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ABSTRACT

The proliferation of unmanned aerial vehicles (UAVs) has
flourished various intelligent services, in which the effective
coordination plays a significant role in enhancing swarm exe-
cution efficiency. However, due to the unreliable communica-
tion in the air as well as the heterogeneity in operation mode,
it is challenging to achieve highly coordinated actions, partic-
ularly in the fully distributed environment with incomplete
observations. In this paper, we leverage the generative adver-
sarial imitation learning (GAIL) technique to coordinate the
drones’ actions by directly imitating the peer’s demonstra-
tions. In order to characterize the true environment state
under local incomplete observations, we transform histori-
cal observation-action trajectories into belief representations,
which are trained in conjunction with the imitation policies.
We also gain regularized belief representations by correlating
the prediction of future states, the trace of historical con-
texts, and the action-assisted guidance information, which
contribute to more accurate imitation policies. We evaluate
the proposed algorithm on the drones’ formation control sce-
nario. Evaluation results show the superiorities on imitation
accuracy, teamwork execution time and energy cost.
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1 INTRODUCTION

Small unmanned aerial vehicles (UAVs) have been widely
contributed in civil, public and military applications (e.g.,
air freight, traffic surveillance, search and rescue, etc.). De-
spite the agile and intelligent properties, a single UAV still
suffers from constrained capabilities of sensing, coverage and
execution as well as the constrained budgets of energy and
payload. Accordingly, it has become a necessary trend to
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unite multiple UAVs to accomplish complex tasks collabora-
tively [10].

In the UAV swarm, reliable networked connectivity plays
a significant role in exchanging control messages and coordi-
nating actions. However, autonomous UAVs have difficulties
in achieving timely information interaction and perfect ac-
tion coordination due to the unstable communication in the
air and the obvious heterogeneity in operation mode.

As intelligent agents, the reinforcement learning technique
becomes a feasible solution for connecting with the collabora-
tive UAVs by trial and error. However, the learning efficacy
of distributed connectivity policies remains to be improved.
More importantly, in an unknown or dynamic environment,
it is unlikely to predefine a precise reward feedback, which
is indispensible in the reinforcement learning technique [14].

One of the more intuitive and natural ways to train dis-
tributed coordination policies in the rewardless environment
is to acquire the operation behaviors by directly imitating
the expert’s (i.e., master UAV’s) demonstrations, which is
termed as imitation learning [28]. Behavioural Cloning (BC)
[22] and Inverse Reinforcement Learning (IRL) [4] are two
typical imitation learning methods. However, the supervised
BC method relies on massive training samples to match ob-
servations with actions, and suffers from the brittleness of
cascading errors. While the IRL method tries to recover
the reward feedbacks and then explores the policies under
the reinforcement learning pattern, which is computational-
ly expensive. To tackle the above bottlenecks, the emerg-
ing model-free Generative Adversarial Imitation Learning
(GAIL) method [9][27] can learn more robust and optimized
policies with fewer demonstrations, and can also scale with
the input dimension. Thus, GAIL is a suitable model for im-
itating the operation behaviors and facilitating multi-UAV
cooperation in ambiguous environments.

Most existing GAIL algorithms assume that the observed
information is complete. Although there have been some
works to tackle incomplete observations, they learn the imi-
tation policy in a separated way and overlook the correlated
temporal relationship between observations and actions. As
the drone network is highly dynamic and uncertain, we char-
acterize the observation-action trajectory as a latent belief
representation [7][20], which is utilized to predict the corre-
lated joint distributions of observations/actions and to opti-
mize the imitation policy. The contributions are summarized
as follows.
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• In the challenging partially observable imitation envi-
ronment, we keep track of the true state information
by transforming historical observation trajectories in-
to latent belief representations, which are trained in
conjunction with imitation policies so as to minimize
the imitation errors.

• To tackle the mediocre expressiveness capability of be-
lief representation, we correlate the potential forward
trajectory with the historical backward trajectory to
yield informative and robust belief representations. We
also utilize the partially useful actions to guide more
accurate imitation policies.

• We evaluate the algorithm performance in the forma-
tion control scenario. Results show that the slave UAVs
can timely adjust the flight trajectory under the mas-
ter UAV’s demonstrations, and the execution efficiency
of the collaborative formation is improved evidently.

2 RELATED WORK

It has been a long-term goal to facilitate the collaboration
among multiple autonomous agents in decentralized envi-
ronments. Existing efforts mainly adopt the reinforcemen-
t learning technique due to its advantage on joint-policy
learning. However, most works focus on centralized training
with decentralized execution [5][15][16]. It is difficult to train
large-scale samples in the centralized phase as the number
of agents increases. As an improvement, [11] presents the
message-dropout technique to reduce the dimension of ac-
tion spaces. [17] investigates the rapid information sharing
issue on both learning and coordination in a partially observ-
able environment. However, the mentioned works can only
support a limited number of agents.

As for the scenario of distributed training with distribut-
ed execution, [19] incorporates a decentralized experience
replay with a generalized recurrent multi-task network to
achieve multi-agent coordination. The FSMS algorithm [30]
adopts a cross-network mutual sampling and joint learning
technique. However, reinforcement-learning-based methods
involve tough reward engineering [29]. The yielded policy
is greatly influenced by the reward signal, which cannot be
explicitly predefined in ambiguous environments.

As a countermeasure, the imitation-learning-based meth-
ods aim to collect information from the expert demonstra-
tions and learn the imitation policy without any reward feed-
back. Until now, Generative Adversarial Imitation Learning
(GAIL) [9][27] has emerged as a significant technique. For ex-
amples, the multi-modal imitation leaning method [8] learns
a multi-modal policy that can imitate all sub-tasks in order
to grasp a set of different skills. The Directed-Info GAIL algo-
rithm [25] models the imitation learning as a directed graph
and infers the latent sub-task policies directly from the un-
structured expert demonstrations. Considering that expert
demonstrations may be inaccessible, the ILPO algorithm [2]
learns latent policies only from observations of the expert’s
states with very few environment interactions.

Besides the theoretical studies, the GAIL model also has
widespread applications. For examples, the MA-GAIL method
[3] captures the sequential dependency relationship among
the sub-tasks of expert demonstrations and thus can adapt to
the dynamics in driving. The xGAIL method [21] learns glob-
al and local explainable spatial-temporal features to opti-
mize driver’s passenger-seeking strategy. The Burn-InfoGAIL
algorithm [13] produces driver models that can imitate ex-
perts over long time horizons by maximizing mutual infor-
mation over latent representations. The RAIL algorithm [26]
utilizes the augmented random search method to train opti-
mal auto-driving policies. Its computation overhead is also
reduced as compared with the DRL-based decisions.

In this paper, we try to enhance the imitation accuracy in
the partially observable flying environment and facilitating
the coordination among heterogeneous UAVs.

3 SYSTEM MODEL AND PROBLEM
FORMULATION

We consider a multi-UAV coexisting environment, in which
a swarm of autonomous UAVs fall into the communication
range of each other. Each UAV is equipped with sensors and
has the capability of perceiving the surrounding environmen-
t status. The UAVs can obtain their 3D-coordinates through
the GPS system and adjust their flight attitudes. We consid-
er a master-slave model in which the master UAV is aware
of the flight missions, while the slave UAVs aim to keep a
consistent formation with a reasonable speed and distance
by following the master UAV’s behaviors. The UAV swarm
can execute the flying control operations (e.g., cruising, hov-
ering, attitude adjustment, etc.) as well as some transmis-
sion/computing tasks (e.g., data collection and processing,
trajectory planning, etc.).

3.1 Imitation learning model

We model the coordinated flying task as a multi-agent par-
tially observable Markov game. Let N = {1, 2, . . . , N} de-
note the set of UAVs. The agents (i.e., UAVs) are fully
cooperative to execute a task. For the sequential task re-
quirements, scenarios are broken up into a series of episodes,
which include a set of states S characterizing the configura-
tions of all agents (e.g., task load, residual energy) as well as
the varying flight status (e.g., speed, orientation, distances
with the peers), a set of observations O1, . . . ,ON and a set of
actions A1, . . . ,AN (e.g., cruising trajectory, hovering point)
for each agent. The function of P : S×A1×. . .×AN → P(S)
denotes the stochastic transition between the states, where
P(S) represents the set of probability distributions over S.
Specifically, given the state st at time t, agents take actions
of (a1, . . . , aN ), then st transits to st+1 with the probabili-
ty of P (st+1|st, a1, . . . , aN ). According to the action, agent
i (i ∈ N ) attains an immediate reward ri : S × A1 × . . . ×
AN → R. By selecting actions through a stochastic policy
πi : Oi × Ai → [0, 1], agent i aims at maximizing its total

expected return
∑+∞
t=0 γ

trti .
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Different from the centralized methods (e.g., remote con-
trol or command broadcasting), we investigate a distribut-
ed coordination method by directly imitating the master
UAV’s maneuvers in order to reduce the communication la-
tency over unstable air links and enhance the collaboration
efficiency. Inspired by the Generative Adversarial Networks
(GANs) [23], the GAIL model imitates the expert’s policy
πE by minimizing the Jensen-Shannon divergence between
the trajectory distributions (i.e., state-action pairs) generat-
ed by πE and the imitation policy πθi respectively. Specifi-
cally, the generator in GAIL corresponds to πθi , while the
discriminator in GAIL is a binary classifier and is trained
to distinguish between πE and πθi , which can help enhance
the imitation fidelity. For multi-agent distributed imitation
learning, we need a decentralized structure, i.e., each agent i
is equipped with a discriminator (denoted as Dωi) instead of
sharing a common discriminator with others. The objective
training function of GAIL is defined as:

min
θi

max
ωi

Eπθi
[logDωi (s, a)]+

EπE [log (1−Dωi (s, a))]− λH(πθi),
(1)

where Dωi denotes the discriminator parameterized by ωi,
H(πθi) ≃ Eπθi

[− log πθi(a|s)] is an entropy regularization

term, and λ is a hyper-parameter.
Although equipped with no reward, GAIL can still match

the state-action distributions between the expert and the
imitator. Specifically, the expert’s and the i-th imitator’s
state-action visitation distributions are respectively given as:

ρπE(s,a) = πE(a|s)
+∞∑
t=0

γtp(st = s, at = a|πE), (2)

and

ρπθi
(s,a) = πθi(a|s)

+∞∑
t=0

γtp(st = s, at = a|πθi). (3)

3.2 Computation model

In the imitation-driven flight task, slave UAVs iteratively
sense and imitate the master UAV’s maneuvers by trial and
error. To attain a target imitation accuracy, the learning
time and energy cost of UAV i depend on its computational
capability and the size of the sensed sample set χi. We utilize
the CPU-cycle frequency fi (in the unit of Hz) to depict UAV
i’s computational capability. Let Wi denote the imitation
learning workload (in the unit of CPU cycles per bit) to
process one sample for UAV i. The imitation learning time
and energy cost can be respectively calculated as:

T learni =

H∑
h=1

∑|χi|
i=1 Wi

fi
, (4)

and

Elearni = ξi

H∑
h=1

|χi|∑
i=1

Wif
2
i , (5)

where H denotes the number of iterations to attain a target
imitation accuracy, ξi denotes the coefficient related to the
energy cost per CPU cycle and is set as 10−28 [31].

3.3 Communication model

UAVs need to iteratively exchange and share control mes-
sages via wireless links until the target accuracy is attained.
We consider the line-of-sight (LOS) communication range.
The signal-to-interference-noise ratio (SINR) at the receiver
i over the air-to-air link li is given as:

Γli =
P tranli

d−αli |hli |
2

P recvli
+Nrecv

li

, (6)

where P tranli
denotes the transmission power over li, dli de-

notes the distance between the transceivers over li, α denotes
the path loss exponent, hli denotes the channel coefficient,
P recvli

denotes the received power of interference signal over
li, and Nrecv

li
denotes the additive white Gaussian noise at

the receiver [1].
The transmission rate over li can be calculated as:

Rli = log2(1 + Γli). (7)

Therefore, the transmission latency and energy cost in
each imitation iteration are respectively given as:

ttrani =
Tranli
Rli

, (8)

and

etrani =
Tranli · P

tran
li

Rli
, (9)

where Tranli denotes the volume of transmission informa-
tion over li.

3.4 Problem Formulation

The total imitation learning time consists of the computation
and communication latencies, which can be denoted as

Ti = T learni + T trani =

H∑
h=1

(

∑|χi|
i=1 Wi

fi
+ ttrani ). (10)

Similarly, the total energy cost can be denoted as

Ei = Elearni + Etrani =

H∑
h=1

(ξi

|χi|∑
i=1

Wif
2
i + etrani ). (11)

The imitation-based coordination objective can be formu-
lated as:

min Ti, Ei, DJS(ρπE ∥ ρπθi
) (∀i ∈ N ),

s.t. πTi
E ≃ πTi

θi
,

(12)

where DJS(ρπE ∥ ρπθi
) denotes the Jensen-Shannon diver-

gence (i.e., similarity degree) between ρπE and ρπθi
.
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4 BELIEF-CORRELATED IMITATION
ALGORITHM

In this section, we present a Belief-Correlated Imitation (B-
CI) algorithm, which includes the normal imitation policy
component and the belief-enhanced component.

4.1 Training of the Policy Component

In the partially observable environment, we try to recover
the true environment state st by utilizing the belief repre-
sentation bt (derived from historical observations). The be-
lief visitation distributions of ρπE (b) and ρπθi

(b) are similar

to those of ρπE (s) and ρπθi
(s). Proposition 1 declares that

to what extent ρπ(b) can approximate ρπ(s).
Proposition 1: For agent i’s imitation policy πθi and the

expert’s policy πE , the Jensen-Shannon divergences between
their state- and belief-visitation distributions satisfy that

DJS(ρπθi
(s)∥ρπE (s)) 6 DJS(ρπθi

(b)∥ρπE (b)).

Proof. Given the belief representation b, let p(s|b) de-
note the posterior distribution over state s. p(s|b) is policy-
independent, and only depends on the environment. On the
contrary, the posterior distribution p(b|s) over b under a giv-
en state s is policy-dependent. For the expert, we derive
pπE (b|s) from the Bayes rule as

pπE (b|s) = ρπE (s, b)

ρπE (s)
=
p(s|b)ρπE (b)

ρπE (s)
.

The imitator’s posterior distribution pπθ (b|s) can be de-
rived in a similar way.

Here, we utilize the f -divergences [18] to analyzeDJS(ρπθi
(b)

∥ρπE (b)). Let f(u) = −(u+1) log 1+u
2

+u log u (u ∈ R+) de-
note a convex function. Then, we can derive that

DJS(ρπθi
(b)∥ρπE (b))

=Eb∼ρπE
(b)[f(

ρπθi
(b)

ρπE (b)
)]

=Es,b∼ρπE
(s,b)[f(

ρπθi
(s, b)

ρπE (s, b)
)]

=Es∼ρπE
(s)[Eb∼ρπE

(b|s)f(
ρπθi

(s, b)

ρπE (s, b)
)]

>Es∼ρπE
(s)[f(Eb∼ρπE

(b|s)
ρπθi

(s, b)

ρπE (s, b)
)]

=Es∼ρπE
(s)[f(Eb∼ρπθi

(b|s)
ρπθi

(s, b)ρπE (b|s)
ρπE (s, b)ρπθi

(b|s) )]

=Es∼ρπE
(s)[f(Eb∼ρπθi

(b|s)
ρπθi

(s)

ρπE (s)
)]

=DJS(ρπθi
(s)∥ρπE (s)),

which concludes the proof.
�

From Proposition 1, we know that the minimum value of
DJS(ρπθi

(b)∥ρπE (b)) is the upper-bound ofDJS(ρπθi
(s)∥ρπE (s)).

However, this tight bound is intractable for computation, we

thus relax this upper-bound by introducing the belief-action
visitation distribution, which is declared in Proposition 2.

Proposition 2: For agent i’s imitation policy πθi and the
expert’s policy πE , the Jensen-Shannon divergences between
their belief- and action-visitation distributions satisfy that

DJS(ρπθi
(b)∥ρπE (b)) 6 DJS(ρπθi

(b, a)∥ρπE (b, a)).

where ρπθi
(b, a) = ρπθi

(b)πθi(a|b) and ρπE (b, a) = ρπE (b)πE(a|b).

Proof. We replace s (resp. b) in Proposition 1 with b (re-
sp. (b, a)). Similar with the proof in Proposition 1, if p(b|b, a)
is independent of the policy, we can obtain the expected in-
equality ofDJS(ρπθi

(b)∥ρπE (b)) 6 DJS(ρπθi
(b, a)∥ρπE (b, a)).

�

Next, we describe how to minimizeDJS(ρπθi
(b, a)∥ ρπE (b, a)).

Following the principle of GANs, DJS(ρπθi
(b, a)∥ρπE (b, a))

is approximated as:

max
eπθi

(b,a),eπE
(b,a)

Ẽρπθi
[log

eπθi
(b, a)

eπθi
(b, a) + eπE (b, a)

]+

ẼρπE
[log

eπE (b, a)

eπθi
(b, a) + eπE (b, a)

],

(13)

where eπθi
(b, a) and eπE (b, a) denote the empirical density

estimators of ρπθi
and ρπE respectively. eπθi

(b, a) can be

obtained by the samples of belief-action tuples (bt, at), in

which bt = Bψi(h
t), ht denotes the trajectory of (ot

−
, at

−
)

before the current time instant t, and ψi denotes the parame-
ter of agent i’s belief representation. Similarly, eπE (b, a) can
be obtained by the expert’s observation-action trajectory. In
particular, the maximum value of Eq. (1) is denoted as D⋆.

The multi-agent training objective can be denoted as

min
θi

DJS(ρπθi
, ρπE ) ≈min

θi
max
ωi

Ẽρπθi
[

N∑
i=1

logDωi (b, ai)]

+ ẼρπE
[
N∑
i=1

log (1−Dωi (b, ai))].

(14)
Eq. (14) (with respect to the policy parameter πθi) can

be updated by using the following gradient:

∇θiDJS(ρπθi
, ρπE ) ≈ ∇θi Ẽρπθi

[log
eπθi

(b, a)

eπθi
(b, a) + eπE (b, a)

]

= Ẽρπθi
(b,a)[∇θi log πθi (a|b)Qπθi

(b, a)],

(15)

where Qπθi
(bt, at) = Ẽρπθi

(b,a)[
+∞∑
t′=t

γt
′−tr(bt

′
, at

′
)], and the

reward r(bt
′
, at

′
) = logD⋆(b, a).

Until now, the iterative gradient updates for the imitation
policy and the discriminator are defined. Next, we describe
how to update the belief representation’s parameter ψi.
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4.2 Training of the Belief Component

The belief component Bψi records the historical observation-

action trajectory ht = (ot
−
, at

−
) before the current time

instant t. That is, the belief representation at time instant
t can be denoted as bt = Bψi(b

t−1, ot, at−1). As the belief
is closely related to the policy, we thus train the belief’s
objective jointly with the policy. Similar with Eq. (14), the
imitation learning objective w.r.t. the belief’s parameter ψi
can be denoted as

min
θi,ψi

DJS ≈ min
θi,ψi

max
ωi

Ẽ(h,ai)∼ρπθi
[
N∑
i=1

logDωi

(
Bψi

(h), ai
)
]

+ Ẽ(h,ai)∼ρπE
[

N∑
i=1

log
(
1−Dωi

(
Bψi

(h), ai
))
].

(16)

The belief’s parameter ψi in Eq. (16) is also trained by
the iterative gradient updates. Consider the first expectation
term in Eq. (16), as both of the policy and belief components
have an impact on the historical observation-action trajecto-
ry, the corresponding gradient consists of two sub-parts. As
for the second expectation term in Eq. (16), it has no deriv-
ative term regarding the parameter ψi. Combining with Eq.
(15), the gradient on ψi can be approximated as

∇ψi
DJS ≈

Ẽ(h,ai)∼ρπθi
[∇ψi

log πθi (ai|Bψi
(h))Qπθi

(Bψi
(h), ai)]+

Ẽ(h,ai)∼ρπθi
[∇ψi

logD⋆(Bψi
(h), ai)]+

Ẽ(h,ai)∼ρπE
[∇ψi

log(1−D⋆(Bψi
(h), ai))],

(17)

and

Qπθi
(Bψi

(h), ai) = Ẽ(h,ai)∼ρπθi
[
+∞∑
t′=t

γt
′−t logD⋆(Bt

′
ψi

(h), at
′
)].

4.3 Belief Regularization

The above learning method usually discounts the historical
contexts and yields trivial belief representation. In order to
gain an informative belief representation with necessary his-
torical contexts, we present a regularized belief representa-
tion, which consists of three terms (i.e., forward regularizer,
backward regularizer and action-oriented regularizer).

Forward regularizer. As the posterior distribution p(s|b)
plays a critical role in the belief representation, we thus asso-
ciate the future k (k ∈ Z+) predicted states after the current
instant t with the forward regularized belief representation,
as shown in Fig. 1. We aim to minimize the Euclidean dis-
tance between the forward belief representation and the fu-
ture observations, and utilize the mean square error (MSE)
to characterize the objective loss function, which is given as

L+ =

t+k∑
t′=t

Ẽ(h,ai)∼ρπθi
[∥Bψi(h

t′)− ot
′
∥]2. (18)

Backward regularizer. The historical contexts natural-
ly involve the past environment states. We thus trace the
past k observed states before the current instant t with the

O
t-k

at-k

O
t-1

at-1 at at+1 at+k a

O
t

O
t+1

O
t+k

O

...

...

...

...

+
≡ P(o

t:t+k
|a
t:t+k
)

-
≡ P(o

t-k:t-1
|a
t-k:t-1

)

Figure 1: Illustration of the forward/backward regu-
larizer

backward regularized belief representation, as shown in Fig.
1. Conditioned on the historical observations ot−k:t−1, the
backward belief representation is given as

L− =

t−1∑
t′=t−k

Ẽ(h,ai)∼ρπθi
[∥Bψi(h

t′)− ot
′
∥]2. (19)

Action-oriented regularizer. The above regularizers
belong to the state-based imitation learning. Guided by Propo-
sition 2, we add the action-oriented regularizer to assist pol-
icy optimization. Here, we adopt the approximated mutual
information technique to merge the actions.

Given the demonstration actions aπE and the generated
actions ai ∼ ρπθi

, there should exist rich mutual informa-

tion (denoted as I(aπE ; ai ∼ ρπθi
)) between two distribution-

s. I(aπE ; ai ∼ ρπθi
) characterizes the dependence between

aπE and ai ∼ ρπθi
. That is, given the observed distribu-

tion of ai ∼ ρπθi
, the larger the I(aπE ; ai ∼ ρπθi

) is, the

more certainty in aπE is. However, it is difficult to maximize
I(aπE ; ai ∼ ρπθi

) due to the intractability of the posterior

probability p(aπE |ai ∼ ρπθi
). We thus replace I(aπE ; ai ∼

ρπθi
) with a variational lower bound, i.e.

LI = EaπE
[logQ(aπE |ai ∼ ρπθi

)] +H(aπE )

6 I(aπE ; ai ∼ ρπθi
),

(20)

where Q(aπE |ai ∼ ρπθi
) is a simplified posterior approxi-

mation of p(aπE |ai ∼ ρπθi
), and H(aπE ) denotes an entropy

regularizer that can increase the diversity over the parameter
space. We parameterize Q(aπE |ai ∼ ρπθi

) with ϕi, and Eq.

(20) can be solved by approximating aπE with a sequence of
iteratively updated ϕi.

Above all, the ultimate objective function of the belief
regularizer is formulated as

L(ψi) = ζ1L+ + ζ2L− + ζ3LI , (21)

where ζ1, ζ2 and ζ3 denote the weighted parameters.

4.4 Algorithm Description

The Belief-Correlated Imitation (BCI) algorithm is formally
presented in Algorithm 1.

The state-action trajectories of the expert (i.e., master
UAV) and the imitator (i.e., slave UAV) are trained itera-
tively until convergence. In each iteration, a mini-batch of
size T is sampled from the whole trajectory so as to improve
the training efficiency (lines 3∼4). The belief representations
and the imitation policies are trained jointly. The discrimi-
nator’s parameter ωi is updated through Eq. (16) in the
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ascending direction, as shown in line 5. The imitation objec-
tive w.r.t. the belief parameter ψi is updated through Eq.
(17), as shown in line 6. To attain an informative and ro-
bust belief representation, we update the belief regularizer
terms through Eqs. (18)∼(21), as shown in line 8. In particu-
lar, the action-oriented regularizer is optimized by the Adam
stochastic approximation [12] (as shown in line 7), which can
achieve stable training under variable learning rates.

In addition, the imitation policy is optimized by a Trust
Region Policy Optimization (TRPO) step [24] (as shown in
line 9). TRPO is a smooth policy gradient algorithm, which
optimizes the parameterized policy πθi by maximizing the
expected return directly. Each TRPO update yields an ap-
proximate solution to the following objective:

θh+1
i = argmin

θi
E

T∑
t=1

[
πθi (a

t|bt)
πhθi

(at|bt)

(
T∑
t′=t

γt
′−tr(bt

′
, at

′
)− et

)]
,

s.t. E
T∑
t=1

[DJS(πθi (a
t|bt)∥πhθi (a

t|bt))] 6 ϵ,

(22)

where πhθi denotes the policy induced by θhi at the h-th

iteration, r(bt
′
, at

′
) = logD⋆(b, a) (as shown in Eq. (15)),

et ≃ Eθi [
T∑
t′=t

γt
′−tr(bt

′
, at

′
)| ot

−
, at

−
] (i.e., an estimation of

the expected reward conditioned on the current policy), and
ϵ denotes a small positive constant.

In other words, the TRPO step only allow small variations
in the policy (i.e., πh+1

θi
does not deviate too much from πhθi

due to pertubations), leading to stable gradient updates.

5 PERFORMANCE EVALUATION

5.1 Experiment Setup

We consider a flying scenario in which a swarm of quadro-
tor UAVs maneuver on a spiral trajectory (as shown in Fig.
2). We deploy practical UAVs with the type of DJI M100.
Considering the payload, energy, and heterogeneous require-
ment restrictions, the UAVs are mounted with lightweight,
low-power and heterogeneous computation modules (i.e., N-
VIDIA Jetson TX2 and Jetson Nano). Jetson TX2 is config-
ured with 4core 64-bit and 2 Denver A57 CPUs (2.0GHz),
and Jetson Nano is configured with 4core 64-bit A57 C-
PUs (1.4GHz), both of which can execute imitation-learning-
driven computations and interact with the UAV’s DJI Soft-
ware Development Kit as well as the Robot Operating Sys-
tem. The UAV swarm includes one master UAV and sev-
eral slave UAVs. The master UAV is aware of all the task
requirements (e.g., cruising spirally and hovering at target
points) as well as the flight attitude (e.g. speed, orientation
and altitude) during the mission. And the slave UAVs try to
imitate the master UAV’s actions and maintain a consistent
and stable flight formation. To avoid collisions, the UAVs are
distributed under a secure distance of at least 1.5m between
any two UAVs. The slave UAVs are uniformly distributed
around the master UAV (e.g., up/down, left/right and back)

Algorithm 1: The BCI learning algorithm

Input: Initial parameters of the agent i’s policy (i.e., θ0i )

and the discriminator (i.e., ω0
i ); the weight factors of

ζ1, . . . , ζ3; the Adam hyper-parameters of α, β1, β2;
the learning rate η.

Output: Learned policies πθi
1 for iteration h = 1, . . . , H do
2 for i = 1 to N do
3 Sample a batch of expert trajectories {χE}Tt=1 ∼ πE ;
4 Sample a batch of state-action pairs {χi}Tt=1 ∼ πθi ;
5 Update ωi by ascending with the gradient of

△ωi =Eρχi
[logDωi (Bψi

(h), ai)]+

EρχE
[log(1−Dωi (Bψi

(h), ai))]

/* Training the discriminator in GAIL */;

6 Calculate the divergence gradient of
∇ψi

DJS(ρχi∥ρχE ) =

Eρχi
[∇ψi

logχi(ai|Bψi
(h))Qχi (Bψi

(h), ai)]+

Eρχi
[∇ψi

logD⋆(Bψi
(h), ai)]+

EρχE
[∇ψi

log(1−D⋆(Bψi
(h), ai))]

/* Training the belief component */;

7 Update ϕi in the action-oriented regularizer LI by

ϕi ← ϕi + η ·Adam(ϕi, α, β1, β2);

8 Update the belief regularizer with
∇ψi
L(ψi) =

∇ψi
(ζ1

t+k∑
t′=t

Ẽρχi
[∥Bψi

(ht
′
)− ot

′
∥]2+

ζ2

t−1∑
t′=t−k

Ẽρχi
[∥Bψi

(ht
′
)− ot

′
∥]2+

ζ3EρχE
[logQ(aπE |ai ∼ ρπθi

)] +H(aπE ))

/* Regularize the belief representation */;

9 Take a policy step from θhi to θh+1
i by using the

TRPO method;

in the cruising phase, during which the master UAV keeps
an average medium speed of 9m/s [6].

For the comparison purpose, we select the MAGAIL [27]
and the ILPO [2] algorithms as the baselines and apply them
to the drone swarm formation control case. We utilize four
evaluation metrics, which are defined as follows.

• Normalized reward. The master UAV’s state-action
trajectories are adopted as expert demonstrations. As
for the slave UAVs’ rewards, they are not predefined
and are quite sparse. During cruising or hovering, a re-
ward of +1 is given if one slave UAV executes a correct
action within a certain delay. Thus, extensive reward
engineering is not involved. For clearness, the total re-
ward of the master UAV during a spiral trajectory is
normalized to 1 (i.e., perfect reward), and the relative
percentage of the corresponding algorithm’s reward re-
flects its imitation accuracy.

• Average relative position error. This metric is
used to measure the average difference between the
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(a) UAV prototype
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(b) Vertical view of the spiral flight tra-
jectory

(c) 3D view of the spiral flight trajectory

Figure 2: Illustration of the imitation-driven trajectory adjustment

practical position and the theoretical position across
the slave UAVs, which implicitly reflects the imita-
tion efficacy (i.e., a larger relative position error indi-
cates a poorer imitation efficacy). Let (xτi , y

τ
i , z

τ
i ) and

(xτ ′i , y
τ ′
i , z

τ ′
i ) denote the theoretical and practical 3D-

coordinates of the i-th slave UAV at time instant τ ,
respectively. The average relative position error is cal-
culated as

ε̄ =
1

T

T∑
τ=1

1

N

N∑
i=1

√
(xτ ′i − xτi )2 + (yτ ′i − yτi )2 + (zτ ′i − zτi )2,

where T denotes the cruising period.
• Average completion time. This metric calculates
the total time spent during the imitation-learning-based
flight. We set that UAVs will hover for 10s at each hov-
ering point. One hovering point indicates two imita-
tion actions (i.e., hover and re-cruise) towards certain
directions. Note that we ignore the delays during take-
off and landing. Thus, the total completion time is the
sum of the total hovering time at all hovering points
and the total imitation-learning-guided cruise time a-
long the spiral trajectory except takeoff/landing. The
average completion time is obtained by averaging over
100 independent runs of the spiral flight.

• Average energy cost. This metric calculates the to-
tal energy cost spent during the imitation-based com-
putation and communication procedures. According
to Eq. (11), we utilize the workload (in the unit of
CPU cycles per bit) to depict the sampled batch size
in the imitation task. The average energy cost is also
obtained by averaging over 100 independent runs of
the spiral flight.

5.2 Evaluation Results

We conduct four sets of experiments to compare the above-
mentioned metrics.

5.2.1 Comparisons on normalized reward. Figs. 3(a)∼3(b) dis-
play the comparison results on normalized reward under the
slave-UAV numbers of 5 and 8, respectively. It can been seen
that all algorithms yield low rewards in the initial learning
phase and gradually approach the expert-level performance
as the imitation learning proceeds. Among the three consid-
ered algorithms, the ILPO algorithm always yields higher
rewards than MAGAIL. The reason is that the ILPO algo-
rithm learns a potential dynamics model and can identify
the latent factor that the expert is most likely to intend.
However, ILPO is inferior to our BCI algorithm under all
settings. The reason is that ILPO only predicts the next s-
tate under a given state and latent action (i.e., f(st+1|st, z),
where z denotes the latent action). While the BCI algorithm
incorporates the action-assisted regularizer with the histor-
ical/predictive observation trajectories, and thus can yield
robust belief representation and high-fidelity imitation even
under incomplete observations. From Fig. 3 we can also know
that it is more challenging to keep a consistent imitation s-
ince all algorithms generally obtain reduced normalized re-
wards as the number of slave UAV increases.

5.2.2 Comparisons on average relative position error. Figs. 4(a)
∼4(b) display the comparison results on average relative po-
sition error. We observe the relative position variations un-
der different task complexities, which are reflected by the
number of hovering points (i.e., a larger number of hovering
points indicates a more complex imitation task since each
hovering point triggers the hovering and re-cruise imitation-
s). It can be seen that it is more likely to generate larger
position deviations in a larger size of flight formation. The
average relative position error of the ILPO algorithm is s-
lightly lower than MAGAIL, but is evidently higher than
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Figure 3: Comparisons on normalized reward under
different numbers of slave UAVs
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Figure 4: Comparisons on average relative position
error under different numbers of slave UAVs

the BCI algorithm particularly when the slave-UAV number
increases to 8. Such results indicate that the BCI algorithm
performs well in imitating the flight trajectory.

5.2.3 Comparisons on average completion time. Figs. 5(a)∼5(b)
display the comparison results on average completion time.
We also observe the impact of task complexity (i.e., the num-
ber of hovering points) on average completion time. A more
complex imitation task (i.e., a larger number of hovering
points) will prolong the completion time. From Fig. 5 we
know that it takes longer time to fulfill the imitation task in
a larger size of flight formation. The completion time of the
baselines are relatively close, but are longer than the BCI al-
gorithm, which verifies that the proposed algorithm is more
time-efficient.

5.2.4 Comparisons on average energy cost. Figs. 6(a)∼6(b)
display the comparison results on average energy cost. We
observe the energy variations by varying the workloads. As
the imitation task completion time plays a significant role in
energy cost, thus, the variation trends of the three considered
algorithms in Fig. 6 are similar to those in Fig. 5. From Fig.
6 we know that the computation and communication energy
costs increase obviously as the size of the swarm becomes
larger. Moreover, the energy cost gaps among the three algo-
rithms become larger as the workloads increase. Above all,
the BCI algorithm is the most energy-efficient.
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Figure 5: Comparisons on average completion time
under different numbers of slave UAVs
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Figure 6: Comparisons on average computation &
communication energy cost under different numbers
of slave UAVs

6 CONCLUSION

In this paper, we investigate the distributed formation co-
ordination issue in drone swarms under the generative ad-
versarial imitation learning paradigm. In the challenging in-
complete observation scenario, we try to recover the true
environment state by virtue of the belief representations of
historical observation trajectories, which are trained in con-
junction with the imitation policies. Furthermore, we incor-
porate the action-assisted regularizer with the historical &
predictive observation trajectories to improve the belief ro-
bustness and imitation fidelity. We evaluate the algorithm
performance on the UAVs’ formation control scenario. Evalu-
ation results show that the slave UAVs can adaptively adjust
the flight trajectory under the master UAV’s demonstrations,
and the collaborative execution efficiency is significantly im-
proved.
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