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ABSTRACT
We address the problem of multiagent credit assignment in a large
scale multiagent system. Difference rewards (DRs) are an effective
tool to tackle this problem, but their exact computation is known
to be challenging even for small number of agents. We propose a
scalable method to compute difference rewards based on aggregate
information in a multiagent system with large number of agents by
exploiting the symmetry present in several practical applications.
Empirical evaluation on twomultiagent domains—air-traffic control
and cooperative navigation, shows better solution quality than
previous approaches.
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1 INTRODUCTION
In many real world applications, large group of agents interact
with each other to achieve a common goal. For example, aircraft
coordination in busy air space is required to ensure certain mini-
mum separation among aircrafts [4], in maritime traffic manage-
ment [11, 12], the common goal is to reduce congestion for safety
of navigation problems. Such problems can be modeled as a cooper-
ative multiagent reinforcement learning (MARL) problem. Specific
to cooperative multiagent system with shared rewards is the critical
problem of multiagent credit assignment [1, 3, 5]. In a cooperative
setting, all agents receive the same global reward based on their
joint action, as a result, the individual contribution of each agent
(and its specific actions) to the global reward is unclear. In a cooper-
ative multiagent systems, difference rewards (DRs) [2, 6, 14] are an
effective tool to tackle the multiagent credit assignment problem.
It quantifies the contribution of an agent to the system reward,
computed as the difference between the system reward and a coun-
terfactual value of the system reward when the particular agent’s
impact is removed from the system. The counterfactual value can
be computed by replacing the agent’s state-action with a default
state-action. Although difference rewards effectively address the
credit assignment problem, the computation of counterfactual term
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is very challenging because it requires access to reward function or
performing additional simulations, which in model-free RL is not
available to agents or computationally expensive.

In many large scale multiagent systems, an agent’s behavior
is mainly influenced by the aggregate information about neigh-
boring agents rather than identity of agents. Such features can be
observed in several applications. For example, in air traffic control
and maritime traffic control, most of the agents can be considered
as homogeneous (or belonging to a small number of types) [11].
Our proposed approach precisely exploits such symmetries present
in large multiagent systems.

We address the problem of multiagent credit assignment in a
scalable multiagent system. We exploit the property that for homo-
geneous agents, agent dynamics is primarily based on the aggregate
information of the agent population (such as count of agents that
are in the same state and take same actions), and develop new loss
functions to train the reward function approximator in such settings.
Using the learned reward function approximator, we develop a prin-
cipled method that can efficiently approximate different rewards
without requiring any extra simulation, or domain expertise.

2 APPROXIMATE DIFFERENCE REWARDS
We first show how to learn a function approximator for the system
reward based only on reward signals from the simulator and by
exploiting the aggregate nature of interaction among agents. We
then develop techniques to approximate difference rewards from
such a reward approximator.
Learning System Reward Approximator: In many application
domains, the global reward is decomposable. For example, in the air
traffic domain, if two aircrafts are closer than a threshold distance,
then penalty is given to each aircraft [4]. For such settings, we
assume the global reward is decomposed into local reward received
by each agent which depends on agent’s local state and action, as
well as the aggregate statistic of the agent population. Since agents
are homogeneous, we can aggregate the reward over all the agents
in a particular state-action (s,a) as:

r
(
nSAt

)
=

∑
s∈S

∑
a∈A

nt (s, a) · r̃ (s, a, nSt ) (1)

Where nt (s,a) is number of agents in state s and taking action
a at time t . nSt = ⟨nt (s )⟩∀s and nSAt = ⟨nt (s,a)⟩∀s,∀a denote the
state and state-action count tables respectively. We can learn a
reward function approximator rw using samples ξ ∈ B collected
during simulation, and trained with the loss function:

L̃ (w) = M
∑
ξ ∈B

∑
s∈S

∑
a∈A

nξ (s, a) ·
(
r̃ (s, a, nSξ ) − rw (s, a, n

S
ξ )

)2
(2)
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(a) Varying arrival rate
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(b) Varying agent population
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(c) Varying number of sectors
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(d) Real world instances
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(e) Cooperative Navigation

Figure 1

Computing Difference Rewards: For our homogeneous agent
setting, using the state-action count table, nSAt , derived from the
joint state-action pair (st ,at ), we can write difference rewards as:

Dm (smt , amt ) = rw
(
nSAt

)
− rw

(
n
SA−(smt ,amt )+(ds ,da )
t

)
(3)

where, nSA−(s
m
t ,amt )+(ds ,da )

t is like a counterfactual state-action
count table obtained by replacing the current state and action
(smt ,a

m
t ) of agentm with a default state and action (ds ,da ). There

can be many agents in the same state taking same action, and thus
sharing the same DR value. Direct evaluation of above expression
is computationally expensive. Therefore, we propose a gradient
based method to compute the DR.

Dt (s, a) ≈
1
M
·
*.
,

∂rw
(
ñSAt

)
∂ñSAt (s, a)

−
∂rw

(
ñSAt

)
∂ñSAt (ds , da )

+/
-

(4)

WhereM is total agent population size. Once difference rewards
are computed, it can be easily integrated in any policy gradient
based method. The resulting approach computes returns Rt using
the learned difference rewards (rather than empirical rewards from
the simulator). This results in a model-based RL where difference
rewards provide a counterfactual value highlighting an agent’s
contribution to the team’s reward.

3 EXPERIMENTS
We evaluate our proposed approach on both synthetic and real
world instances of air-traffic control problem, and in a continuous
state cooperative navigation problem.
Air traffic control (ATC):We follow similar settings used in [4]
where only aircraft speed is controlled, not the altitude. We use fol-
lowing baselines — a domain specific approaches AT-BASELINE [4],
MCAC [10] and MTMF (multitype mean field RL) [13], which are
designed specifically for homogenous agents population.
Synthetic instance experiments: Figure (1a) shows result for
experiments with 50 aircraft agents, 20 sector map, and with vary-
ing arrival rate. Arrival rate essentially denote traffic intensity,
lower arrival rate has highest traffic intensity. We observe the ex-
pected trend of total conflicts decreasing with increasing arrival
rate. We also observe the performance gap of DIFF-RW with other
approaches decrease with increasing arrival rate. At arrival rate =
0.1, due to high frequency of aircraft arrivals, most of the baseline
approaches suffer from high conflicts. This setting require tighter
coordination among aircrafts, which is better achieved by DIFF-RW

Figure (1b) shows result for setting with 20 sector map, fixed
arrival rate = 0.1, and with varying aircraft population. In this

setting, we observe the empirical evidence of DIFF-RW performing
better with higher agent population. At lower population setting,
almost all approach perform equally well with marginal differences.
But for large population setting, other baselines suffer due to lack
of efficient credit assignment.

We also tested with increasing number of sectors. Figure (1c)
shows results with fixed arrival rate = 0.1 and aircraft population
as 50. We observe that AT-BASELINE suffers most among other
approaches. This is because in difficult instances, parameter sharing
based method lacks coordination among agent without explicit
credit assignment, even though it is scalable. Similar to previous
results, DIFF-RW performed best for different map sizes.
Real data experiments: We evaluate our approach on air space
surrounding one of the busiest airport Heathrow, London. The
data for 30 days is obtained from Fliдhtradar24 1. We use 20 days
data for training and 10 days for testing. We use bluesky air-traffic
simulator [7] to simulate, and learn the policy from training data.
We then evaluate the learned policy on 10 separate testing days.
Figure (1d) shows result of our approach compared against baselines
(MCACwas slightly worse than MTMF , to avoid clutter, its bars are
omitted). We observe in most of the days all approaches perform
equal or better than DATA (which is the replay of the historical
dataset). DIFF-RW is able to achieve much better solution quality
than other baselines.
Cooperative navigation domain:We also evaluate our approach
on cooperative multiagent navigation [9]. The state space in this
environment is continuous, therefore we use tile coding based
technique for discretization. For this domain we use following
baselines—MADDPG [9], MAAC [8], and mean field multiagent
RL (MF) [15]. Figure (1e) shows results with varying agent popula-
tion; y-axis denotes mean episode reward. For small agent popula-
tion n=3, MADDPG and MAAC perform better than MF , DIFF-RW.
This is because our approximation ofDR for small number of agents
may not be accurate. However, with increasing agent population,
solution quality of MADDPG and MAAC drops, and DIFF-RW and
MF improves. This trend is an empirical evidence of the accuracy
of our DR method with increasing agent population.
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