














linear", as implied by Theorem 3. Based on this result, we further

leverage the techniques from random walk to prove that, for every

block, after a delay of 𝑂 (𝑠 log 𝑠) units of time, all blocks will be its

descendant (Theorem 4), consequently, if we set ℓ = Θ(𝑠 log 𝑠) in
our design, every block will be verified by all users, and security

follows.

As we mentioned before, each new block will refer to two leaves

in 𝐿𝑡 . As every block offers the same total amount of verification

reward, every leaf appears the same to the miners (unless they are

in conflict with previous blocks and then miners will be biased

based on the LWD rule). Therefore, a new block will randomly

select two leaves to refer to. Assuming leaves are not conflicting

with previous blocks, we show that |𝐿𝑡 | will be 𝑂 (𝑠) in the long

run with an extremely high probability. First, it is easy to see that

if |𝐿𝑡 | ≤ 𝑠 , then 𝐿𝑡+1 ≥ 𝑠 as the 𝑠 new blocks will be leaves at 𝑡 + 1.
The following lemma shows that if |𝐿𝑡 | is sufficiently large, then

with very high probability it will reduce to 𝑂 (𝑠) after enough time.

Lemma 5. Let 𝜖 be an arbitary small constant. If |𝐿𝑡 | ≥ 1/𝜖3 and
|𝐿𝑡 | ≥ 4𝑠 , then with sufficiently high probability (at least 1 −𝑂 (𝜖)),
|𝐿𝑡+1 | = |𝐿𝑡 | − 𝑋 + 𝑠 ≤ |𝐿𝑡 | − (1−3𝜖)𝑠

2
, i.e., 𝐿𝑡 decreases by at least

Ω(𝑠).

See Chen et al. [6] for the full proof of Lemma 5.

The above lemma shows that if |𝐿𝑡 | is large, then with high

probability |𝐿𝑡 | shall decrease, however, what we are interested in

is the probability that |𝐿𝑡 | ≤ 𝑂 (𝑠) for all 𝑡 ≥ 0. Towards this, we

need to cast the problem as a random walk. Lemma 5 shows that

with the probability of (1 −𝑂 (𝜖))3 = 1 −𝑂 (𝜖), |𝐿𝑡 | can decrease

by
3(1−3𝜖)𝑠

2
≥ 𝑠 , while with probability of at most 𝑂 (𝜖), |𝐿𝑡 | can

increase by at most 𝑠 . This can be interpreted as a random walk

which walks right (increase) by 𝑠 steps with the probability of

1 −𝑂 (𝜖), and walks left (decrease) by 𝑠 steps with the probability

of𝑂 (𝜖). The following lemma is proved for a general random walk.

Lemma 6 ([8], pp.272). Consider a random walk starting at 𝑅𝑊0 =

0, Pr(𝑅𝑊𝑖+1 − 𝑅𝑊𝑖 = 𝑠) = 𝑝 , Pr(𝑅𝑊𝑖+1 − 𝑅𝑊𝑖 = −𝑠) = 𝑞 where
𝑝 + 𝑞 = 1 and 𝑠 ∈ Z>0. If 𝑝 > 𝑞, then

lim

𝑛→∞
Pr(𝑅𝑊𝑖 ≥ 0, ∀1 ≤ 𝑖 ≤ 𝑛) = 𝑝 − 𝑞

𝑝
.

If 𝑝 < 𝑞, the above limit is 0.

Now we are ready to prove the following theorem.

Theorem 3. Let 𝜖 be a small constant such that 𝑠 > 1/𝜖3. With
very high probability (at least 1 −𝑂 (𝜖)), |𝐿𝑡 | ≤ 5𝑠 for all 𝑡 ≥ 0.

Proof. Recall that |𝐿0 | = 0. Let 𝑡∗ be the smallest time where

|𝐿𝑡∗ | ≥ 4𝑠 , then |𝐿𝑡∗ | ≤ 5𝑠 . Now we take 𝑡∗ as a starting time, |𝐿𝑡∗ |
as a starting point and take the random walk interpretation. Using

Lemma 6, we have that

lim

𝑛→∞
Pr( |𝐿𝑡 | ≤ |𝐿𝑡∗ |,∀1 ≤ 𝑡 ≤ 𝑛) ≤ 1 −𝑂 (𝜖) −𝑂 (𝜖)

1 −𝑂 (𝜖)
= 1 −𝑂 (𝜖).

Therefore, the probability that |𝐿𝑡 | is bounded by 5𝑠 for all 𝑡 ≥ 0 is

at least 1 −𝑂 (𝜖). □

Lemma 7. Let 𝜖 be a small constant such that 𝑠 > 1/𝜖3. For any
transaction at 𝑡 that is not in conflict with prior transactions, with

sufficiently high probability (at least 1 −𝑂 (𝜖)) every block appended
at or after 𝑡 +𝑂 (𝑠 log 𝑠) will be its descendant.

Proof. According to Theorem 3, we focus on the event that

|𝐿𝑡 | ≤ 5𝑠 for all 𝑡 ≥ 0, which happens with 1 −𝑂 (𝜖) probability.
For ℎ ≥ 𝑡 , let Ψℎ be the subset of blocks in 𝐿ℎ which has a

directed path from some fixed block 𝜏0 ∈ 𝐿𝑡 , which is a random

subset. Let 𝜓ℎ = E( |Ψℎ |). Consider 𝐿ℎ+1. For any block 𝜏𝑖 ∈ 𝐿ℎ+1,
let 𝑋𝑖 be a binary random variable indicating whether 𝜏𝑖 refers to

some block in Ψℎ , and hence admits a directed path from 𝜏0. Then

we know

Pr(𝑋𝑖 = 1) =

( |Ψℎ |
2

)
+ |Ψℎ | ( |𝐿ℎ | − |Ψℎ |)( |𝐿ℎ |

2

)
=
|Ψℎ | (2|𝐿ℎ | − |Ψℎ | − 1)
|𝐿ℎ | ( |𝐿ℎ | − 1)

.

We consider |Ψℎ+1 |. It is obvious that if |Ψℎ | = |𝐿ℎ |, then every

block in 𝐿ℎ+1 refers to some block in Ψℎ and thus admits a directed

path from 𝜏0, hence, |𝐿ℎ+1 | = |Ψℎ+1 |, and similarly we have |𝐿ℎ+𝑗 | =
|Ψℎ+𝑗 | for all 𝑗 ≥ 1. Otherwise, we assume 1 ≤ |Ψℎ | ≤ |𝐿ℎ | − 1.

Then 2|𝐿ℎ | − |Ψℎ | − 1 ≥ |𝐿ℎ |, and we have

E(𝑋𝑖 ) = E
(
|Ψℎ | (2|𝐿ℎ | − |Ψℎ | − 1)
|𝐿ℎ | ( |𝐿ℎ | − 1)

)
≥ 𝜓ℎ

|𝐿ℎ | − 1
.

Note that |Ψℎ+1 | =
∑
𝑖 𝑋𝑖 . It is easy to calculate that

𝜓ℎ+1 = E( |Ψℎ+1 |) ≥ 𝜓ℎ
(
1 + 1

|𝐿ℎ | − 1

)
.

This means, starting from 𝜓𝑡 = 1, for each 𝜓ℎ where ℎ ≥ 𝑡 ,

either 𝜓ℎ = |𝐿ℎ | and thus 𝜓ℎ′ = |𝐿ℎ′ | for all ℎ′ ≥ ℎ, or 𝜓ℎ+1 ≥(
1 + 1

|𝐿ℎ |−1

)
𝜓ℎ . Since |𝐿ℎ | ≤ 5𝑠 , 𝜓ℎ increases sufficiently close to

|𝐿ℎ | ≤ 5𝑠 when ℎ ≥ 𝑡 +𝑂 (𝑠 log 𝑠), and the theorem is proved. □

Given the above lemma, if we set ℓ , the verification depth to

be ℓ ≥ 𝑂 (𝑠 log 𝑠), then any transaction at 𝑡 will be verified by all

the users after 𝑂 (𝑠 log 𝑠) units of time with high probability. The

following theorem is thus true.

Theorem 4. If 𝑠 > 1/𝜖3 and ℓ ≥ 𝑂 (𝑠 log 𝑠), then with probability
of at least 1 −𝑂 (𝜖), any transaction at 𝑡 will be verified by all the
users after 𝑂 (𝑠 log 𝑠) units of time.

Remark. Recall that the scalability of the system increases as Δ in-

creases, while 𝑠 = min{𝑐1𝑚/Δ, 𝑐2𝑛}, and hence the finality-duration
𝑂 (𝑠 log 𝑠) decreases as Δ increases. Theorem 4 shows trade-off be-

tween the scalability and finality-duration.

6 CONCLUSION
We provide the first systematic analysis on blockchain systems

with respect to three major parameters, verification, scalability, and

finality-duration. We establish an impossibility result showing no

blockchain system can simultaneously achieve the three properties.

We complement the existing blockchain systems by establishing

the first NLB that achieves both full verification and scalability. We

also reveal, for the first time, the trade-off between scalability and

finality-duration in NLB. It is not clear whether a better trade-off

exists or not.
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