
Anytime Multi-Agent Path Finding via
Large Neighborhood Search

Extended Abstract

Jiaoyang Li,1 Zhe Chen,2 Daniel Harabor,2 Peter J. Stuckey,2 Sven Koenig1
1University of Southern California, USA

2Monash University, Australia
{jiaoyanl,skoenig}@usc.edu,{zhe.chen,daniel.harabor,peter.stuckey}@monash.edu

ABSTRACT
Multi-Agent Path Finding (MAPF) is the challenging problem of
computing collision-free paths for a cooperative team of moving
agents. Algorithms for solving MAPF can be categorized on a spec-
trum. At one end are (bounded-sub)optimal algorithms that can
find high-quality solutions for small problems. At the other end
are unbounded-suboptimal algorithms (including prioritized and
rule-based algorithms) that can solve very large practical problems
but usually find low-quality solutions. In this paper, we consider a
third approach that combines both advantages: anytime algorithms
that quickly find an initial solution, including for large problems,
and that subsequently improve the solution to near-optimal as time
progresses. To improve the solution, we replan subsets of agents
using Large Neighborhood Search, a popular meta-heuristic often
applied in combinatorial optimization. Empirically, we compare
our algorithm MAPF-LNS to the state-of-the-art anytime MAPF
algorithm anytime BCBS and report significant gains in scalability,
runtime to the first solution, and speed of improving solutions.

KEYWORDS
Multi-Agent Path Finding, Large Neighborhood Search, Anytime
Algorithms
ACM Reference Format:
Jiaoyang Li,1 Zhe Chen,2 Daniel Harabor,2 Peter J. Stuckey,2 Sven Koenig1.
2021. Anytime Multi-Agent Path Finding via Large Neighborhood Search:
Extended Abstract. In Proc. of the 20th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2021), Online, May 3–7,
2021, IFAAMAS, 3 pages.

1 INTRODUCTION
Multi-Agent Path Finding (MAPF) asks us to plan collision-free
paths for multiple agents on a given graph in discrete timesteps,
each from a given start vertex to a given target vertex, while min-
imizing their flowtime, i.e., the sum of their travel times. MAPF
appears in a wide variety of application areas, including robotics
and computer games. In practical settings, MAPF problems can
involve hundreds of agents. Desirable solutions are those which
can be computed quickly but are also of high quality. Unfortunately,
solving MAPF optimally is intractable [9]. Thus, practitioners must
select between high-quality solutions for small problems (using op-
timal or bounded-suboptimal algorithms) or low-quality solutions
for large problems (using prioritized or rule-based algorithms).

Proc. of the 20th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2021), U. Endriss, A. Nowé, F. Dignum, A. Lomuscio (eds.), May 3–7, 2021, Online.
© 2021 International Foundation for Autonomous Agents and Multiagent Systems
(www.ifaamas.org). All rights reserved.

In this work, we consider an anytime approach to solving MAPF.
First, we use an efficient MAPF solver to find an initial solution fast
so that a solution is usually quickly available, even for extremely
challenging problems. Next, if more time is available, we employ
Large Neighborhood Search (LNS) [6] by repeatedly replanning
subsets of agents to improve the solution quality. Empirically, we
compare our algorithm MAPF-LNS to the state-of-the-art anytime
algorithm anytime BCBS [1] and report significant gains in scalabil-
ity, runtime to the first solution, and speed of improving solutions.

2 MAPF-LNS
To begin with, we call an efficient MAPF solver to find an initial
solution 𝑃 for the given MAPF instance. Any non-optimal MAPF
algorithm can be used. Then, in each iteration, we select a neighbor-
hood, i.e., a subset of agents𝐴𝑠 , using a destroy heuristic (introduced
later), remove their paths 𝑃−𝑠 from 𝑃 , and replan new paths for them
by calling a modified MAPF solver. The modified MAPF solver re-
turns a set of paths 𝑃+𝑠 , one for each agent in 𝐴𝑠 , that do not collide
with each other and with the paths in 𝑃 . Most optimal, bounded-
suboptimal, and prioritized MAPF algorithms can be easily adapted
to yield such a modified MAPF solver by treating the paths in 𝑃 as
moving obstacles. We then compare the (old) set of paths 𝑃−𝑠 with
the (new) set of paths 𝑃+𝑠 and add the paths in the one with the
smaller flowtime to 𝑃 . This procedure is repeated until we time out.

Adaptive LNS [4] is a very strong variant of LNS. It makes use
of multiple destroy heuristics by recording their relative success
in improving solutions and choosing the next neighborhood to
explore guided by the most promising destroy heuristic. Formally,
we maintain a weight 𝑤𝑖 ≥ 0 for each destroy heuristic 𝑖 , that
represents the relative success of destroy heuristic 𝑖 in improving
solutions. Initially, all𝑤𝑖 = 1. Then, in each iteration, we select a
destroy heuristic 𝑖 with probability𝑤𝑖/

∑
𝑗 𝑤 𝑗 to generate a neigh-

borhood and replan the paths of the agents in it. After the new
paths are found, we update 𝑤𝑖 according to how much the new
paths improved the solution quality. Assume that we select destroy
heuristic 𝑖 in the current iteration. If the new paths are accepted,
i.e., the flowtime 𝜎+ of the paths in 𝑃+𝑠 is smaller than the flowtime
𝜎− of the paths in 𝑃−𝑠 , then𝑤𝑖 is set to 𝛾 · (𝜎− − 𝜎+) + (1 − 𝛾) ·𝑤𝑖 ;
otherwise,𝑤𝑖 is set to (1−𝛾) ·𝑤𝑖 . Here, 𝛾 ∈ [0, 1] is a user-specified
reaction factor, which controls how quickly the weights react to the
changes in the relative success in improving the current solution.
We use 𝛾 = 0.01 in our experiments. The weights for the other
destroy heuristics remain the same.

Critical to the success of LNS is to find good neighborhoods for
exploration. For adaptive LNS to be most successful, the destroy

Extended Abstract AAMAS 2021, May 3-7, 2021, Online

1581



Table 1: Results of MAPF-LNS (denoted by LNS) and anytime BCBS (denoted by BCBS). Time to sol is the runtime to the first
solution. Initial and final are the sum of delays of the initial and final solutions. Subopt is the suboptimality of MAPF-LNS.

w
ar
eh
ou

se

𝑚
Success rate Time to sol (s) Iterations Initial Final Sub

de
n5

20
d

𝑚
Success rate Time to sol (s) Iterations Initial Final Sub

BCBS LNS BCBS LNS BCBS LNS BCBS LNS BCBS LNS opt BCBS LNS BCBS LNS BCBS LNS BCBS LNS BCBS LNS opt
50 1.00 1.00 0.23 0.03 3 14k 35 16 6 6 ≤1.001 100 0.92 1.00 0.69 0.26 2 6k 31 25 12 12 ≤1.001
100 0.92 1.00 1.54 0.12 23 12k 238 85 92 34 ≤1.004 200 0.68 1.00 4.35 0.88 5 4k 118 93 75 44 ≤1.001
150 0.92 1.00 7.65 0.94 17 6k 680 261 589 123 ≤1.009 300 0.44 1.00 12.39 1.83 3 3k 252 208 219 95 ≤1.002
200 0.80 1.00 27.00 3.02 5 3k 1,216 526 1,200 267 ≤1.016 400 0.08 1.00 20.98 3.16 1 2k 590 362 590 170 ≤1.003
250 0.28 1.00 33.04 5.62 6 2k 1,761 909 1,735 489 ≤1.024 500 0.00 1.00 - 3.58 - 2k - 569 - 269 ≤1.003

heuristics should be orthogonal, in the sense that they explore dif-
ferent kinds of neighborhoods. We thus define two destroy heuris-
tics as follows. Due to the space limit, we provide only algorithm
sketches.

The first destroy heuristic is based on agents. We want to select
an agent whose path could be shorter if some other agents were not
blocking its way because replanning them together has a chance
to reduce the flowtime. Specifically, we select an agent 𝑎𝑘 that has
the largest delay (= its travel time minus the distance between its
start and target vertices). We maintain a tabu list to avoid selecting
the same agent repeatedly. We add agent 𝑎𝑘 to the neighborhood
set 𝐴𝑠 and let it perform a restricted random walk, which allows
it to take only the actions that could lead to a path shorter than
its current one, ignoring collisions with the paths in 𝑃 . The agents
that agent 𝑎𝑘 has collided with during the random walk are added
to 𝐴𝑠 because they prevent agent 𝑎𝑘 from reaching its target vertex
earlier without collisions.

The second destroy heuristic is based on map topology. We are
interested in the agents that visit the same intersection vertex, i.e., a
vertex with a degree greater than 2, because a different ordering of
the agents to traverse through the intersection vertex could lead to
solutions of different qualities. Specifically, we begin by collecting
all intersection vertices and selecting a random one from it. We add
the agents to 𝐴𝑠 whose paths visit the selected vertex.

The neighborhood size is another important factor for the success
for LNS. We use a user-specified parameter 𝑁 to determine the
number of agents in a neighborhood. We add only the first 𝑁 agents
found by a destroy heuristic to𝐴𝑠 . If fewer than 𝑁 agents are added
to𝐴𝑠 , for the first destroy heuristic, we randomly select an agent in
𝐴𝑠 and repeat the procedure; for the second destroy heuristic, we
select a neighboring intersection vertex and repeat the procedure.
We use 𝑁 = 16 in our experiments.

3 EMPIRICAL EVALUATION
We evaluate MAPF-LNS on two maps from the MAPF benchmark
suite [8], namely warehouse-10-20-10-2-1 of size 161 × 63 (denoted
by warehouse) and den520d of size 256 × 257. We use the “random”
scenarios, yielding 25 instances for each map and each number of
agents. The algorithms are implemented in C++, and the experi-
ments are conducted on Ubuntu 20.04 LTS on an Intel Xeon 8260
CPU with a memory limit of 8 GB and a time limit of 1 minute.

We first compare MAPF-LNS with anytime BCBS [1]. MAPF-LNS
uses bounded-suboptimal MAPF solver EECBS [3] with a subopti-
mality factor of 2 to generate the initial solutions and prioritized
MAPF solver Prioritized Planning (PP) [7] with a random priority
ordering to replan. Table 1 reports the success rate (= percentage of

Table 2: Results of MAPF-LNS on harder instances. All in-
stances are solved within 1 minute.

w
ar
eh
ou

se Initial 𝑚
Sum of delays Subopti

de
n5

20
d

Initial
𝑚

Sum of delays Subopti
solver Initial Final mality solver Initial Final mality

PPS
250 13,199 635 ≤1.03

PP
700 20,713 4,473 ≤1.04

300 18,587 1,400 ≤1.06 800 25,885 7,408 ≤1.05
350 25,539 3,979 ≤1.14 900 31,888 12,186 ≤1.08

solved instances within 1 minute), the runtime to the first solution,
the number of iterations, the sum of delays of all agents for the
initial and final solutions, and the (overestimated) suboptimality of
MAPF-LNS (= flowtime divided by the sum of the distances from the
start vertex to the target vertex of all agents). In 1 minute, MAPF-
LNS explores thousands of neighborhoods and reduces the sum of
delays by up to 2 times. It is significantly better than anytime BCBS
in terms of scalability, runtime to the first solution, and speed of
improving solutions.

When we consider only the instances for which we can find
optimal solutions, the actual suboptimality of MAPF-LNS is far
better. We run optimal MAPF solver CBS [2] for 1 minute on each
instance and find optimal solutions for 57 instances. Among the
optimally solved instances, MAPF-LNS finds optimal solutions for
45 instances and <0.01%, <0.1%, and <0.2% worse-than-optimal solu-
tions (in terms of flowtime) for 48, 56, and 57 instances, respectively.

We also examine MAPF-LNS on harder instances that anytime
BCBS cannot solve within 1 minute. Table 2 reports the results.
Since EECBS cannot solve many of them either, we use the more
efficient MAPF solvers PP and Parallel-Push-and-Swap (PPS) [5] (a
rule-based MAPF solver) to find initial solutions. The quality of the
solutions generated by PP and PPS is usually much worse than that
of EECBS (e.g., see the difference between the initial sums of delays
on the warehouse instances with 250 agents in Tables 1 and 2).
However, as shown in Table 2, even when starting from a low-
quality solution, MAPF-LNS can rapidly improve it, reduce its sum
of delays by up to 6 times, and quickly converge to a near-optimal
solution whose flowtime is at most 14% larger than optimal.

ACKNOWLEDGMENTS
Jiaoyang Li performed the research during her visit to Monash
University. The research at the University of Southern California
was supported by the National Science Foundation (NSF) under
grant numbers 1409987, 1724392, 1817189, and 1837779 as well
as a gift from Amazon. The research at Monash University was
supported by the Australian Research Council under Discovery
Grant DP190100013 and DP200100025 as well as a gift fromAmazon.

Extended Abstract AAMAS 2021, May 3-7, 2021, Online

1582



REFERENCES
[1] Liron Cohen, Matias Greco, Hang Ma, Carlos Hernández, Ariel Felner, TK Satish

Kumar, and Sven Koenig. 2018. Anytime Focal Search with Applications.. In
Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI).
1434–1441.

[2] Jiaoyang Li, Graeme Gange, Daniel Harabor, Peter J. Stuckey, Hang Ma, and Sven
Koenig. 2020. New Techniques for Pairwise Symmetry Breaking in Multi-Agent
Path Finding. In Proceedings of the International Conference on Automated Planning
and Scheduling (ICAPS). 193–201.

[3] Jiaoyang Li, Wheeler Ruml, and Sven Koenig. 2021. EECBS: Bounded-Suboptimal
Search for Multi-Agent Path Finding. In Proceedings of the AAAI Conference on
Artificial Intelligence (AAAI).

[4] Stefan Ropke and David Pisinger. 2006. An Adaptive Large Neighborhood Search
Heuristic for the Pickup and Delivery Problemwith TimeWindows. Transportation
Science 40, 4 (2006), 455–472.

[5] Qandeel Sajid, Ryan Luna, and Kostas E. Bekris. 2012. Multi-Agent Pathfinding
with Simultaneous Execution of Single-Agent Primitives. In Proceedings of the
Symposium on Combinatorial Search (SoCS). 88–96.

[6] Paul Shaw. 1998. Using Constraint Programming and Local Search Methods to
Solve Vehicle Routing Problems. In Proceedings of the International Conference on
Principles and Practice of Constraint Programming (CP). 417–431.

[7] David Silver. 2005. Cooperative Pathfinding. In Proceedings of the Artificial Intelli-
gence and Interactive Digital Entertainment Conference (AIIDE). 117–122.

[8] Roni Stern, Nathan R. Sturtevant, Ariel Felner, Sven Koenig, Hang Ma, Thayne
Walker, Jiaoyang Li, Dor Atzmon, Liron Cohen, T. K. Satish Kumar, Eli Boyarski,
and Roman Bartak. 2019. Multi-Agent Pathfinding: Definitions, Variants, and
Benchmarks. In Proceedings of the International Symposium on Combinatorial
Search (SoCS). 151–159.

[9] Jingjin Yu and Steven M. LaValle. 2013. Structure and Intractability of Optimal
Multi-Robot Path Planning on Graphs. In Proceedings of the AAAI Conference on
Artificial Intelligence (AAAI). 1444–1449.

Extended Abstract AAMAS 2021, May 3-7, 2021, Online

1583


	Abstract
	1 Introduction
	2 MAPF-LNS
	3 Empirical Evaluation
	Acknowledgments
	References



