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ABSTRACT
Trading mechanisms play a fundamental role in the health of fi-
nancial markets. For example, it is believed that continuous double
auctions constitute fertile soil for predatory behaviour and toxic
order flows. To this end, frequent call markets have been proposed
as an alternative design choice to address the latency arbitrage
opportunities built in those markets. This paper studies the extent
to which adaptive rules to define the length of the clearing intervals
affect the performance of frequent call markets.
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1 INTRODUCTION
Continuous-time double auctions (CDAs) are a very popular trading
mechanism applied in modern financial exchanges. However, they
are believed to lead to the latency arms race problem [8, 26] and
highly volatile markets [18]. Instead, frequent call markets (a.k.a.,
batch auctions) have been shown to successfully address this prob-
lem [8, 30] and outperform CDAs in many aspects including market
efficiency, total surplus and size of the spread. Much of the previous
research on batch auctions focused on what we call deterministic
call markets (DCM), in which the clearing interval length is fixed.
We explore the extent to which adaptive call markets (ACMs) where
the clearing interval is not constant but moves in rhythm with the
market can “improve” the market over deterministic batch auctions.
To obtain solid conclusions from the simulations, we apply an em-
pirical game-theoretic analysis (EGTA) to compute the empirical
equilibria that take into account the strategic responses of traders.

We conclude that market performance is only linked to the clear-
ing frequency. We also show that adaptivity combined with market-
based clearing rules can also lead to markets performing better.
Furthermore, we explore other market-based clearing rules and
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draw a picture that supports the exploration of different combina-
tions of termination rules (depending on market conditions) that
could be used to make the market perform as intended.

2 EXPERIMENTAL SETUP
Our model is inspired by Wah et al. [28] since it is believed to cap-
ture the qualitative phenomena found in real financial markets [5].
There are 40, 80 and 160 agents trading a single security in a thin
market, medium market and thick market, respectively. Agents
are allowed to submit limit orders when they wish to trade. The
limitation of the size of each order is set to 1 unit except when we
test the performance with extreme orders. To simplify, we adopt
fine-grained but discrete prices and times to simulate both the CDA
and the frequent call markets. We also put a price range of the se-
curity from 0 to 1000 to avoid unnecessary complexity. The trading
occurs over a finite horizon 𝑇 , which is set to be 200.

We introduce a mean-reverting stochastic process 𝑓𝑡 to represent
the true value at different times, defined as 𝑓𝑡 = 𝑟 𝑓 + (1−𝑟 ) 𝑓𝑡−1 + 𝑠𝑡

where 𝑟 ∈ (0, 1) is the reversion rate and 𝑠𝑡 ∼ 𝑁 (0, 𝜎2
𝑠 ). The

parameters 𝑟 and 𝜎𝑠 control the average shift of fundamental value
and are set to be 0.8 and 100, while 𝑓 is 500. The agents generate
their own valuations containing common and private component
following the setup in [5, 28]. The common component is _𝑖,𝑡 + 𝑓𝑡 ,
where _𝑖,𝑡 denotes the bias, independently generated from a normal
distribution 𝑁 (0, 400). The private component is a measurement of
the personal valuation of holding a position through a vector Θ𝑖 .
Assume that the maximum size allowed to long or short is 1. The
elements \𝑖,𝑞 then represent the marginal surplus of obtaining one
more unit of the asset when agent 𝑖 longs 𝑞 units for non-negative
𝑞, or shorts 𝑞 units for negative 𝑞, and are independently generated
from a normal distribution 𝑁 (0, 50) and sorted in descending order
to fill the vector Θ𝑖 .

To simulate the bidding process, we assume that during each
time interval [𝑡, 𝑡 + 1), every agent has one opportunity to submit
a limit order (in which case any outstanding order from previous
intervals is cancelled) or take no action. The order in which the
agents choose a strategy is randomised. In a call market, the agents
can only observe the price quotes at the point in which the market
last cleared.

We assign the agents with a required surplus range [𝛼min, 𝛼max],
where 𝛼min is the minimum expected surplus from trading and
𝛼max is the maximum expectation. Each agent enters the market
with a probability 𝛽 every time the fundamental value changes. The
strategy space is inspired by [5].
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3 EXPERIMENTS AND ANALYSIS
The key features of the market we are concerned here with are
the market efficiency, spread measuring the liquidity, and volume
measuring the activeness of the market.

3.1 Random Call Markets
We first compare the performance of CDAs, DCMs and Random
Call Markets (RCMs) – where the length of clearing interval is not
fixed and is generated from a distribution parameterised by a fixed
length of time. We consider the thickness of the market, as from
above. The results are shown in Figure 1.

Figure 1: Market Measures: CDA vs DCM vs RCM

The conclusion is that the market performance is only relevant to
the clearing frequency, but irrelevant to the generation of irregular
clearing intervals. So, deterministic and random call markets have
very similar performances as long as the frequency is equal.

3.2 Stability-driven Adaptive Call Markets
Aiming at having a stable market, we analyse so called Stability-
driven Adaptive Call Markets (SACMs). A stable market is believed
to produce an efficient economic outcome [17]. Let𝑀 denote the
mid-price right after the previous clearing and let 𝑀 ′ be the vir-
tual mid-price, updated as new orders are collected. A SACM with
threshold 𝑑 clears if |𝑀−𝑀′ |

𝑀
≤ 100𝑑, where 𝑑 denotes the percent-

age of change in mid-price that we allow before we clear. Since
the price grid is sparse, we set up seemingly large thresholds 𝑑 in
{0.1, 0.2, 0.3}. Figure 2 shows that the market is able to maintain a
high efficiency by controlling the stability level 𝑑 .

3.3 Volume-driven Adaptive Call Markets
We consider two termination rules related to the volume. The first
one tracks the aggregate volume during the clearing interval and
clears when it reaches a threshold. We call it cumulative-volume
ACM (CVACM). The second tracks the ratio between the cumu-
lative volume of effective ask orders and bid orders, and is called
extreme-volume ACM (EVACM). We run experiments to test an

Figure 2: Market Measures: SACMs vs others

extreme scenario where the cumulative bid order size is 100 times
the cumulative ask order size. We set the extreme-volume threshold
to be 20. Table 1 shows that EVACM is helpful in stopping “flash
crashes” and vertical increasing, and in turn contributes to the
stability of the market.

Table 1: Changes in Price in Extreme Scenarios

Type DCM RCM CVACM EVACM

Proportion of change 32% 35% 41% 21%

3.4 Exploration of Combined Termination
Rules

EVACM helps to avoid extreme loss, which indicates that it can be
used as an additional termination rule. We take a first exploration
of combined termination rules and examine the performance of
RCMs with Extreme-Volume termination rule (RCM+EVACM for
short). The experiment results are shown in Figure 2.

We conclude that in most markets measures, RCM+EVACM per-
forms similarly to RCM. However, in the aspect of market spread,
there is a constant decrease from RCMs to RCM+EVACMs, showing
that the additional EVACM helps to narrow down the spread.

4 CONCLUSIONS
We observe that ACMs with stability-driven termination rules are
able to provide a balance between good market performance and
acceptable price stability, and extreme-volume adaptive call markets
are helpful in reducing the risk of sharp price movements. These
results thereby suggest that flexibility is the key advantage of ACMs
over other markets, and studying combinations of clearing rules
deserves further research.
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