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ABSTRACT
In many risk-aware and multi-objective reinforcement learning
settings, the utility of the user is derived from the single execu-
tion of a policy. In these settings, making decisions based on the
average future returns is not suitable. For example, in a medical
setting a patient may only have one opportunity to treat their ill-
ness. When making a decision, just the expected return – known
in reinforcement learning as the value – cannot account for the
potential range of adverse or positive outcomes a decision may
have. Our key insight is that we should use the distribution over
expected future returns differently to represent the critical infor-
mation that the agent requires at decision time. In this paper, we
propose Distributional Monte Carlo Tree Search, an algorithm that
learns a posterior distribution over the utility of the different possi-
ble returns attainable from individual policy executions, resulting
in good policies for risk-aware settings. Moreover, our algorithm
outperforms the state-of-the-art in multi-objective reinforcement
learning for the expected utility of the returns.
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1 INTRODUCTION
In reinforcement learning (RL) settings, the expected return is used
to make decisions. In many scenarios, the utility of a user is derived
from the single execution of a policy [12]. In this case the expected
return does not provide the agent with sufficient critical information
about the potential positive or adverse outcomes a decision may
∗An extended version of this paper is available [6].
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have. In order for an agent to have sufficient critical information
at decision time, it is crucial to replace the expected return with a
posterior distribution over the expected utility of returns.

In the real world, decision-making often involves trade-offs based
on multiple conflicting objectives [5, 8]. Many approaches to multi-
objective decision-making only consider linear utility functions;
this limitation severely restricts the real-world applicability of these
methods, given that utility in many real-world problems is derived
in a non-linear manner.

In the multi-objective case, optimising under the expected utility
is known as the expected scalarised returns (ESR) [10, 12]. If the
utility function is non-linear strictly multi-objective methods are
required to find optimal solutions.

We propose a novel algorithm, Distributional Monte Carlo Tree
Search (DMCTS), which learns a posterior distribution over the
expected utility of the returns. DMCTS learns a posterior distribu-
tion over the utility of the returns by executing multiple individual
policies and calculating the utility of the returns obtained from each
policy execution. DMCTS builds upon Monte Carlo Tree Search
(MCTS) [7, 14, 17]. Our key insight is that learning a posterior
distribution over the utility of the returns is essential when opti-
mising for risk-aware RL and under the MORL ESR criterion. We
implement and demonstrate DMCTS for both risk-aware and multi-
objective problems under the ESR criterion. DMCTS learns good
polices in risk-aware settings. Moreover, DMCTS outperforms the
state-of-the-art in MORL under ESR.

2 DISTRIBUTIONAL MONTE CARLO TREE
SEARCH

The majority of RL research focuses on learning an optimal policy
based on the expected returns, known as the value. Under the
expected scalarised returns (ESR), a single execution of a policy is
used to derive the utility of a user. A distribution over the expected
utility of returns must be used when making decisions under the
ESR criterion as a distribution provides the agent with sufficient
information at decision time to exploit positive outcomes and avoid
negative outcomes.

We present our Distributional Monte Carlo Tree Search (DMCTS)
algorithm which learns a posterior distribution over the expected
returns. DMCTS builds an expectimax search tree through the same
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Figure 1: Results from the risk-aware environment.

process as MCTS [16]. Learning a posterior distribution over the
utility of the returns can be used to replace the expected future
returns (of vanilla MCTS) at each node.

To compute the distributionwe first calculate the accrued returns,
R−
𝑡 . The accrued returns is the sum of rewards received during the

execution phase as far as timestep, 𝑡 , where r𝑡 is the reward received
at each timestep,

R−
𝑡 =

𝑡−1∑
0

r𝑡 .

Secondly, we must calculate future returns, R+
𝑡 . The future re-

turns is the sum of the rewards received when traversing the search
tree during the learning phase and Monte Carlo simulations from
timestep, 𝑡 , to a terminal node, 𝑡𝑛 ,

R+
𝑡 =

𝑡𝑛∑
𝑡

r𝑡 .

The cumulative returns, R𝑡 , is the sum of the accrued returns,
R−
𝑡 , and the expected future returns, R+

𝑡 . R𝑡 is backpropagated to
each node in the search tree, where the utility is computed, 𝑢 (R𝑡 ).

At each node we aim to maintain a posterior distribution over
the expected utility of the returns. However, because the utility
function may be non-linear, a parametric form of the posterior
distribution may not exist. Since a bootstrap distribution can be
used to approximate a posterior [4, 9], it is much more suitable to
maintain a bootstrap distribution over the expected utility of the
returns at each node.

Each bootstrap distribution contains a number of bootstrap repli-
cates, 𝑗 ∈ {1, ..., 𝐽 } [2]. On initialisation of a new node, for each
bootstrap replicate, 𝑗 , the parameters 𝛼 𝑗 and 𝛽 𝑗 are both set to 1.

During the backpropagation phase the bootstrap distribution
at each node is updated. At node 𝑖 , for each bootstrap replicate, 𝑗 ,
a coin flip is simulated. If the result of the coin flip is equal to 1
(heads), 𝛼𝑖 𝑗 and 𝛽𝑖 𝑗 are updated:

𝛼𝑖 𝑗 = 𝛼𝑖 𝑗 + 𝑢 (R𝑡 )

𝛽𝑖 𝑗 = 𝛽𝑖 𝑗 + 1
To select actions while learning, we use the previously computed
statistics. At node 𝑛, we select an action by sampling the bootstrap
distribution at each child node, 𝑖 . For each sampled bootstrap repli-
cate, 𝑗 , the 𝛼𝑖 𝑗 and 𝛽𝑖 𝑗 values are retrieved and 𝛼𝑖 𝑗

𝛽𝑖 𝑗
is computed.
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Figure 2: Results from the Fishwood environment.

Since the following is true,
𝛼𝑖 𝑗

𝛽𝑖 𝑗
≡ E[𝑢 (R−

𝑡 + R+
𝑡 )], (1)

by maximising over 𝑖 in Equation 1, we select an action correspond-
ing to 𝑗 approximately proportionally to the probability of that
action being optimal – as per the Bootstrap Thompson Sampling
[2, 3] exploration strategy. The agent then executes the action, 𝑎∗,
which corresponds to the following:

𝑎∗ = argmax
𝑖

𝛼𝑖 𝑗

𝛽𝑖 𝑗
.

We note that at execution time we can simply select the overall
maximising action by averaging over all the acquired data, thereby
maximising the ESR criterion:

𝐸𝑆𝑅 = E[𝑢 (R−
𝑡 + R+

𝑡 )] . (2)

3 EXPERIMENTS
Before testing DMCTS on benchmark problems from the MORL
literature, we evaluate DMCTS in a risk-aware problem domain
under ESR. Shen et al. [13] define a risk-aware MDP where an agent
must decide from a number of stocks in which to invest. To evaluate
our DMCTS algorithm we use the following risk-averse non-linear
utility function:

𝑢 = 1 − 𝑒−𝑟𝑡 . (3)
As shown in Figure 1, DMCTS consistently learns the optimal

policy for the above risk-averse utility function. The policy, which
avoids all risk, has a cumulative utility of 0. Q-learning struggles to
learn a stable policy for the given utility function.

To evaluate DMCTS in a multi-objective setting under ESR, we
use the Fishwood problem [11]. For Fishwood we maximise the
following non-linear utility function [11],

𝑢 = min
(
fish,

⌊
wood

2

⌋)
. (4)

To evaluate DMCTS in the Fishwood domain, we compare DM-
CTS against C51 [1], Expected Utility Policy Gradient (EUPG) [11,
18], and Q-learning [15]. EUPG achieves state-of-the-art results
in the Fishwood problem under ESR [11]. As shown in Figure 2,
Q-learning and C51 fail to learn any meaningful policy. By contrast,
DMCTS and EUPG outperform both C51 and Q-learning. DMCTS
reaches a higher utility when compared to EUPG and achieves state-
of-the-art performance under ESR in the Fishwood environment.
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