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ABSTRACT
We propose a generic reward shaping approach for improving the

rate of convergence in reinforcement learning (RL), called Self
Improvement BasedREwards, or SIBRE. The approach is designed
for use in conjunction with any existing RL algorithm, and consists

of rewarding improvement over the agent’s own past performance.

We prove that SIBRE converges in expectation under the same

conditions as the original RL algorithm. The reshaped rewards

help discriminate between policies when the original rewards are

weakly discriminated or sparse. Experiments on several well-known

benchmark environments with different RL algorithms show that

SIBRE converges to the optimal policy faster and more stably. We

also perform sensitivity analysis with respect to hyper-parameters,

in comparison with baseline RL algorithms.
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1 INTRODUCTION
Reinforcement learning (RL) is useful for solving sequential decision-

making problems in complex environments. Value-based [4, 12],

actor-critic and its extensions [8, 9], and Monte-Carlo methods

[2] have been shown to match or exceed human performance in

games. However, the training effort required for these algorithms

tends to be high [3, 7, 10], especially in environments with complex

state-action spaces. In this paper, we propose a modification to the

reward function (called SIBRE, short for Self Improvement Based

REward) that aims to improve the rate of learning in episodic en-

vironments and thus addresses the problem of sample efficiency

through reward shaping. SIBRE is a threshold-based reward for
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RL algorithms, which provides a positive reward when the agent

improves on its past performance, and negative reward otherwise.

We observe that this accelerates learning without requiring com-

putationally expensive estimation of baselines [1]. Furthermore,

SIBRE can be used in conjunction with any standard RL algorithm:

value or policy based, online or offline.

Algorithm 1: Illustration of SIBRE using Q-learning as

example

Algorithm parameters: step size 𝛼 ∈ (0, 1], 𝜖 > 0, 𝛽 ∈ (0, 1);
Threshold Update after x episodes;

Initialize 𝑄 (𝑠, 𝑎), for all 𝑠 ∈ S, 𝑎 ∈ A(𝑠), 𝜌 = 0;

foreach episode do
Initialize S;

𝐺 = 0;

foreach step of episode do
Choose 𝐴 from 𝑆 using policy derived from 𝑄 (e.g.,

ε-greedy);

Take action 𝐴, observe 𝑅, 𝑆 ′;
𝐺 = 𝐺 + 𝑅;
if S ∈ terminal then

𝑅 = 𝐺 − 𝜌 ;
if 𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑐𝑜𝑢𝑛𝑡 mod 𝑥 = 0 then

𝜌 ← (1 − 𝛽)𝜌 + 𝛽𝐺 ;
end if

end if
𝑄 (𝑆,𝐴) ← (1 − 𝛼)𝑄 (𝑆,𝐴) + 𝛼 [𝑅 + 𝛾 max𝑎 𝑄 (𝑆 ′, 𝑎)];
𝑆 ← 𝑆 ′;

end foreach
end foreach

Literature on formal reward shaping: Prior literature has

shown that the optimal policy learnt by RL remains invariant under

reward shaping if the modification can be expressed as a potential

function [6]. While the concept is valuable, designing a potential

function for each problem could be a difficult task. While SIBRE

solves the same problem, the key differences from other well-known

reward shaping approaches are (details in [5]),
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Figure 1: Learning curves across (a) 10 runs on 6x6 DoorKey (b) 5 runs on Pong (c) Beta sensitivity on 6x6 DoorKey

• The reward modification is computationally light (simple

average) and can be used to improve the sample efficiency

of any RL algorithm.

• SIBRE converges in expectation to the same policy as the

original algorithm.

• We empirically observe faster convergence with lower vari-

ance on a variety of benchmark environments, with multiple

RL algorithms.

2 DESCRIPTION OF SIBRE & RESULTS
Consider an episodic Markov Decision Process (MDP) specified

by the tuple < S,A,R, 𝑃 > [11], where S is the state space, A
is the action space, R is the set of possible rewards, and 𝑃 is the

transition function. We assume the existence of a reinforcement

learning algorithm for learning the optimal mapping S → A. It

follows that the value of optimal reward depends on both the values

of the step and terminal rewards, as well as on the size of the grid.

In this paper, we retain the original step rewards 𝑅𝑘 for time step 𝑘

within the episode, but replace the terminal reward for episode 𝑡 by

a baseline-differenced value of the total return 𝐺𝑡 : S,A,S → IR:

𝑟𝑘,𝑡 (𝑠𝑘 , 𝑎𝑘 , 𝑠𝑘+1) =
{
𝐺𝑡 − 𝜌𝑡 , 𝑠𝑘+1 ∈ T
𝑅𝑘 , otherwise

(1)

where 𝑘 is the step within an episode, 𝑡 is the number of the episode,

T is the set of terminal states,𝐺𝑡 is the return for episode 𝑡 , and 𝜌𝑡
is the performance threshold at episode 𝑡 . Note that the return 𝐺𝑡

is based on the original reward structure of the MDP. If the original

step reward at 𝑘 is 𝑅𝑘 , then 𝐺𝑡 =
∑
𝑅𝑘 . The net effect of SIBRE

is to provide a positive terminal reward, if 𝐺𝑡 ≥ 𝜌𝑡 and negative

otherwise, which gives the notion of self-improvement. Also, we

assume that a number 𝑥 of episodes is run after every threshold

update, allowing the q-values to converge with respect to the latest

threshold value. Note that 𝑥 can be a different number from one

update to another. This assumption is necessary for proving that

this modification to the rewards does not affect convergence to

the optimal policy which we prove in [5]. Once the q-values have

converged, the threshold can be updated using the relation,

𝜌𝑡+1 =

{
𝜌𝑡 + 𝛽𝑡 (

∑𝑡
𝑦=𝑡−𝑥+1

𝐺𝑦

𝑥 − 𝜌𝑡 ) if updating q-values

𝜌𝑡 otherwise

,

where 𝛽𝑡 ∈ (0, 1) is the step size and is assumed externally defined

according to a fixed schedule. For all our experiments we used x=1

and a scheduled beta whereby we start with lower 𝛽 and gradually

increase the weight on the return, basically increasing the value of

𝛽 . The entire algorithm is described in Algorithm 1.

Results: The learning curves are shown in Fig. 1 (a) and (b) on

DoorKey and Pong. In both these cases, we can see how integration

of SIBRE can help in accelerating learning and thus faster conver-

gence. We also show the parameter sensitivity curves with respect

to the introduced parameter 𝛽 in Fig. 1 (c) where 𝛽-schedule starts

with 0.001 increased linearly to 0.1 after every 10% of total episodes.

As seen from the figure, SIBRE is robust to varying values of 𝛽 .

SIBRE learns the value of a threshold which it aims to beat

after each episode. We believe that once it has learnt the threshold

properly, we get optimal performance. When we use the same

model to learn on a bigger state-space with same reward structure,

the value of the threshold provides a high initial value to beat and

this helps in easy transfer of learning. Also, after the transfer, the

value of the threshold can also yield information about possible

negative transfer across environments. In Fig. 2 we do see such

improvement while transferring from 5x5 to 8x8 grid in Doorkey.
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Figure 2: Transfer learning from 5x5 to 8x8 grid in DoorKey

Experiments on a variety of other domains, further hyper-parameter

analysis and extension to continuing MDPs along with the exact

hyper-parameters for reproduction of such results are presented in

[5].

Key Takeaways: In this work, we showed that an adaptive, self-
improvement basedmodification to the terminal reward (SIBRE) has

empirically better performance, both qualitative and quantitative,

than the original RL algorithms on a variety of environments. We

were able to prove,analytically, that SIBRE converges to the same

policy in expectation,as the original algorithms.
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