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ABSTRACT
Efficient communication is a promising way to achieve cooperation
among agents in many real-world scenarios. However, aimless and
motiveless information sharing may not work or even degrade the
cooperative performance. Typically, the multi-agent communica-
tion behaviors are motivated by extrinsic rewards from environ-
ment. We conclude the mechanism as ’Communicate what rewards
you’. In this work, we present a novel communication mechanism
called Intrinsic Motivated Multi-Agent Communication (IMMAC).
Our key insight can be summarized as ’Communicate what surprises
you’. Concretely, we use an observation-dependent intrinsic value
to represent the importance of observed information. Then a gating
mechanism and an attentional mechanism based on intrinsic values
are designed to control communication. By encouraging agent to
communicate and focus on the observations with uncertain and
important information, our algorithm achieves superior communi-
cation efficiency and cooperative performance.We evaluate IMMAC
on a variety of challenging tasks, and demonstrate that intrinsic
values are sufficient to drive efficient communication behaviors.
Moreover, we found that the combination of intrinsic values and
extrinsic values can further improve the communication efficiency.
Consequently, intrinsic motivation is a promising way to control
communication and it is capable of being a good complement to
the existing extrinsic motivated communication methods.
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1 INTRODUCTION
Essentially speaking, the purpose of communication is to improve
the accuracy of decision-making by sharing the observed infor-
mation. Consequently, how to extract information from local ob-
servations is the first challenge toward achieving efficient com-
munication. However, there may exist useless information which
can not aid in decisions or even degrade the cooperative perfor-
mance. To this end, how to evaluate the importance of observed
information is the second challenge in the literature of multi-agent
communication. Typically, the existing communication protocols
[7, 8, 11, 12, 14, 17, 19, 25, 29, 32, 33, 35] are trained or motivated by
the extrinsic rewards from environment. To this end, themechanism
of existing works can be concluded as ’Communicate what rewards
you’. Concretely, it means that the observations and information
which can help agents get more extrinsic return are more valuable
to communicate. In this work, we propose a novel mechanism for
communication. We utilize the agent’s intrinsic uncertainty and cu-
riosity about local observations to model the significance of shared
information. We hold the view that the information generated by
uncertain observations is also promising for communication and
the observations with higher curiosity are deserved more attention.
Our key insight can be concluded as ’Communicate what surprises
you’. It is worth remarking that the proposed intrinsic motivated
communication is straightforward to combine with the existing ex-
trinsic motivated communication. Furthermore, IMMAC should be
regarded as a complement rather than an alternative to the existing
algorithms without considering intrinsic values for communication.

2 METHOD
The purpose of communication is to overcome the difficulty of
partial observability by information sharing. We hold the view that
the information generated by novel and uncertain observations
are more promising to communicate and deserved more attention
than information extracted from familiar observations. Hence, the
messagemt

i in our framework consists of two elements:

mt
i = [

inf ormation︷︸︸︷
hti , vti︸︷︷︸

impor tance

] (1)
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Figure 1: The learning curves of test win rates in SMAC scenarios. The shaded area represents 95% confidence intervals.

where hti is the embeddings of local observations, we use it to
represent the content of information; vti is the output of intrinsic
value network, it represents the intrinsic importance of the shared
information. Concretely, the intrinsic importance aremodeled based
on Random Network Distillation [4].

During execution, aдenti firstly encodes the observed informa-
tion and measures the communicated values from local observa-
tions. Then the messagemt

i is passed through the gating mecha-
nism which is designed to cut off unnecessary communication. In
other words, the gating mechanism is required to decide whether to
communicate based on current observations. Concretely, our frame-
work can combine with any value-based gating mechanism, such as
setting a threshold or designing more sophisticated rules. For con-
venience, we apply a simple heuristic based onvti in this work. Each
agent will share the observed information to others when the intrin-
sic importance is larger than a threshold δ . The gating mechanism
endows agents with ability to decide when to communicate. The
ability can help agents avoid unnecessary communication, reduce
communication overhead and improve communication efficiency. It
is especially promising in some real-world scenarios where the com-
municated resources (e.g. communication bandwidth and medium)
are limited.

Then agents would send the messages to an attentional commu-
nication channel. The channel can be regarded as a shared com-
munication medium which is responsible for integrating incoming
messages then returning aggregated message to all agents. Con-
cretely, the communication channel would leverage the intrinsic
importance to compute an attention vectors for incoming messages.

(α t1 , ...,α
t
n ) = so f tmax (vt1 , ...,v

t
n ) (2)

The attention weights would be high when the information is
uncertain and important. Then the contents of shared information
are aggregated using the intrinsic attention vectors:

cti =
k∑
i=1

α ti h
t
i (3)

Obviously, the attentional information integration which allows
agents to differentiate various messages is more sophisticated than
the averaging combination. It endows agents with the ability to
focus on information which can aid in their decisions. In addition,
we adopt the paradigm of broadcast in this work (i.e. ct1 = c

t
2 = ... =

ctn ). At last, the integrated message cti is combined with aдenti ’s
local observation otj then fed into policy network.

ati = πj (o
t
i , c

t
i ) (4)

3 EXPERIMENT
In thiw work, we use Qmix [23] without communication and Qmix
with Tarmac[7] (i.e. Qmix improved by extrinsic motivated com-
munication) as baselines. Then, we evaluate the proposed intrinsic
value based attention mechanism on the six challenging scenar-
ios from SMAC [24]. The detailed results are illustrated in Figure
1. Furthermore, we leave the more comprehensive evaluation of
IMMAC including the performance of intrinsic motivated gating
mechanism in the future work.

At first, we find that Qmix without considering communication
presents a struggling performance in these scenarios. Especially in
the four super hard tasks, Qmix almost fails to learn in 3 of them.
On the other hand, the algorithms which take communication into
account outperform Qmix by a large margin in almost all scenarios,
except for 2c_vs_64zд which ally consists of only two units. The
allied component may weaken the requirements of communication
and result in the relatively smaller improvement. But the overall
improvements in the other five scenarios are sufficient to demon-
strate the effectiveness of communication. The shared information
can significantly improve the quality of decision-making. Further,
we surprisingly find that the intrinsic motivated communication
can achieve comparable performance with extrinsic motivated com-
munication. Concretely, IMMAC outperforms Tarmac by a con-
siderable margin in 3s5z_vs_3s6z and MMM2, fails to match the
performance in corridor and performs comparably in the other
scenarios (i.e. 5m_vs_6m, 6h_vs_8z, 2c_vs_64zд). In addition, the
performances of Immac is better than Qmix without communica-
tion in all 6 scenarios. Overall, the results indicate that the intrinsic
values can motivate efficient communication behaviors without
considering any task-specific extrinsic signals. At last, we find that
although there is a obvious difference in the performance of Tar-
mac and Immac, the combination of them almost achieve the best
performance in all scenarios. It further demonstrates that intrin-
sic motivated communication is a good complement to extrinsic
motivated communication. In other words, the intrinsic motivation
and extrinsic motivation are different angles for evaluating the
values of observations, but they are complementary. It is similar
to the different senses of human beings which are corporate and
complementary. The effective combination of them can largely aid
in understanding the dynamic environment.
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