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ABSTRACT
We study the problem of zero-shot coordination (ZSC), where agents
must independently produce strategies for a collaborative game
that are compatible with novel partners not seen during training.
In particular, our first contribution is to consider the need for di-
versity in generating such agents. Because self-play agents control
their own trajectory distribution during training, their policy only
performs well on this exact distribution. As a result, they achieve
low scores in ZSC, since playing with another agent is likely to
put them in situations they have not encountered during training.
To address this issue, we train a common best response (BR) to a
population of agents, which we regulate to be as diverse as possible.
For that purpose, we introduce Trajectory Diversity (TrajeDi) - a
differentiable objective for generating diverse reinforcement learn-
ing (RL) policies. We present TrajeDi as a generalization of the
Jensen-Shannon divergence (JSD) between policies and motivate it
experimentally in a simple matrix game, where it allows to find the
unique ZSC-optimal solution.
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1 INTRODUCTION
In this paper, we use policy diversity within population based train-
ing (PBT) to improve cross-play (XP) scores in the ZSC framework.

ZSC [8] is the problem of independently training two or more
agents in a cooperative game such that their strategies are compati-
ble and achieve high return when paired together at test time. Since
it is impossible to agree on an arbitrary strategy with all humans
ahead of time, solving ZSC is required for human-AI cooperation,
such as in rescue robots or self-driving cars.

The challenge of the ZSC framework arises from the fact that
many collaborative settings admit multiple joint strategies that are
optimal yet incompatible. Then, if we naively train two independent
agents in self-play (SP) [10], there is no guarantee that they will
converge to compatible policies.

To address this problem, we can rely on the game-theoretic
relationships between the optimal SP policies. Notably, if we have
access to the entire solution space, we can train an agent to be
the common BR to the largest possible subset of that space. The

1Work done while at Facebook AI Research.

Proc. of the 20th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2021), U. Endriss, A. Nowé, F. Dignum, A. Lomuscio (eds.), May 3–7, 2021, Online.
© 2021 International Foundation for Autonomous Agents and Multiagent Systems
(www.ifaamas.org). All rights reserved.

resulting agent would then be robust to the maximum number of
potential partners, making it a prime candidate for ZSC.

This approach allows to train good policies for ZSC, but requires
access to a diverse pool of optimal policies to serve as the training
set for the BR. To that end, we introduce TrajeDi, a differentiable
objective allowing to drive diversity within a pool of policies in the
context of PBT. Specifically, TrajeDi works as a generalization of
the JSD between the different policies and, unlike other methods,
is especially designed for use in partially observable multi-agent
settings.

2 RELATEDWORKS
There is a growing corpus of works featuring a measure of diversity
in RL. Many leverage it as a means of exploration [2, 5, 7] or to
learn less redundant options, in the case of hierarchical RL [4, 6, 9].
Diversity has also been used in a reward-free context as a method
of pre-training [3].

Regardless of the application, past works tend to formulate di-
versity either per state (𝜋 (𝑎 |𝑠)) [2, 7], as a function of state distribu-
tions (P(𝑠 |𝜋)) [3, 4, 9] or of state-action distributions (P(𝑠, 𝑎 |𝜋)) [5].
Unfortunately, these formulations are inadequate for multi-agent
RL [1, 11], where non-Markovian dynamics require actions to be
conditioned on the entire observation history. Since multi-agent
settings are ultimately our main concern, we formulate TrajeDi
accordingly, making it the first trajectory-based (P(𝜏 |𝜋)) diversity
objective, to the best of our knowledge.

Finally, our work addresses directly the challenges of the ZSC
framework introduced by Hu et al., which we summarize in sec-
tion 3. For this setting, Hu et al. propose a suitable training method
called “Other-Play" that leverages domain knowledge of the game
symmetries to find unambiguous solutions that perform well. Since
symmetries are not always present or known, we instead rely on
the structure of the policy space to find such solutions. That being
said, the two methods are compatible, and they address different as-
pects of ZSC. As such, we expect to use them jointly when applying
TrajeDi to more complex settings in the future.

3 SETTING AND BACKGROUND
Weassume a collaborative Dec-POMDPM = (𝑘,S,A, 𝑃, 𝑟, 𝑜,𝛾M ,𝑇 ),
where a joint-policy 𝜋 over the 𝑘 agents selects joint-actions 𝑎 =

(𝑎1, ..., 𝑎𝑘 ) ∈ A based on observations 𝑜 (𝑠) = (𝑜1 (𝑠), ..., 𝑜𝑘 (𝑠)) of
environment states 𝑠 ∈ S, with probability 𝜋 (𝑎 |𝑠). The environ-
ment dynamics are governed by unknown transition probabilities
𝑃 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ), upon which all agents receive a reward 𝑟 (𝑠𝑡 , 𝑎𝑡 ). Fi-
nally, 𝛾M ∈ [0, 1] and𝑇 are the reward discount factor and horizon,
respectively, and so we let 𝑅 =

∑𝑇
𝑡=0 𝛾

𝑡
M𝑟 (𝑠𝑡 , 𝑎𝑡 ) be the discounted

return.
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The probability of a trajectory 𝜏 = (𝑠0, 𝑎0, ..., 𝑠𝑇−1, 𝑎𝑇−1, 𝑠𝑇 ) ∈ T
under a policy 𝜋 is given by P(𝜏 |𝜋) = 𝜀 (𝜏)𝜋 (𝜏), where 𝜀 (𝜏) :=
P(𝑠0)

∏𝑇−1
𝑡=0 𝑃 (𝑠𝑡+1 |𝑎𝑡 , 𝑠𝑡 ) summarizes the environment dynamics

and 𝜋 (𝜏) := ∏𝑇−1
𝑡=0 𝜋 (𝑎𝑡 |𝑠𝑡 ) wraps the policy actions. The behaviour

of a policy 𝜋 is then characterized by the distribution it produces
over trajectories and it is optimal if it maximizes 𝐽 (𝜋) = E𝜏∼𝜋 {𝑅(𝜏)}.

Zero-Shot Coordination. In the ZSC framework [8], two players
must each learn a joint policy for a collaborative game, by a method
of their choosing. However, they must perform their training indi-
vidually, agreeing only on the training procedure before the task
is specified. After training, they are paired together and evaluated
without any possibility of adaptation to their partner. Consequently,
the players cannot rely on arbitrary conventions, unlike in SP, and
must instead employ a training procedure that will produce com-
patible policies when run separately.

4 METHOD
We first assume a population (𝜋1, ..., 𝜋𝑛) of 𝑛 policies, which we
train in SP, but also regularize to be as diverse as possible. Addi-
tionally, we have a (𝑛 + 1)-th policy denoted BR, which we train to
be a common BR to every 𝜋𝑖 . As a result, we must also optimize for
the XP performance between each policy in the population and the
BR. The global population loss is then

L(BR, 𝜋1, ..., 𝜋𝑛) = −
[

𝑛∑
𝑖=1

(𝐽 (BR, 𝜋𝑖 ) + 𝐽 (𝜋𝑖 , 𝜋𝑖 ))

+ 𝐽 (BR, BR) + 𝛼JSD𝛾 (𝜋1, ..., 𝜋𝑛)
]
, (1)

where 𝐽 (𝜋, 𝜇) is the expected return when pairing policy 𝜋 with
policy 𝜇, 𝛼 is a tunable weight and JSD𝛾 is the TrajeDi objective.

In particular, for a policy 𝜋𝑖 unrolled on trajectory 𝜏 , let the
local action kernel be defined as 𝛿𝑖,𝑡 (𝜏) :=

∏𝑇
𝑡 ′=0

[
𝜋𝑖 (𝑎𝜏𝑡 ′ |𝑠

𝜏
𝑡 ′)

]𝛾 |𝑡−𝑡′ |
,

where 𝛾 is a discounting factor in [0, 1]. Furthermore, let 𝛿𝑡 (𝜏) :=∑𝑛
𝑖=1

1
𝑛𝛿𝑖,𝑡 (𝜏) be the average local action kernel. Then,

JSD𝛾 (𝜋1, ..., 𝜋𝑛) := − 1
𝑛

𝑛∑
𝑖=1

∑
𝜏

P(𝜏 |𝜋𝑖 )
𝑇∑
𝑡=0

1
𝑇
log 𝛿𝑡 (𝜏)

𝛿𝑖,𝑡 (𝜏)
(2)

is the TrajeDi objective, where tuning 𝛾 allows to measure diversity
at a more local (𝛾 = 0) or global (𝛾 = 1) level. In fact, for 𝛾 = 1, eq. 2
is exactly equal to the JSD over the trajectory distribution induced
by each policy, thus making TrajeDi a strict generalization.

The ability to tune TrajeDi for a local scope is crucial in set-
tings admitting a high number of near-identical optimal policies.
Otherwise, those policies could saturate the diversity objective by
producing trajectories that differ only in trivial ways (e.g. a single
action in a long sequence) that are irrelevant to the global behaviour.

5 EXPERIMENTS
We provide empirical evidence that training a common BR to a
TrajeDi-enhanced population results in a robust agent for ZSC2.

Specifically, we consider the single step collaborative matrix
game visualized in Figure 1a. In this game, player 1 must select a
2The code is available online and can be run in-browser: https://bit.ly/33NBw5o
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Figure 1: a) Collaborative matrix game used to evaluate XP
performance. b) SP (solid line) and XP (crosses) returns on
the matrix game. Results for BRs to TrajeDi populations,
BRs to baseline populations, and individual agents. TrajeDi
reliably drives the BR to converge to the unique solution
that generalizes well in ZSC.

row while player 2 chooses a column independently. Once done,
the actions are revealed, and both agents get the reward associated
with the intersection of their choices.

We train 50 TrajeDi-regularized populations of two agents each
complete with a common BR, as given by eq. 1. We evaluate the BRs
and compare against 50 common BRs to unregularized populations,
as well as to 50 individual agents trained independently.

We plot the performance in both SP and XP in Figure 1b. In SP, all
schemes successfully achieve optimal return, but the BRs to TrajeDi
populations do so faster. This is likely due to the TrajeDi objective
providing a richer reward signal, but also due to the advantage
diversity provides with exploration.

In XP, the TrajeDi curve is identical, demonstrating that BRs
trained on diverse populations have indeed learned themost general
solution (first or second row as the row player and first column
as the column player). Meanwhile, individual agents and BRs to
baseline populations perform only slightly better than chance, as off-
diagonal payoffs tend to make the policies diverge from the TrajeDi
solution. Moreover, there is no significant difference between the
XP performance of the two baselines, supporting the hypothesis
that PBT with a common BR can easily collapse to SP without a
diversity bonus.

6 CONCLUSION AND FUTUREWORK
In this work, we first highlighted the role of diversity in ZSC and
leveraged it within a PBT approach to produce agents that are ro-
bust to a larger number of potential XP partners. To this end, we
introduced TrajeDi, a differentiable diversity objective that general-
izes the JSD over trajectory distributions. Finally, we showed that
TrajeDi allows to reliably converge to the ZSC-optimal solution in
a collaborative matrix game, thus greatly improving XP scores over
our baselines.

In the near future, we wish to further detail the theoretical prop-
erties of TrajeDi and show its compatibility with policy gradient
methods, including in the context of batch RL. Additionally, we
aim to evaluate the scalability of our method in a large scale ZSC
setting, such as the collaborative card game Hanabi, and compare
it to a broader set of baselines.
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