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ABSTRACT

In this work, we propose a framework that enables a human to
teach a robot a new task by interactively providing it with unla-
beled instructions. We ground the meaning of instruction signals in
the task-learning process, and use them simultaneously for guiding
the latter. We implement our framework as a modular architec-
ture, named TICS (Task-Instruction-Contingency-Shaping) that
combines different information sources: a predefined reward func-
tion, human evaluative feedback and unlabeled instructions. This
approach provides a novel perspective for robotic task learning
that lies between Reinforcement Learning and Supervised Learning
paradigms. We evaluate our framework both in simulation and with
areal robot. The experimental results demonstrate the effectiveness
of our framework in accelerating the task-learning process and in
reducing the number of required teaching signals.
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1 INTRODUCTION

Two complementary approaches are usually considered for task
learning in Robotics: autonomous learning [1] and interactive learn-
ing [2]. While the main advantage of autonomous learning is the
autonomy of the learning process, this approach suffers from sev-
eral limitations when applied to real-world problems, such as slow
convergence and unsafe exploration [1]. By contrast, interactive
learning methods overcome these limitations, but come at the cost
of human burden during the teaching process, and the cost of pre-
determining the meaning of teaching signals [3].

In this work [4], we propose a novel framework for robotic task
learning that combines the benefits of both autonomous and interac-
tive learning approaches. First, we consider reinforcement learning
with a predefined reward function for ensuring the autonomy of
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the learning process. Second, we consider two types of human-
provided teaching signals, evaluative feedback and instructions, for
accelerating the learning process. Moreover, we relax the constraint
of predetermining the meaning of instruction signals by making
the robot incrementally interpret their meaning during the learning
process. Our main contribution is to show that instructions can
effectively accelerate task learning, even without predetermining
their meaning.

We consider interactively provided instruction signals (e.g. point-
ing to the left/to the right) that indicate to the robot which action
it has to perform in a given situation (e.g. turn left/turn right). Our
main idea is to use instruction signals as a means for transferring the
information about the optimal action between several task states:
all states associated with the same instruction signal collectively
contribute to interpreting the meaning of that signal; and in turn,
an interpreted signal contributes to learning the optimal action in
all task states to which it is associated. This scheme serves as a
bootstrapping mechanism that reduces the complexity of the learn-
ing process; and constitutes a novel perspective for robotic task
learning that lies between Reinforcement Learning and Supervised
Learning paradigms. Under this scheme, unlabeled instructions are
interpreted by reinforcement learning, and used for labeling task
states by supervised learning.

2 THE TICS ARCHITECTURE

We implement our framework as a modular architecture, named
TICS (Task-Instruction-Contingency-Shaping), which combines dif-
ferent information sources: a predefined reward function, human
evaluative feedback and unlabeled instructions. The general ar-
chitecture is based on four components: a Task Model (TM), an
Instruction Model (IM), a Contingency Model (CM) and a Shaping
Component (SC) (Fig. 1).

The Task Model is responsible for learning the task from re-
wards and/or evaluative feedback, while the Instruction Model is
responsible for interpreting instructions. The Contingency Model
links task states within TM to instruction signals within IM, by
determining which signal has been observed in each state. The role
of this model is to minimize the number of interactions with the
teacher by recalling the previously provided instructions, and also
to make the mapping between states and instructions signals more
robust to errors. Finally, the Shaping Component is responsible for
combining the outputs of TM and IM for decision-making.
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Figure 1: The TICS architecture includes four main compo-
nents: a Task Model learns the task, a Contingency Model
associates task states with instruction signals, an Instruc-
tion Model interprets instructions, and a Shaping Compo-
nent combines the outputs of the Task Model and the In-
struction Model for decision-making.

3 RESULTS IN SIMULATION

We first evaluate our framework in simulation on two different
problems: object sorting [5] and maze navigation. Simulations allow
us to systematically evaluate the performance of our system under
different hypotheses about the teaching conditions, and to test
its limits under worst case scenarios. For instance, we evaluate
the robustness of our framework against various levels of sparse
and erroneous teaching signals. The experimental results of our
simulations can be summarized as follows:

Ideal case: When teaching signals are correct and not sparse, our
framework improves the convergence rate with respect to learning
without unlabeled instructions.

Sparse instructions: When learning from evaluative feedback,
our framework is robust against all levels of instruction sparsity,
and improves the convergence rate with respect to not using unla-
beled instructions. However, when learning from a reward function,
the existence of multiple possible interpretations can prevent the
learning process from converging. This only happens in domains
with multiple optimal policies and when instructions are below a
certain level of sparsity. When the reward function is combined
with evaluative feedback, our framework becomes robust against
all levels of instruction sparsity, as feedback enables the teacher to
rectify misinterpreted instructions.

Erroneous instructions: Our framework is robust against er-
roneous instructions and improves the convergence rate, if the
probability of receiving erroneous instructions is lower than 0.3.

Sparse feedback: When learning only from evaluative feedback,
our framework improves the convergence rate and the robustness
of the learning process against feedback sparsity. However, it is
still limited to a certain level of sparsity. With a reward function,
the learning process becomes robust against all levels of feedback
sparsity.

Erroneous feedback: Our framework is robust against erro-
neous feedback and improves the convergence rate, if the probabil-
ity of receiving erroneous feedback is lower than 0.5.

Interaction load: In the ideal case, our framework reduces the
number of evaluative feedback and the total number of required
teaching signals.
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Figure 2: Number of instructions (blue) and negative feed-
back (red) over time. FB: using feedback only. FB+RU: using
feedback plus unlabeled instructions.

4 EXPERIMENT WITH A REAL ROBOT

We also evaluate our framework with a real robot and a real human
teacher on the object sorting task!. We assess the performance
of the TICS architecture when using unlabeled instructions with
respect to only using evaluative feedback. In order to assess the
scalability of our framework to different task complexities, we
contrast two experimental conditions by varying the complexity of
the state-space representation.

Figure 2 reports the evolution of the number of provided instruc-
tions and negative feedback over time for each condition. In the
small state space condition, the baseline model converges after 36
minutes, while our model converges within 17 minutes. In the large
state space condition, the baseline model does not completely con-
verge after an hour of training, while our model converges within
24 minutes.

These results are consistent with those obtained in simulation
and with the results reported by [5]. They show that our model
reduces considerably the number of steps and training time. We
also find that our model achieves better performance with less
interactions. The robot also explores fewer states and spends less
time in each of them, which reflects a more efficient exploration
strategy.

5 CONCLUSION

This work presents a novel framework for teaching a robot a new
task with unlabeled human instructions. The key idea is to reduce
the complexity of a task-learning process through unlabeled in-
struction signals. These signals are interpreted by the robot, and
used simultaneously for accelerating the task-learning process.
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