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ABSTRACT several DRL methods are also adapted to solve the 3D BPP [5, 7, 8],

Recently, there is growing attention on applying deep reinforcement
learning (DRL) to solve the 3D bin packing problem (3D BPP), given
its favorable generalization and independence of ground-truth label.
However, due to the relatively less informative yet computationally
heavy encoder, and considerably large action space inherent to the
3D BPP, existing methods are only able to handle up to 50 boxes. In
this paper, we propose to alleviate this issue via an end-to-end mul-
timodal DRL agent, which sequentially addresses three sub-tasks
of sequence, orientation and position, respectively. The resulting
architecture enables the agent to solve large-scale instances of 100
boxes or more. Experiments show that the agent could learn highly
efficient policies that deliver superior performance against all the
baselines on instances of various scales.
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1 INTRODUCTION

3D Bin packing problem (BPP) is a well-known class of combina-
torial optimization problem in operations research and computer
science [10, 17]. In a classic 3D BPP, a number of cuboid boxes
with certain inherent constraints (e.g., the box cannot overlap with
each other, or violate the bin dimensions) are packed into a bin, to
maximizing the utilization rate. Due to the strong NP-hardness, it
is always impractical to exactly solve the problem [14], while most
of the attempts emphasize on heuristics to yield approximate solu-
tions. However, conventional heuristics usually need hand-crafted
decision rules to guide the solving process, which require substan-
tial domain knowledge and engineering efforts to design and ignore
the underlying pattern that those instances may share, thus likely
lead to limited performance.

Recently, there is a growing trend towards applying deep re-
inforcement learning (DRL) to solve combinatorial optimization
problems [1, 6, 9, 12, 16, 18-21]. Inspired by those seminal works,
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which decompose the problem into three sub-tasks, i.e., deciding, 1)
the sequence to place boxes; 2) the orientation of the selected box;
and 3) the position to place the selected box, respectively. Neverthe-
less, due to the harder nature of the 3D BPP compared with other
general combinatorial optimization problems, the adapted encoders
appear to be less informative while computationally heavy. The
resulting decoders are unable to efficiently cope with the large ac-
tion space, especially for the position sub-task. Consequently, those
attempts are only able to handle up to 50 boxes, which significantly
hinder the wide applications of DRL for solving 3D BPP.

To address these issues, we propose an end-to-end DRL agent
to solve the 3D BPP. In specific, the agent exploits a multimodal
encoder to produce more informative embedding while maintaining
light computation for learning the packing policy, which enables
solving large instances of 100 boxes or more.

2 METHOD

We solve same BPP problem as [17], in which 1) any two boxes
do not overlap with each other; 2) all boxes do not violate the
bin dimensions; 3) only one orientation is allowed for a box. The
objective is to minimize the maximum stacked height (equal to
maximizing the utilization rate of the bin).

Our agent adopts an encoder-decoder diagram to learn the pack-
ing policy and sequentially perform the sub-tasks of sequence, ori-
entation and position. The multimodal encoder maps the states into
feature embeddings, and a decoder is responsible for incrementally
constructing solutions for the three sub-tasks. Particularly, in the
multimodal encoder, a sparse attention sub-encoder is exploited to
embed the box state (i.e., the basic information of the box including
the indication of whether packed, orientation and position) while
maintaining relatively light computation; and a CNN (convolutional
neural network) sub-encoder is used to embed the view state for
more informative auxiliary representation, which captures the top-
down view of the current packing layout. In the decoder, an action
representation learning is leveraged to deal with the large action
space that mainly caused by the position sub-task.

The input state at each step includes box state and view state ,
respectively. The box state retrieves the status (rotations and co-
ordinates) of all boxes at each step. The view state is described as
the top-down view of the bin. Accordingly, the value of each grid
cell in view state refers to the total height of stacked boxes in that
cell. Intuitively, the objective value directly relates to the stacked
height of each grid cell, which might not be well captured solely
by the box state. Therefore, the view state, which represents the
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Figure 1: Learning curves of our model for different num-
bers of boxes in 100x100 bin.

top-down view of the bin at each step, could be exploited to offer
more informative spatial features to facilitate the packing.

For the sparse attention sub-encoder, we adopt the Transformer
architecture [15] as the backbone and discard the positional en-
coding. To alleviate the computation cost for instances with large
number of boxes, we exploit a dilated sparse attention mechanism
[3]. For the convolutional sub-encoder, we adopt a CNN architec-
ture to encode the image-like view state. At each step, the decoder
(consisting of 3 transformer sub-decoders) takes the output of the
sparse attention sub-encoder and the output of the convolutional
sub-encoder as input, and sequentially outputs the box index i, ori-
entation (ll.’, wir, h;) and position (x;, yj, z;). However, even though
we reduce the action space to 2D by straightly dropping the box
from top, the number of possible actions for the position sub-task
is quadratic to the size of bin, which is still considerably large
(e.g., 40000 possible actions for a 200 X 200 bin). Previous DRL
methods [5, 8] fail to take this into account, which limits them to
instances of small-scale. To address this issue, we introduce the
action representation learning [2] into the position sub-decoder to
improve generalization over large finite action space, which allows
the agent to infer the consequence of an action from the similar
historical ones. To be precisely, we learn the embedding of position
actions and use it to calculate a position for placing the box.

To better balance the variance and bias of the rewards, we adopt
the A2C [11] with Generalized Advantage Estimation (GAE) [13]
to train the agent. Meanwhile, we integrate supervised learning for
action representation in the position sub-task.

3 EXPERIMENTS AND RESULTS

In the experiments, we follow a similar setting in [8] to randomly
generate the data. With respect to the metric, utilization rate (UR)
is adopted to measure the packing performance. Before comparing
with others, we first present the learning curves of our method on
20, 30, 50 and 100 boxes with a 100x100 bin in Figure 1, respectively.
We observe that, our method converges smoothly for all different
scales of instances, demonstrating the favorable potential to handle
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Table 1: Utilization rate (%). Genetic Algorithm (GA) [17];
Extreme Point (EP) [4]; Multi-Task Selected Learning
(MTSL) [5]; Conditional Query Learning (CQL) [8]

Box Number  GA EP MTSL CQL OUR
20 68.3% 62.7% 62.4% 67.0% 71.8%
30 66.2% 63.8% 60.1% 69.3% 75.5%
50 65.9% 66.3% 553% 73.6% 81.3%
100 62.4% 67.5% - - 84.4%

further larger number of boxes (especially in light of that the fol-
lowing two DRL baselines can only handle up to 50 boxes). We then
compare it with four different methods, including: 1) Genetic Algo-
rithm (GA) [17]; 2) Extreme Point (EP) [4]; 3) Multi-Task Selected
Learning (MTSL) [5], which is adapted to the 3D BPP in this paper;
and 4) Conditional Query Learning (CQL) [8], the state-of-the-art
DRL method for solving 3D BPP. All the DRL based methods in-
cluding ours, sample 128 solutions according to the learnt policies
and retrieve the best one as the final output as [5]. The superior
performance reflected in Table 1 well justified the overall efficacy
of the designed sparse attention sub-encoder, CNN sub-encoder
and action representation learning in our method for boosting the
solution quality and computation efficiency. We also notice that, as
the number of boxes becomes larger, the average utilization rate
of our method also increases. Larger number of boxes often means
more information in the input sequence, which could be well ex-
ploited by the attention mechanism and DRL algorithm to learn the
relationship among boxes and facilitate the long-term planning.

We also conduct ablation studies by removing the respective com-
ponents separately. The results (not displayed here due to space
limitation) reveal that without the CNN sub-encoder or the action
representation learning, the utilization rates for our method drop
obviously, implying that both components could benefit the DRL
algorithm for engendering high-quality solutions. Besides, the ab-
sence of CNN sub-encoder has more significant impacts on the
performance compared with that of action representation. This
finding justified that the view state empowered by the CNN sub-
encoder could produce more informative auxiliary embedding for
learning the packing policy. Meanwhile, with the absence of both
CNN sub-encoder and action representation learning, the utilization
rates further decreased.

4 CONCLUSIONS

In this paper, we present a multimodal DRL agent for solving 3D
BPP. Specifically, we exploit a multimodal encoder with a sparse
attention sub-encoder and a CNN sub-encoder to exploit multi-
modal information. Meanwhile, the action representation learning
is adopted to cope with large action space. The resulting policy
enables the agent to solve large instances of 100 boxes or more,
while the state-of-the-art DRL method is only able to handle up to
50 boxes. Moreover, our method also delivers superior performance
in terms of utilization rate against all the baselines.
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