tion. The efficiency of this abstraction, related to the size reduction
from the original CMDP to the abstract CMDP, corresponds to
the size of the set of ancestors of the cost function: |Anc(𝐶) |. For
instance, if Anc(𝐶) = 𝑋 , this abstraction would be the identity
function and the abstract CMDP would be the same as the original.
If, however, Anc(𝐶) = ∅, the abstract CMDP would contain a single
state since the cost function is independent of the state variables.

Theorem 3.2. 𝜙𝐶 is a cost-model-irrelevant abstraction.

Proof. See supplementary material [41]. □

While 𝜙𝐶 is a convenient and natural cost-model-irrelevant ab-
straction, it is not necessarily the most compact. We refer to Givan
et al. [20] for a discussion on how to find more compact abstract
models in factored MDPs.

3.3 Planning with the Abstract CMDP
Given a cost-model-irrelevant abstraction, we extend LP1 to take
this knowledge in consideration, by adding variables 𝑧 that rep-
resent the occupancy of each pair of abstract state and action for
each time step. Our goal is to decouple the expected cost from the
full transition function, to ensure that the policy computed still
respects the cost constraints.

max
∑

𝑠,𝑎,𝑡 ∈S×A×N𝐻
𝑦𝑡 (𝑠, 𝑎)𝑅(𝑠, 𝑎)

s. t. C2–C5 (LP1), C9–C11.
(LP3)

Main Track AAMAS 2021, May 3-7, 2021, Online

1229

∑
𝑠,𝑎,𝑡 ∈S̄×A×N𝐻

𝑧𝑡 (𝑠, 𝑎)𝐶 (𝑠, 𝑎) ≤ 𝑐. (C9)

𝑧𝑡 (𝑠, 𝑎) =
∑

𝑠∈𝜙−1 (𝑠)
𝑦𝑡 (𝑠, 𝑎) ∀𝑠, 𝑎, 𝑡 ∈ S̄ × A × N𝐻 . (C10)

∑
𝑎∈A

𝑧𝑡 (𝑠, 𝑎) =
∑

𝑠◦,𝑎◦∈S̄×A
𝑃 (𝑠 | 𝑠◦, 𝑎◦)𝑧𝑡−1 (𝑠◦, 𝑎◦)

∀𝑠, 𝑡 ∈ S̄ × N𝐻 \ {1}. (C11)
In LP3, constraint C10 helps us to connect the flow from the

ground CMDP and the abstract CMDP, by ensuring that the flow
leaving an abstract state is the sum of the flow that leaves the re-
spective ground states. Constraint C9 replaces constraint C1, notice
that it uses the abstract cost function and the expected cost is com-
puted according to the occupancy of the abstract CMDP. Finally,
constraint C11 ensures that the flow of the abstract CMDP respects
the abstract transition function. Although this last constraint is
redundant since this flow is already specified in the ground CMDP,
it will be important for our method later when we do not have
access to the underlying transition function.

Since LP3 keeps variables for the ground CMDP and the abstract
CMDP, the policy it computes in the ground CMDP might be differ-
ent in states that were merged. In other words, the policy induced
by the abstract variables 𝑧 is different from the policy induced by
the ground variables 𝑥 and 𝑦.

In the next section, we show how to use this formulation to
devise an RL algorithm compliant with the safety constraints.

4 ALWAYS SAFE
Now we consider the setting where the agent has access to the
abstract CMDP generated from a cost-model irrelevance abstraction,
but does not have access to the full transition function or the reward
function. We propose an algorithm that learns the optimal policy of
the underlying CMDP without incurring any constraint violation
regret using an optimistic approach.

4.1 The Linear Program
The idea is to combine the abstract CMDP created with a cost-model-
irrelevant abstraction (Section 3.1) with an optimistic approach for
exploration (Section 2.3). LP4 puts all the pieces together:

max
∑

𝑠,𝑎,𝑡 ∈S×A×N𝐻
𝑦𝑡 (𝑠, 𝑎) (𝑅(𝑠, 𝑎) + 𝑒𝑅𝛿 (𝑠, 𝑎))

s. t. C2–C4 (LP1), C7–C8 (LP2), C9–C11 (LP3).
(LP4)

The main difference between LP4 and LP2 is the use of the extra
variables 𝑧 that represent the flow in the abstract CMDP. Therefore
we replace C6 that constrains the expected cost on the ground
CMDP by C9 that constrains the expected cost in the abstract CMDP.
Constraints C9–C11 control the flow in the abstract CMDP.

We can compile two basic policies using a solution for LP4. An
abstract policy 𝜋𝐴 using 𝑧 and a ground policy 𝜋𝐺 using 𝑦:

𝜋𝐴 (𝑎 | 𝑠, 𝑡) =
𝑧𝑡 (𝜙 (𝑠), 𝑎)∑

𝑎′∈A 𝑧𝑡 (𝜙 (𝑠), 𝑎′)
: ∀𝑠, 𝑎, 𝑡 ∈ S × A × N𝐻 , (5)

𝜋𝐺 (𝑎 | 𝑠, 𝑡) =
𝑦𝑡 (𝑠, 𝑎)∑

𝑎′∈A 𝑦𝑡 (𝑠, 𝑎′)
: ∀𝑠, 𝑎, 𝑡 ∈ S × A × N𝐻 . (6)

Next we analyze the properties of these two policies.

Theorem 4.1. Given an uncertainty set Ξ that contains the un-
derlying CMDPM, a cost-model-irrelevant abstraction 𝜙 and the
respective abstract CMDP M̄𝜙 = ⟨S̄,A, 𝑃, 𝑅, 𝜇,𝐶, 𝑐⟩, policy 𝜋𝐴 com-
puted according to LP4 and (5) does not violate the constraints when
applied inM : 𝑉 𝜋𝐴

𝐶
(𝜇) ≤ 𝑐.

Proof sketch. Li et al. [31] show that a model-irrelevant ab-
straction preserves the expected value. In the same way, a cost-
model-irrelevant abstraction preserves the expected cost. So the
policy computed in the abstract state has the same expected cost in
the ground state,𝑉 𝜋𝐴

𝐶
(𝜇) = 𝑉 𝜋𝐴

𝐶
(𝜇). From the constraint C9 in LP4,

we have 𝑉 𝜋𝐴
𝐶
(𝜇) ≤ 𝑐 . Therefore, 𝑉 𝜋𝐴

𝐶
(𝜇) ≤ 𝑐 . □

Theorem 4.1 essentially shows that the policy 𝜋𝐴 is safe, inde-
pendent of the uncertainty over the transition function. However,
this policy is not expressive enough to describe an optimal policy
for the underlying CMDP, since its domain might ignore variables
that influence the reward function (see Example 4.2).

Example 4.2 (𝜋𝐴 might be sub-optimal). Considering the CMDP
from Figure 1 again, we may notice that a policy defined in the
abstract MDP would assign at most probability 𝑐 to action 𝑎 in the
abstract state 𝑠1, while a policy defined on the ground state can
distinguish between 𝑠10 and 𝑠11, as we saw in Example 2.1.

We conjecture that an algorithm following policy 𝜋𝐺 in each
episode has a bounded performance regret, inherited from the
OptCMDP algorithm, since it makes the same assumptions. How-
ever, it can still exhibit some safety violation stemming from the
unknown transition function (see Example 4.3).

Example 4.3 (𝜋𝐺 might be unsafe). Let us consider the CMDP
from Figure 1 from an optimistic perspective. We may assume that
our estimate of transition function is perfect, 𝑝 = 𝑝 , but we still have
some uncertainty about it, represented by 𝑒 (𝑝). This way, we know
𝑝 ∈ [𝑝−𝑒 (𝑝), 𝑝+𝑒 (𝑝)]. In the optimistic CMDP, we are also picking
the parameters of the transition function. This means, the agent
chooses the value of 𝑝 , which in this case would be the lower bound
𝑝 ′ = 𝑝 − 𝑒 (𝑝), since it minimizes the chance of reaching state 𝑠10.
Following the same reasoning as in Example 2.1, we find a greedy
policy 𝜋𝐺 (𝑎 | 𝑠10) = 𝑐

𝑝−𝑒 (𝑝) which is unsafe, since it is larger than
the maximum value we found in Example 2.1 (𝜋∗ (𝑎 | 𝑠10) = 𝑐

𝑝).

4.2 Policies
In this section, we study how to switch between 𝜋𝐴 and 𝜋𝐺 , to find
an RL algorithm that has no constraint regret and can still find an
optimal policy for the underlying CMDP.

4.2.1 Policy 𝜋𝑇 . To devise an algorithm that can eventually find
an optimal policy for the underlying CMDP, we propose to use the
ground policy based on a test:

𝜋𝑇 =

{
𝜋𝐺 if max𝑃 ′∈Ξ𝑉 𝜋𝐺𝐶 (𝜇) ≤ 𝑐
𝜋𝐴 otherwise.

(7)

Main Track AAMAS 2021, May 3-7, 2021, Online

1230

Algorithm 2 Dynamic Constraint Tightening (𝜋𝛼)
Input: Ξ: uncertainty set
Input: M̄: abstract model
Input: 𝛼 : learning rate

1: 𝛽 ← 1
2: repeat
3: 𝑦, 𝑧, status← solve LP4 with 𝛽𝑐
4: if 𝑠𝑡𝑎𝑡𝑢𝑠 is infeasible then
5: 𝜋𝛼 ← 𝜋𝐴 ⊲ (5) based on 𝑧
6: return 𝜋𝛼
7: 𝜋𝛼 ← 𝜋𝐺 ⊲ (6) based on 𝑦
8: 𝑚𝑎𝑥𝑉 ← max𝑃 ′, ·, ·∈Ξ𝑉 𝜋𝛼𝐶 (𝜇) ⊲ LP5 based on 𝜋𝛼
9: 𝛽 ← 𝛽 − 𝛼 max{𝑚𝑎𝑥𝑉−𝑐,0}

𝑐
10: until𝑚𝑎𝑥𝑉 ≤ 𝑐
11: return 𝜋𝛼

To test if we can deploy 𝜋𝐺 , we compute the maximum expected
cost within the uncertainty set, fixing the policy 𝜋𝐺 :

max
𝑥,𝑦,𝑧

∑
𝑠,𝑎,𝑡 ∈S̄×A×N𝐻

𝑧𝑡 (𝑠, 𝑎)𝐶 (𝑠, 𝑎)

s. t. C2–C4 (LP1), C7–C8 (LP2), C10 (LP3), C12.
(LP5)

𝑦𝑡 (𝑠, 𝑎) = 𝜋𝐺 (𝑎 | 𝑠, 𝑡)
∑
𝑎′∈A

𝑦𝑡 (𝑠, 𝑎′) : ∀𝑠, 𝑎, 𝑡 ∈ S × A × N𝐻 . (C12)

In this LP, the constraint C12 ensures policy 𝜋𝐺 is applied in
every ground state. The value of 𝜋𝐺 (𝑎 | 𝑠, 𝑡) are constants computed
according to the solution of LP4, for every state, action and time step.
Intuitively, LP5 chooses the transition function in the uncertainty
set Ξ with the highest expected cost.

Although this approach could be more efficient, for instance
testing if ∃𝑃 ′ ∈ Ξ : 𝑉 𝜋𝐺

𝐶
(𝜇) > 𝑐 , we opt to compute the maximum

expected cost, because it give us an indication of how much the con-
straint might be violated. This can help us find a more conservative
policy in the ground CMDP, as we describe next.

4.2.2 Policy 𝜋𝛼 . The previous solution may never choose the
ground policy 𝜋𝐺 , in particular when the optimal policy has an
expected cost close to the bound 𝑐 . In this case, even a small con-
fidence interval could put the maximum expected cost above the
given cost bound. Inspired by de Nijs et al. [13], we propose to
compute a policy that is more conservative such that it passes the
test from (7)1.

Algorithm 2 describes one way to compute such a policy. The
algorithm initializes the coefficient 𝛽 with value 1. Then, in each
iteration, the algorithm solves LP4 using an adjusted bound 𝛽𝑐 . If
the algorithm did not meet any of its stopping criteria, it lowers the
coefficient 𝛽 and repeats. The algorithm can terminate in two ways:
(i) by finding a policy that respects the constraints in all CMDPs
in the uncertainty set; or (ii) by setting a cost bound too low, such
that none of the CMDPs can satisfy the constraints.

Figure 2 demonstrates a successful search for a safe ground policy
with Algorithm 2. Each plot shows the distribution of expected cost
(according to the CMDPs in Ξ) for policies computed with a certain
1Another option would be to change the test in (7) allowing a small error (𝑐 + 𝜖). This
would give us an approximately safe algorithm.

VC

ĉ0 = ĉ
β = 1

VC

ĉĉ1

β = 0.9

VC

ĉĉ2

β = 0.85

VC

ĉĉn

Safe Policy

Figure 2: Search for a ground policy that respects the con-
straints in all CMDPs from the uncertainty set Ξ. The 𝑥-axis
indicates the expected cost and the 𝑦-axis the frequency we
can find a CMDP in Ξ for which the policy computed has
that expected cost.

bound 𝑐𝑖 . The first three plots shows how the cost bound 𝑐𝑖 changes
over the iterations and the last plot shows one of the stopping
conditions of the algorithm, when the policy computed according
to 𝑐𝑛 respect the original constraints in all CMDPs in Ξ.

4.3 Theory
We would like to show that the AlwaysSafe algorithm equipped
with a cost-model-irrelevant abstract CMDP M̄ and one of the
safe policies 𝜋𝐴 , 𝜋𝑇 , or 𝜋𝛼 has no constraint violations with high
probability, as stated in Theorem 4.4. In summary, the algorithm
AlwaysSafe relies on the fact that the underlying CMDPM is a
member of Ξ with high probability, so it can test if the proposed
ground policy is safe for all CMDPs in Ξ, and when this cannot be
guaranteed, it executes 𝜋𝐴 which is guaranteed to be safe to collect
more data.

Theorem 4.4. Given an abstract CMDP built according to a cost-
model irrelevance abstraction and a fixed 𝛿 ∈ (0, 1), the algorithm
AlwaysSafe equipped with policies 𝜋𝐴 , 𝜋𝑇 or 𝜋𝛼 has no constraint
violation regret with probability 1 − 𝛿 .

Proof sketch. Theorem 4.1 is enough to show that AlwaysSafe
with 𝜋𝐴 will not violate the constraints. By definition the transition
of the true CMDP belongs to the uncertainty set Ξ with proba-
bility 1 − 𝛿 . Since the expected cost of the policies 𝜋𝑇 and 𝜋𝛼 is
less or equal to 𝑐 in all CMDPs in Ξ, these policies are safe with
probability 1 − 𝛿 . Details in the supplementary material [41]. □

5 EMPIRICAL RESULTS
For the empirical analysis, we selected three environments that
showcase different features of the AlwaysSafe algorithm. While we
provide more details about each environment in the supplementary
material [41], here we present a summary of each one.

i). The simple CMDP was adapted from a problem proposed by
Zheng and Ratliff [55], it has 3 states (S = N3) and 2 actions: stay in
the current state, which does not incur any cost or reward; or move
to the next state, which incurs a cost of 1 and a reward equal to the
current state index. We set 𝑐 = 3, 𝐻 = 6, 𝐾 = 100, and we ignore
the state since the cost depends only on the action. In this way, the
cost-model-irrelevance abstraction maps all states to a single state.
Similar to Example 4.2, in this environment the reward depends
on the ground state, so the optimal policy cannot be computed
in the abstract state space. Therefore, this environment serves to

Main Track AAMAS 2021, May 3-7, 2021, Online

1231

0 20 40 60 80 100
Episode

1

2

3

4

5

Ex
pe

ct
ed

Co
st

Simple CMDP
OptCMDP
AbsOptCMDP πG
AlwaysSafe πA

AlwaysSafe πT
AlwaysSafe πα
AlwaysSafe πT 0.9ĉ

cost bound
0 500 1000 1500 2000

Episode

0.06

0.08

0.10

0.12

0.14

Ex
pe

ct
ed

Co
st

Factored CMDP

0 1000 2000 3000 4000 5000
Episode

1.0

1.5

2.0

2.5

3.0

Ex
pe

ct
ed

Co
st

Cli�

0 20 40 60 80 100
Episode

2

4

6

8

10

Ex
pe

ct
ed

Va
lu

e

optimal return
0 500 1000 1500 2000

Episode

0.16

0.18

0.20

0.22

0.24
Ex

pe
ct

ed
Va

lu
e

0 1000 2000 3000 4000 5000
Episode

−20.0

−17.5

−15.0

−12.5

−10.0

−7.5

−5.0

Ex
pe

ct
ed

Va
lu

e

Figure 3: Results for the simple CMDP (left), factored CMDP (middle), and cliff environment (right), all averaged over 100
runs with a 95% confidence interval. The first row shows the expected cost of the policy executed in each episode while the
second row shows the expected value of the policy (these values are estimated with 1000 simulations). A dashed line depicts
the bound on the expected cost 𝑐 and a dotted line depicts the optimal expected value.

check whether the algorithms based on the safety abstraction can
compute an optimal policy.

ii). The factoredCMDP from Figure 1 with 𝑝 =0.9. We set 𝑐 =0.1,
𝐻 = 2, 𝐾 = 5000. We use the state abstraction that ignores the state
variable 𝑦 (Figure 1 right). This is a particularly challenging envi-
ronment from a safety perspective, because an optimistic algorithm
may underestimate the value of 𝑝 , as discussed in Example 4.3,
leading to an unsafe behavior.

iii). The cliff walking, a 4× 6 grid-world where the agent must
get to a goal position without falling off a cliff [45, Example 6.6].
We used the augmented version with a cost for walking close to
the cliff [30]. We set 𝑐 = 2, 𝐻 = 15, 𝐾 = 5000, and we do not
ignore any variables. In this example, the cost function depends on
both variables, so we need to use an identity function to define the
abstraction. We set 𝑐 = 2 and thereby ensure that an optimal policy
is stochastic, as it needs to randomize between two longer paths.

Since the reward and cost functions in these environments are
not in the interval [0, 1], we normalize the confidence intervals
according to their spans. We also make them tighter to handle the
large magnitude difference in the rewards of the cliff environment
(details in the supplementary material [41]). Finally, we follow a
doubling epoch schedule [28], where a new policy is computed only
when one of the state-action counters doubles.

We evaluate the AlwaysSafe algorithm equipped with different
policies from Section 4 (𝜋𝐴 , 𝜋𝑇 and 𝜋𝛼 with 𝛼 = 0.5), plus an
instance using 𝜋𝑇 with an adjusted cost bound 0.9𝑐 . For the cliff
environment, we only consider the algorithm AlwaysSafe 𝜋𝐴 since

S = S̄ which implies 𝜋𝐺 = 𝜋𝐴 , making all the algorithms virtually
the same. We use the algorithms OptCMDP and AbsOptCMDP
𝜋𝐺 (Algorithm 1 equipped with a cost-model-irrelevant abstract
CMDP M̄ and policy 𝜋𝐺) as baselines.

5.1 Analysis
We compare the algorithms in terms of constraint violations and
performance regret. Figure 3 shows the expected cost (top row) and
expected value (bottom row) of the policy in each episode.

We start the analysis with the simple CMDP (left column). We
can observe that OptCMDP obtains policies with an expected value
larger than the optimal constrained policy (bottom left), however,
to do so it has to violate the constraints (top left). Although the al-
gorithm AbsOptCMDP 𝜋𝐺 has no safety guarantees, in this domain
it converges to the optimal policy without violating the constraints.

As expected, all instances of the AlwaysSafe algorithm respect
the cost constraint. However, only 𝜋𝛼 converges to the optimal pol-
icy, while the others converged to a sub-optimal policy, indicating
that the ground policy did not pass the safety test and the abstract
policy was used. We notice that in the first episodes, AlwaysSafe 𝜋𝛼
uses a conservative policy, which shows that while the confidence
interval was loose, the final 𝑐 was low enough to make the ground
policy safe in the whole uncertainty set.

The experiments with the factored CMDP (middle column) show
that AbsOptCMDP𝜋𝐺 is not safe. We can also see that AlwaysSafe𝜋𝑇
with 0.9𝑐 changes from policy 𝜋𝐴 to policy 𝜋𝐺 after ∼ 500 episodes

Main Track AAMAS 2021, May 3-7, 2021, Online

1232

but still does not reach the optimal performance, while the algo-
rithm AlwaysSafe 𝜋𝑇 always executes 𝜋𝐴 . Only AlwaysSafe 𝜋𝛼
safely reaches the optimal performance.

We conclude our analysis with the cliff environment (right col-
umn). We observe, to no surprise, that the AlwaysSafe 𝜋𝐴 algorithm
is able to always execute policies with expected cost lower than the
given bound. The OptCMDP algorithm, on the other hand, violates
the constraints for hundreds of episodes. Analyzing the expected
value of the policies executed (bottom right), we notice that, in the
cliff environment, the constraints on the expected cost are actually
beneficial for the AlwaysSafe 𝜋𝐴 algorithm, that accumulates a
smaller regret in terms of performance as well.

5.2 Discussion
Following Ray et al. [37], we may conclude that the algorithm Al-
waysSafe equipped with the safe policies 𝜋𝐴 , 𝜋𝑇 , 𝜋𝛼 or 𝜋𝑇 with 0.9𝑐
dominates OptCMDP and AbsOptCMDP 𝜋𝐺 since the former does
not violate the constraints, while the latter does. Then AlwaysSafe
𝜋𝛼 dominates AlwaysSafe 𝜋𝐴 , AlwaysSafe 𝜋𝑇 and AlwaysSafe 𝜋𝑇
with 0.9𝑐 since in general it achieves higher performance. Never-
theless, these results come with the requirement that the abstract
model relevant for the safety is known. We believe that in cases
where this model is only partially known, these algorithms would
still be useful to make the most of the knowledge available.

In general, we notice that, on the one hand, the algorithms
OptCMDP and AbsOptCMDP 𝜋𝐺 eventually approach the safety
bound, but might use unsafe policies during this process, which is a
clear consequence of their optimism with respect to the transition
and cost function. On the other hand, the AlwaysSafe algorithm
equipped with safe policies sacrifices performance to ensure safety.
However, when the cost function is well aligned with the reward
function it can also have a smaller performance regret.

6 RELATEDWORK
There are two popular directions in safe reinforcement learning [19]:
(𝑖) shaping the optimization criterion towards risk sensitivity [11]
and (𝑖𝑖) changing the exploration process by, for instance, assuming
the existence of a safe policy [55]. Our work is in the intersection
of these directions since we employ external knowledge to modify
the exploration process using a different optimization criterion.

Zheng and Ratliff [55] adapt the UCRL2 algorithm to CMDPs
and assume that the full transition model of the MDP is known and
the agent has access to a safe (baseline) policy. In contrast, we only
require an abstraction of the transition model that is relevant for
the cost function. Recently, HasanzadeZonuzy et al. [24] showed
that the sample complexity of learning in CMDPs increases only
logarithmically in comparison to unconstrained problems. How-
ever, their probably-approximately-correct (PAC) scheme does not
provide any safety guarantees during the learning phase.

Furthermore, RL algorithms that provide guarantees of not vio-
lating the constraints during the learning phase include methods
that model the environment dynamics using Gaussian processes
[7, 48, 50, 51], design Lyapunov functions to guarantee the global
constraints [12] or use analogies [38]. In general, these methods
assume an initial safe policy to begin exploring, allowing the agents
to slowly expand the set of known safe policies/states.

For problems with high-dimensional input spaces, different pol-
icy search algorithms have been proposed, that provide certain
(though not hard) guarantees of not violating the constraints [2, 47,
53] or find safe policies only at the end of the training process [37].
In this setting, the safety constraint has also been generalized to
consider the tail of the distribution of accumulated expected costs,
instead of the mean [52].

Factored MDPs have been explored in different RL settings, de-
veloping algorithms with near-optimal regret bounds in factored
MDPs without constraints [34] and with constraints [10], sample
efficient algorithms [9, 15, 44] and off-policy policy evaluation [22],
In the safety literature, factored MDPs have been used to reduce the
sample complexity of batch RL algorithms with safety guarantees
with respect to the performance of a baseline policy [42, 43] and
to allow an agent to query a supervisor about the features of the
factored MDP to avoid side effects [54].

Reachability constraints enforce policies to avoid catastrophic
states. Fatemi et al. [18] avoid such states with high probability and
Taleghan and Dietterich [46] look into deterministic policies that
are easier to perceive than the usual randomized policies. Similarly,
works from the formal methods community use reachability con-
straints and their extension, temporal logic constraints, to argue
about safety during exploration using prior knowledge about the
transition model [3, 23, 27, 29]. Finally, a control-theoretic sim-
plex architecture has been employed to switch between safe and
high-performance controllers [35].

7 CONCLUSIONS
This work considers settings where safety-relevant dynamics are
given. We proposed the AlwaysSafe algorithm, that can be opti-
mistic with respect to the reward, while ensuring safety at all times.

In particular, we used an abstract version of the safety-relevant
dynamics to compute an abstract policy that is always safe and a
ground policy that can achieve high performance. We showed how
to switch between these two policies to find an algorithm that is
safe and eventually converges to the optimal policy. This method
not only enforces the agent to always act safely, but can also prune
under-performing actions, improving the training efficiency when
the cost function is aligned with the reward function.

Future work includes: finding new methods to devise the abstrac-
tions of the safety dynamics, for instance using core states [40];
investigating how the AlwaysSafe copes with an approximation of
the abstract CMDP [1]; and developing new algorithms that can
aggregate states online [33] without violating the constraints.

In summary, the proposed algorithm is always safe during the
learning process, eventually reaches the optimal policy; and decou-
ples exploration from safety issues in RL.

ACKNOWLEDGMENTS
Thanks to Canmanie Ponnambalam for fruitful discussions on the
use of abstractions. This research is funded by the Netherlands
Organisation for Scientific Research (NWO), as part of the Energy
System Integration: planning, operations, and societal embedding
program and the grants NWO OCENW.KLEIN.187: “Provably Cor-
rect Policies for Uncertain Partially Observable Markov Decision
Processes” and NWA.1160.18.238: “PrimaVera”.

Main Track AAMAS 2021, May 3-7, 2021, Online

1233

REFERENCES
[1] David Abel, D. Ellis Hershkowitz, and Michael L. Littman. 2016. Near Optimal

Behavior via Approximate State Abstraction. In Proceedings of the 33nd Inter-
national Conference on Machine Learning. JMLR.org, New York City, NY, USA,
2915–2923.

[2] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. 2017. Constrained
Policy Optimization. In Proceedings of the 34th International Conference onMachine
Learning. PMLR, Sydney, NSW, Australia, 22–31.

[3] Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina Könighofer, Scott
Niekum, and Ufuk Topcu. 2018. Safe Reinforcement Learning via Shielding. In
Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence. AAAI
Press, New Orleans, Louisiana, USA, 2669–2678.

[4] Eitan Altman. 1999. Constrained Markov decision processes. Vol. 7. CRC Press,
Boca Raton, Florida, USA.

[5] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul F. Christiano, John Schulman,
and Dan Mané. 2016. Concrete Problems in AI Safety. arXiv:1606.06565

[6] Peter Auer and Ronald Ortner. 2006. Logarithmic Online Regret Bounds for Undis-
counted Reinforcement Learning. In Advances in Neural Information Processing
Systems 19. MIT Press, Vancouver, British Columbia, Canada, 49–56.

[7] Felix Berkenkamp, Matteo Turchetta, Angela P. Schoellig, and Andreas Krause.
2017. Safe Model-based Reinforcement Learning with Stability Guarantees. In
Advances in Neural Information Processing Systems 30. Curran Associates, Inc.,
Long Beach, CA, USA, 908–918.

[8] Craig Boutilier, Richard Dearden, and Moisés Goldszmidt. 1995. Exploiting
Structure in Policy Construction. In Proc. Int. Joint Conf. on Artificial Intelligence.
Morgan Kaufmann, Montréal, Québec, Canada, 1104–1113.

[9] Doran Chakraborty and Peter Stone. 2011. Structure Learning in Ergodic Factored
MDPs without Knowledge of the Transition Function’s In-Degree. In Proceed-
ings of the 28th International Conference on International Conference on Machine
Learning. Omnipress, Madison, WI, USA, 737–744.

[10] Xiaoyu Chen, Jiachen Hu, Lihong Li, and Liwei Wang. 2021. Efficient Rein-
forcement Learning in Factored MDPs with Application to Constrained RL. In
International Conference on Learning Representations. OpenReview.net, online, 10
pages.

[11] Yinlam Chow, Mohammad Ghavamzadeh, Lucas Janson, and Marco Pavone. 2017.
Risk-Constrained Reinforcement Learning with Percentile Risk Criteria. J. Mach.
Learn. Res. 18 (2017), 167:1–167:51.

[12] Yinlam Chow, Ofir Nachum, Edgar A. Duéñez-Guzmán, and Mohammad
Ghavamzadeh. 2018. A Lyapunov-based Approach to Safe Reinforcement Learn-
ing. In Advances in Neural Information Processing Systems 31. Curran Associates,
Inc., Montréal, Canada, 8103–8112.

[13] Frits de Nijs, Erwin Walraven, Mathijs Michiel de Weerdt, and Matthijs T. J. Spaan.
2017. Bounding the Probability of Resource Constraint Violations in Multi-Agent
MDPs. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence.
AAAI Press, San Francisco, California, USA, 3562–3568.

[14] Thomas Dean and Keiji Kanazawa. 1989. A model for reasoning about persistence
and causation. Computational Intelligence 5, 3 (1989), 142–150.

[15] Carlos Diuk, Lihong Li, and Bethany R. Leffler. 2009. The Adaptive 𝑘-
meteorologists Problem and Its Application to Structure Learning and Feature
Selection in Reinforcement Learning. In Proceedings of the 26th International
Conference on Machine Learning. ACM, Montreal, Quebec, Canada, 249–256.

[16] Gabriel Dulac-Arnold, Daniel J. Mankowitz, and Todd Hester. 2019. Challenges
of Real-World Reinforcement Learning. arXiv:1904.12901 ICML Workshop on
Reinforcement Learning for Real Life.

[17] Yonathan Efroni, Shie Mannor, and Matteo Pirotta. 2020. Exploration-Exploitation
in Constrained MDPs. arXiv:2003.02189 ICML Workshop on Theoretical Foun-
dations of Reinforcement Learning.

[18] Mehdi Fatemi, Shikhar Sharma, Harm Van Seijen, and Samira Ebrahimi Kahou.
2019. Dead-ends and Secure Exploration in Reinforcement Learning. In Proceed-
ings of the 36th International Conference on Machine Learning. PMLR, Long Beach,
California, USA, 1873–1881.

[19] Javier García and Fernando Fernández. 2015. A Comprehensive Survey on Safe
Reinforcement Learning. Journal of Machine Learning Research 16 (2015), 1437–
1480.

[20] Robert Givan, Thomas L. Dean, and Matthew Greig. 2003. Equivalence notions
and model minimization in Markov decision processes. Artif. Intell. 147, 1-2
(2003), 163–223.

[21] Nakul Gopalan, Marie desJardins, Michael L. Littman, James MacGlashan, Shawn
Squire, Stefanie Tellex, John Winder, and Lawson L. S. Wong. 2017. Planning
with Abstract Markov Decision Processes. In Proceedings of the Twenty-Seventh
International Conference on Automated Planning and Scheduling. AAAI Press,
Pittsburgh, Pennsylvania, USA, 480–488.

[22] Assaf Hallak, François Schnitzler, Timothy Arthur Mann, and Shie Mannor.
2015. Off-policy Model-based Learning under Unknown Factored Dynamics. In
Proceedings of the 32nd International Conference on Machine Learning. JMLR.org,
Lille, France, 711–719.

[23] Mohammadhosein Hasanbeig, Alessandro Abate, and Daniel Kroening. 2020.
Cautious Reinforcement Learning with Logical Constraints. In Proceedings of
the 19th International Conference on Autonomous Agents and MultiAgent Systems.
IFAAMAS, Auckland, New Zealand, 483–491.

[24] Aria HasanzadeZonuzy, Dileep M. Kalathil, and Srinivas Shakkottai. 2021. Learn-
ing with Safety Constraints: Sample Complexity of Reinforcement Learning for
Constrained MDPs. In Proceedings of the Thirty-Fifth AAAI Conference on Artificial
Intelligence. AAAI Press, online.

[25] Wassily Hoeffding. 1963. Probability Inequalities for Sums of Bounded Random
Variables. J. Amer. Statist. Assoc. 58, 301 (1963), 13–30.

[26] Thomas Jaksch, Ronald Ortner, and Peter Auer. 2010. Near-optimal Regret Bounds
for Reinforcement Learning. J. Mach. Learn. Res. 11 (2010), 1563–1600.

[27] Nils Jansen, Bettina Könighofer, Sebastian Junges, Alex Serban, and Roderick
Bloem. 2020. Safe Reinforcement Learning Using Probabilistic Shields (Invited
Paper). In CONCUR (LIPIcs, Vol. 171). Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, Vienna, Austria, 3:1–3:16.

[28] Chi Jin, Tiancheng Jin, Haipeng Luo, Suvrit Sra, and Tiancheng Yu. 2020. Learning
Adversarial MDPs with Bandit Feedback and Unknown Transition. In Proceedings
of the 37th International Conference on Machine Learning. PMLR, Vienna, Austria,
1–10.

[29] Sebastian Junges, Nils Jansen, Christian Dehnert, Ufuk Topcu, and Joost-Pieter
Katoen. 2016. Safety-Constrained Reinforcement Learning for MDPs. In Inter-
national Conference on Tools and Algorithms for the Construction and Analysis of
Systems. Springer, Eindhoven, The Netherlands, 130–146.

[30] Jongmin Lee, Youngsoo Jang, Pascal Poupart, and Kee-Eung Kim. 2017. Con-
strained Bayesian Reinforcement Learning via Approximate Linear Programming.
In Proceedings of the Twenty-Sixth International Joint Conference on Artificial In-
telligence. ijcai.org, Melbourne, Australia, 2088–2095.

[31] Lihong Li, Thomas J. Walsh, and Michael L. Littman. 2006. Towards a Unified
Theory of State Abstraction for MDPs. In International Symposium on Artificial
Intelligence and Mathematics. ISAIM, Fort Lauderdale, Florida, USA, 10 pages.

[32] Grigory Neustroev and Mathijs M. de Weerdt. 2020. Generalized Optimistic
Q-Learning with Provable Efficiency. In Proceedings of the 19th International
Conference on Autonomous Agents and Multiagent Systems. IFAAMAS, Auckland,
New Zealand, 913–921.

[33] Ronald Ortner. 2013. Adaptive aggregation for reinforcement learning in average
reward Markov decision processes. Annals OR 208, 1 (2013), 321–336.

[34] Ian Osband and Benjamin Van Roy. 2014. Near-optimal Reinforcement Learning
in Factored MDPs. In Advances in Neural Information Processing Systems 27.
Curran Associates, Inc., Montreal, Quebec, Canada, 604–612.

[35] Dung T. Phan, Radu Grosu, Nils Jansen, Nicola Paoletti, Scott A. Smolka, and
Scott D. Stoller. 2020. Neural Simplex Architecture. In NFM (Lecture Notes in
Computer Science, Vol. 12229). Springer, Switzerland, 97–114.

[36] Martin L. Puterman. 1994. Markov Decision Processes: Discrete Stochastic Dynamic
Programming (1st ed.). John Wiley & Sons, Inc., New York, NY, USA.

[37] Alex Ray, Joshua Achiam, and Dario Amodei. 2019. Benchmarking Safe Explo-
ration in Deep Reinforcement Learning. https://github.com/openai/safety-gym

[38] Melrose Roderick, Vaishnavh Nagarajan, and J. Zico Kolter. 2021. Provably Safe
PAC-MDP Exploration Using Analogies. In International Conference on Artificial
Intelligence and Statistics. PMLR, online. arXiv:2007.03574

[39] Aviv Rosenberg and Yishay Mansour. 2019. Online Convex Optimization in
Adversarial Markov Decision Processes. In Proceedings of the 36th International
Conference on Machine Learning. PMLR, Long Beach, California, USA, 5478–5486.

[40] Roshan Shariff and Csaba Szepesvári. 2020. Efficient Planning in Large MDPs
with Weak Linear Function Approximation. In Advances in Neural Information
Processing Systems 33. Curran Associates, Inc., Vancouver, British Columbia,
Canada, 12 pages.

[41] Thiago D. Simão, Nils Jansen, and Matthijs T. J. Spaan. 2021. AlwaysSafe: Re-
inforcement Learning without Safety Constraint Violations during Training —
Supplementary Material. https://research.tudelft.nl/en/publications/alwayssafe-
reinforcement-learning-without-safety-constraint-viola. , 4 pages.

[42] Thiago D. Simão and Matthijs T. J. Spaan. 2019. Safe Policy Improvement with
Baseline Bootstrapping in Factored Environments. In Proceedings of the Thirty-
Third AAAI Conference on Artificial Intelligence. AAAI Press, Honolulu, Hawaii,
USA, 4967–4974.

[43] Thiago D. Simão and Matthijs T. J. Spaan. 2019. Structure Learning for Safe Policy
Improvement. In Proc. Int. Joint Conf. on Artificial Intelligence. ijcai.org, Macao,
China, 3453–3459.

[44] Alexander L. Strehl, Carlos Diuk, and Michael L. Littman. 2007. Efficient Structure
Learning in Factored-State MDPs. In Proceedings of the Twenty-Second AAAI
Conference on Artificial Intelligence. AAAI Press, Vancouver, British Columbia,
Canada, 645–650.

[45] Richard S. Sutton and Andrew G. Barto. 2018. Reinforcement Learning: An Intro-
duction (2 ed.). MIT press, Cambridge, MA, USA.

[46] Majid Alkaee Taleghan and Thomas G. Dietterich. 2018. Efficient Exploration
for Constrained MDPs. In 2018 AAAI Spring Symposia. AAAI Press, Palo Alto,
California, USA, 313–319.

Main Track AAMAS 2021, May 3-7, 2021, Online

1234

https://arxiv.org/abs/1606.06565
https://arxiv.org/abs/1904.12901
https://arxiv.org/abs/2003.02189
https://github.com/openai/safety-gym
https://arxiv.org/abs/2007.03574

[47] Chen Tessler, Daniel J. Mankowitz, and Shie Mannor. 2019. Reward Constrained
Policy Optimization. In International Conference on Learning Representations.
OpenReview.net, New Orleans, LA, USA, 11 pages.

[48] Matteo Turchetta, Felix Berkenkamp, and Andreas Krause. 2019. Safe Exploration
for Interactive Machine Learning. In Advances in Neural Information Processing
Systems 32. Curran Associates, Inc., Vancouver, BC, Canada, 2887–2897.

[49] Harm van Seijen, Shimon Whiteson, and Leon J. H. M. Kester. 2014. Efficient
Abstraction Selection in Reinforcement Learning. Comput. Intell. 30, 4 (2014),
657–699.

[50] Akifumi Wachi and Yanan Sui. 2020. Safe Reinforcement Learning in Constrained
Markov Decision Processes. In Proceedings of the 37th International Conference
on Machine Learning. PMLR, Vienna, Austria, 9797–9806.

[51] Akifumi Wachi, Yanan Sui, Yisong Yue, and Masahiro Ono. 2018. Safe Exploration
and Optimization of Constrained MDPs Using Gaussian Processes. In Proceedings
of the Thirty-Second AAAI Conference on Artificial Intelligence. AAAI Press, New
Orleans, Louisiana, USA, 6548–6556.

[52] Qisong Yang, Thiago D. Simão, Simon H. Tindemans, and Matthijs T. J. Spaan.
2021. WCSAC: Worst-Case Soft Actor Critic for Safety-Constrained Reinforce-
ment Learning. In Proceedings of the Thirty-Fifth AAAI Conference on Artificial
Intelligence. AAAI Press, online.

[53] Tsung-Yen Yang, Justinian Rosca, Karthik Narasimhan, and Peter J. Ramadge.
2020. Projection-Based Constrained Policy Optimization. In 8th International
Conference on Learning Representations. OpenReview.net, Addis Ababa, Ethiopia,
1–11.

[54] Shun Zhang, Edmund H. Durfee, and Satinder P. Singh. 2018. Minimax-Regret
Querying on Side Effects for Safe Optimality in Factored Markov Decision Pro-
cesses. In Proceedings of the Twenty-Seventh International Joint Conference on
Artificial Intelligence. ijcai.org, Stockholm, Sweden, 4867–4873.

[55] Liyuan Zheng and Lillian Ratliff. 2020. Constrained Upper Confidence Reinforce-
ment Learning. In Proceedings of the 2nd Conference on Learning for Dynamics
and Control. PMLR, online, 620–629.

Main Track AAMAS 2021, May 3-7, 2021, Online

1235

	Abstract
	1 Introduction
	2 Background
	2.1 Constrained MDPs
	2.2 Constrained RL
	2.3 Solving CMDPs with Optimism

	3 Abstraction for Expected Cost
	3.1 Cost-model Irrelevance
	3.2 A Cost-model-irrelevant Abstraction
	3.3 Planning with the Abstract CMDP

	4 Always Safe
	4.1 The Linear Program
	4.2 Policies
	4.3 Theory

	5 Empirical Results
	5.1 Analysis
	5.2 Discussion

	6 Related Work
	7 Conclusions
	Acknowledgments
	References

