
Log-time Prediction Markets for Interval Securities
Miroslav Dudík

∗

Microsoft Research, New York, NY

mdudik@microsoft.com

Xintong Wang
∗

University of Michigan, Ann Arbor, MI

xintongw@umich.edu

David M. Pennock

Rutgers University, New Brunswick, NJ

dpennock@dimacs.rutgers.edu

David M. Rothschild

Microsoft Research, New York, NY

davidmr@microsoft.com

ABSTRACT
We design a prediction market to recover a complete and fully gen-

eral probability distribution over a random variable. Traders buy

and sell interval securities that pay $1 if the outcome falls into an

interval and $0 otherwise. Our market takes the form of a central

automated market maker and allows traders to express interval

endpoints of arbitrary precision. We present two designs in both

of which market operations take time logarithmic in the number

of intervals (that traders distinguish), providing the first computa-

tionally efficient market for a continuous variable. Our first design

replicates the popular logarithmic market scoring rule (LMSR), but

operates exponentially faster than a standard LMSR by exploiting

its modularity properties to construct a balanced binary tree and

decompose computations along the tree nodes. The second design

consists of two or more parallel LMSR market makers that mediate

submarkets of increasingly fine-grained outcome partitions. This

design remains computationally efficient for all operations, includ-

ing arbitrage removal across submarkets. It adds two additional

benefits for the market designer: (1) the ability to express utility for

information at various resolutions by assigning different liquidity

values, and (2) the ability to guarantee a true constant bounded loss

by appropriately decreasing the liquidity in each submarket.

KEYWORDS
prediction market; automated market maker; expressive betting

ACM Reference Format:
Miroslav Dudík

∗
, Xintong Wang

∗
, David M. Pennock, and David M. Roth-

schild. 2021. Log-time Prediction Markets for Interval Securities. In Proc.
of the 20th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2021), Online, May 3–7, 2021, IFAAMAS, 9 pages.

1 INTRODUCTION
Consider a one-dimensional random variable, such as the opening

value of the S&P 500 index on December 17, 2021. We design a

market for trading interval securities corresponding to predictions

that the outcome will fall into some specified interval, say between

2957.60 and 3804.59, implemented as binary contracts that pay out

$1 if the outcome falls in the interval and $0 otherwise. We are

interested in designing automated market makers to facilitate a fully
expressive market computationally efficiently. Traders can select

∗
Authors contribute equally.

Proc. of the 20th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2021), U. Endriss, A. Nowé, F. Dignum, A. Lomuscio (eds.), May 3–7, 2021, Online.
© 2021 International Foundation for Autonomous Agents and Multiagent Systems

(www.ifaamas.org). All rights reserved.

custom interval endpoints of arbitrary precision corresponding to a

continuous outcome space, whereas the market maker will always

offer to buy or sell any interval security at some price.

A form of interval security called the condor spread is common

in financial options markets, with significant volume of trade. Each

condor spread involves trading four different options,
1
and financial

options offered by the market may only support a limited subset of

approximate intervals. As of this writing, S&P 500 options expiring

on December 17, 2021, distinguish 56 strike prices, allowing the

purchase of around 1500 distinct intervals of minimum width 25.

Moreover, as each strike price trades independently despite the

logical constraints on their relative values, it will require time linear

in the number of offered strike prices to remove arbitrage.

Outside traditional financial markets, the logarithmic market
scoring rule (LMSR) market maker [15, 16] has been used to elicit

information through the trade of interval securities. The Gates Hill-

man Prediction Market at Carnegie Mellon University operated

LMSR on 365 outcomes, representing 365 days of one year, to fore-

cast the opening time of the new computer science building [21].

Traders could bet on different intervals by choosing a start and an

end date. A similar market
2
was later launched at the University of

Texas at Austin, using a liquidity-sensitive variation of LMSR [20].

Moreover, LMSR has been deployed to predict product-sales lev-

els [23], instructor ratings [4], and political events [14].

LMSR has two limitations that prevent its scaling to markets

with a continuous outcome space. First, LMSR’s worst-case loss

can grow unbounded if traders select intervals with prior proba-

bility approaching zero [12]. Second, standard implementations of

LMSR operations run in time linear in the number of outcomes or

distinct future values traders define—in our case, arbitrarily many.

The constant-log-utility and other barrier-function-based market

makers [8, 22] achieve constant bounded loss, but still suffer the

second limitation regarding computational intractability. Thus, pre-

vious markets allow only a relatively small set of predetermined

intervals and run in time linear in the number of supported out-

comes, limiting the ability to aggregate high-precision trades and

elicit the full distribution of a continuous random variable.

In this paper, we propose two automated market makers that

perform exponentially faster than the standard LMSR and previous

designs. Market operations (i.e., price, cost, and buy) can be exe-

cuted in time logarithmic in the number of distinct intervals traded,

1
A call option written on an underlying stock with strike price K and expiration dateT
paysmax{S −K, 0}, where S is the opening price of the stock on dateT . For example,

25 shares of “$1 iff [2650,2775]” ≈ max{S −2650, 0}−max{S −2675, 0}−max{S −
2750, 0} +max{S − 2775, 0}.
2
www.cs.utexas.edu/news/2012/research-corner-gates-building-prediction-market

Main Track AAMAS 2021, May 3-7, 2021, Online

465

www.cs.utexas.edu/news/2012/research-corner-gates-building-prediction-market

or linear in the number of bits describing the outcome space. Our

first market maker calculates LMSR exactly, but employs a balanced

binary tree to implement interval queries and trades. We show that

the normalization constant of LMSR—a key quantity in its price and

cost function—can be calculated recursively via local computations

on the balanced tree. Our work here contributes to the rich litera-

ture that aims to overcome the worst-case #P-hardness of LMSR

pricing [5] by exploiting the outcome space structure and limiting

expressivity [6, 7, 13, 18, 24].

Our second market maker works by maintaining parallel LMSR

submarkets that adopt different liquidity parameters and offer inter-

val securities at various resolutions. We show that liquidity param-

eters can be chosen to guarantee a constant bounded loss indepen-

dent of market precision and prices can be kept coherent efficiently

by removing arbitrages across submarkets.We demonstrate through

agent-based simulation that our second design enjoys more flexible

liquidity choices to facilitate the information-gathering objective:

it can get close to the “best of both worlds” displayed by coarse and

fine LMSR markets, with prices converging fast at both resolutions

regardless of the traders’ information structure.

The two proposed designs, to our knowledge, are the first to si-

multaneously achieve expressiveness and computational efficiency.

As both market makers facilitate trading intervals at arbitrary pre-

cision, they can elicit any probability distribution over a continuous

random variable that can be practically encoded by a machine. We

use the S&P 500 index value as a running example, but our frame-

work is generic and can handle any one-dimensional continuous

variable, for example, the landfall point of a hurricane along a coast-

line or the number of tickets sold in the first week of a movie release.

2 FORMAL SETTING
We first review cost-function-based market making [1, 8], and then

introduce interval markets.

2.1 Cost-Function-Based Market Making
Let Ω denote a finite set of outcomes, corresponding to mutually

exclusive and exhaustive states of the world. We are interested in

eliciting expectations of binary random variables ϕi : Ω → {0, 1},
indexed by i ∈ I, which model the occurrence of various events,

such as “S&P 500 will open between 2957.60 and 3804.59 on December
17, 2021”. Each variable ϕi is associated with a security that pays out

ϕi (ω) when the outcome ω ∈ Ω occurs, and thus ϕi is also called

the payoff function. Binary securities pay out $1 if the specified

event occurs and $0 otherwise. The vector (ϕi)i ∈I is denoted ϕ.

Traders trade bundles δ ∈ R |I | of security with a central market

maker, where positive entries in δ correspond to purchases and

negative entries to short sales. A trader holding a bundle δ receives

a payoff of δ · ϕ(ω), when ω occurs.

Following [1] and [8], we assume that the market maker deter-

mines security prices using a convex and differentiable potential

function C : R |I | → R, called a cost function. The state of the mar-

ket is specified by a vector θ ∈ R |I | , listing the number of shares of

each security sold by the market maker so far. A trader who wants

to buy a bundle δ in the market state θ must pay C(θ + δ) −C(θ)
to the market maker, after which the new state becomes θ + δ .

The vector of instantaneous prices in the corresponding state

θ is p(θ) B ∇C(θ). Its entries can be interpreted as the market’s

collective estimates of E[ϕi]: a trader can make an expected profit

by buying (at least a small amount of) the security i if she believes
that E[ϕi] is larger than the instantaneous price pi (θ) = ∂C(θ)/∂θi ,
and by selling if she believes the opposite. Therefore, risk neutral

traders with sufficient budgets maximize their expected profits

by moving the price vector to match their expectation of ϕ. Any
expected payoff must lie in the convex hull of the set {ϕ(ω)}ω ∈Ω ,
which we denoteM and call a coherent price space with its elements

referred to as coherent price vectors.
We assume that the cost function satisfies two standard prop-

erties: no arbitrage and bounded loss. The no-arbitrage property

requires that as long as all outcomes ω are possible, there be no

market transaction with a guaranteed profit for a trader. In this

paper, we use the fact that C is arbitrage-free if and only if it yields

price vectors p(θ) that are always coherent [1]. The bounded-loss
property is defined in terms of the worst-case loss of a market

maker, supθ ∈R|I | supω ∈Ω
[
θ · ϕ(ω) − C(θ) + C(0)

]
, meaning the

largest difference, across all possible trading sequences and out-

comes, between the amount that the market maker has to pay the

traders (once the outcome is realized) and the amount that the mar-

ket maker has collected (when securities were traded). The property

requires that this worst-case loss be a priori bounded by a constant.

2.2 Complete Markets and LMSR
In a complete market, we have I = Ω. Securities are indicators
of individual outcomes, ϕi (ω) = 1{ω = i}, where 1{·} denotes the
binary indicator. We denote each market security as ϕω . A risk-

neutral trader is incentivized to move the price of each security ϕω
to her estimate of E[ϕω] = P[ω], which is her subjective probability

of ω occurring. Thus, traders can express arbitrary probability dis-

tributions over Ω. We consider variants of LMSR market maker [15]

for a complete market, described by cost function and prices

C(θ) = b log

(∑
ω ∈Ω

eθω /b

)
, pω (θ) =

∂C(θ)

∂θω
=

eθω /b∑
ν ∈Ω eθν /b

, (1)

where b is the liquidity parameter, controlling how fast the price

moves in response to trading and limiting the worst-case loss of

the market maker to b log |Ω | [15].
The securities in a complete market can be used to express bets

on any event E. Specifically, one share of a security for the event E
can be represented by the indicator bundle 1E ∈ RΩ with entries

1E,ω = 1{ω ∈ E}. We refer to this bundle as the bundle security for
event E. The immediate price of the bundle 1E in the state θ is

pE (θ) B 1E · p(θ) =
∑
ω ∈E

pω (θ) =

∑
ω ∈E e

θω /b∑
ν ∈Ω eθν /b

. (2)

The cost of buying the bundle s1E , or sometimes referred to as “the

cost of s shares of 1E ”, can be written as a function of pE (θ) and s:

C(θ + s1E) −C(θ) (3)

= b log

(∑
ω<E

eθω /b +
∑
ω ∈E

e(θω+s)/b

)
− b log

(∑
ω ∈Ω

eθω /b

)
= b log

(
pEc (θ) + e

s/bpE (θ)
)
= b log

(
1 − pE (θ) + e

s/bpE (θ)
)
.

Main Track AAMAS 2021, May 3-7, 2021, Online

466

Above, we write Ec for the complementary event Ec = Ω\E, and
use the fact pE (θ) + pEc (θ) = 1, which follows from Eq. (2).

2.3 Interval Securities over [0, 1)
We consider betting on outcomes within an interval [0, 1). Our

approach generalizes to outcomes that are in any [α , β) ⊆ [−∞,∞)
by applying any increasing transformation F : [α , β) → [0, 1). We

assume that the outcome ω is specified with K bits, meaning that

there are N = 2
K
outcomes with Ω = {j/N : j ∈ {0, 1, . . . ,N − 1}}.

At the end of Sections 3 and 4, we discuss how the assumption of

pre-specified bit precision can be removed.

Example 1 (Complete market for S&P 500). We construct a
complete market for the S&P 500 opening price on December 17, 2021,
by setting N = 2

19 = 524,288. The resulting complete market is
I = {0, 0.01, . . . , 5242.86, 5242.87}, where we cap prices at $5242.87
(i.e., larger prices are treated as $5242.87). The transformed outcome
is then ω = ω ′/N , where ω ′ is the S&P 500 price in cents.

In the outcome space Ω, we would like to enable price and cost

queries as well as buying and selling of bundle securities for the
interval events I = [α , β) for any α , β ∈ Ω∪{1}. For cost-based mar-

kets, sell transactions are equivalent to buying a negative amount

of shares, so we design algorithms for three operations: price(I),
cost(I , s), and buy(I , s), where I is the interval event and s the num-

ber of shares. A naive implementation of price and cost following
Eqs. (2) and (3) would be linear in N . In this paper, we propose to

implement these operations in time that is logarithmic in N .

3 A LOG-TIME LMSR MARKET MAKER
We design a data structure, referred to as an LMSR tree, which re-

sembles an interval tree [9, Section 15.3], but includes additional

annotations to support LMSR calculations. We first define the LMSR

tree, and show that it can facilitate market operations in time loga-

rithmic in the number of distinct intervals that traders define.

3.1 An LMSR Tree for [0, 1)
We represent an LMSR tree T with a full binary tree, where each
node z has either no children (when z is a leaf) or exactly two

children, denoted left(z) and right(z) (when z is an inner node). The

root is denoted root and the parent of any non-root node par(z).

Definition 1 (LMSR Tree). An LMSR tree is a full binary tree,
where each node z is annotated with an interval Iz = [αz , βz) with
αz , βz ∈ Ω ∪ {1}, a height hz ≥ 0, a quantity sz ∈ R that records
the number of sold bundle securities associated with Iz , and a partial
normalization constant Sz ≥ 0 (defined below in Eq. 6).

An LMSR tree is required to satisfy:
• Binary-search property: Iroot = [0, 1), and for inner node z,

αz = αleft(z) < βleft(z) = αright(z) < βright(z) = βz .

• Height balance: hz = 0 for leaves, and for inner node z,

hz = 1 +max{hleft(z),hright(z)}, |hleft(z) − hright(z) | ≤ 1.

• Partial-normalization correctness: Sz = esz/b · (βz −αz) for leaves,
and for inner node z,

Sz = esz/b ·
(
Sleft(z) + Sright(z)

)
.

The binary-search property helps to find the unique leaf that

contains any ω ∈ Ω by descending from root and choosing left or

right in each node based on whether ω < βleft(z) or ω ≥ βleft(z).
The height-balance property ensures that the path length from root

to any leaf is at most O(logn), where n is the number of leaves of

the tree [17]. We adopt an AVL tree [3] at the basis of our LMSR

tree, but other balanced binary-search trees (e.g., red-black trees or

splay trees) could also be used.

To facilitate LMSR computations, we maintain a scalar quantity

sz ∈ R for each node z, which records the number of bundle secu-
rities associated with Iz sold by the market maker. Therefore, the

market state and its components for each individual outcome ω
represented by the LMSR tree T are

3

θ (T) =
∑
z∈T

sz1Iz ; θω (T) =
∑
z∈T

sz1Iz,ω =
∑
z∋ω

sz . (4)

The normalization constant in the LMSR price (Eq. 2) is then∑
ω ∈Ω

eθω /b =
∑
ω ∈Ω

e
∑
z∋ω sz/b =

∑
ω ∈Ω

∏
z∋ω

esz/b . (5)

We decompose the computation of the above normalization con-

stant along the nodes of an LMSR tree, by defining a partial nor-
malization constant Sz in each node:

Sz B
1

N

∑
ω ∈z

∏
z′: z⊇z′∋ω

esz′/b . (6)

Thus, we have

∑
ω ∈Ω eθω /b = NSroot and obtain the following

recursive relationship, which we refer to as partial-normalization
correctness and is at the core of implementing price and buy:

Sz =

{
esz/b · (βz − αz) if z is a leaf,

esz/b ·
(
Sleft(z) + Sright(z)

)
otherwise.

(7)

Based on the LMSR tree construction, we implement the follow-

ing operations for any interval I = [α , β):

• price(I ,T) returns the price of bundle security for I ;
• cost(I , s,T) returns the cost of s shares of bundle security for I ;
• buy(I , s,T) updatesT to reflect the purchase of s shares of bundle
security for I .

For cost, it suffices to implement price and use Eq. (3). Since the

price of [α , β) satisfies p[α,β)(θ) = p[α,1)(θ)−p[β,1)(θ), it suffices to

implement price for intervals of the form [α , 1). Similarly, buying

s shares of [α , β) is equivalent to first buying s shares of [α , 1) and
then buying (−s) shares of [β, 1), as the market ends up in the

same state θ + s1[α,β). We implement price and buy for one-sided

intervals I = [α , 1), and the remaining operations will follow.

3.2 Price Queries
We consider price queries for I = [α , 1). Let vals(T) = {αz : z ∈ T }
denote the set of distinct left endpoints in the tree nodes. We start

by assuming that α ∈ vals(T), and later relax this assumption. We

proceed to calculate pI (θ) in two steps. First, we construct a set of
nodesZ whose associated intervals Iz are disjoint and cover I . To
achieve this, we conduct a binary search for α , putting inZ all of

the right children of the visited nodes that have αz > α , as well

3
We write ω ∈ z to mean ω ∈ Iz and z′ ⊆ z to mean Iz′ ⊆ Iz . Thus, z′ ⊆ z means

that z′ is a descendant of z in T , and z′ ⊂ z means that z′ is a strict descendant of z .

Main Track AAMAS 2021, May 3-7, 2021, Online

467

Algorithm 1 Query price of bundle security for an interval I = [α, 1).

Input: Interval I = [α, 1), α ∈ Ω, LMSR tree T .
Output: Price of bundle security for I .

1: Initialize z ← root, P ← 1, price← 0

2: while αz , α and z is not a leaf do
3: P ← Pesz /b

4: if α < αright(z) then
5: price← price + PSright(z)/Sroot
6: z ← left(z)
7: else
8: z ← right(z)
9: return price + βz−α

βz−αz
· PSz/Sroot

as the final node with αz = α . Thanks to the height balance, the

cardinality ofZ is O(logn), where n is the number of leaves of T .
The resulting setZ satisfies pI (θ) =

∑
z∈Z pIz (θ).

Second, we determine pIz (θ) for each node z ∈ Z. Starting from

the LMSR price in Eq. (2), we take advantage of the defined partial

normalization constants Sz to calculate pIz (θ):

pIz (θ) =
1

NSroot

∑
ω ∈z

eθω /b =
1

Sroot
·
1

N

∑
ω ∈z

∏
z′∋ω

esz′/b (8)

=
1

Sroot
·
1

N

∑
ω ∈z

[(∏
z′: z⊇z′∋ω

esz′/b

) (∏
z′⊃z

esz′/b

)]
(9)

=
Sz
Sroot

(∏
z′⊃z

esz′/b

)
︸ ︷︷ ︸

Pz

. (10)

In Eq. (8), we use that NSroot =
∑
ω ∈Ω eθω /b and then expand θω

using Eq. (4). In Eq. (9), we use the fact that any node z′ with a non-

empty intersection with z (i.e., Iz ∩ Iz′ , ∅) must be either a descen-

dant or an ancestor of z as a direct consequence of the binary-search
property. The product Pz in Eq. (10) iterates over z

′
on the path from

root to z, and thus can be calculated along the binary-search path.

We now handle the case when α < vals(T). After the leaf z on the
search path is reached, we have αz < α < βz . Instead of expanding

the tree, we conceptually create two children of z: z′ and z′′ with
Iz′ = [αz ,α) and Iz′′ = [α , βz), and add z

′′
inZ. Sinceθω is constant

across ω ∈ Iz , we obtain pIz′′ (θ) =
βz−α
βz−αz

· pIz (θ) by Eq. (2).

Summarizing the foregoing procedures yields Algorithm 1, which

simultaneously constructs the setZ and calculates the pricespIz (θ).
Since it suffices to go down a single path and only perform constant-

time computation in each node, the resulting algorithm runs in time

O(lognvals), where nvals denotes the number of distinct values ap-

peared as endpoints of intervals in all the executed transactions.

We defer complete proofs from this paper to the appendix, which

is available in the full version of this paper on arXiv.

Theorem 1. Algorithm 1 implements price in time O(lognvals).

3.3 Buy Transactions
We next implement buy([α , 1), s,T) while maintaining the LMSR

tree properties. The main challenge here is to simultaneously main-

tain partial-normalization correctness and height balance. We address

this by adapting AVL-tree rebalancing.

Algorithm 2 Buy s shares of bundle security for an interval I = [α, 1).

Input: Quantity s ∈ R, interval I = [α, 1), α ∈ Ω, LMSR tree T .
Output: Tree T updated to reflect the purchase of s shares of 1I .

1: Define subroutines:

NewLeaf(α0, β0): return a new leaf node z with

Iz = [α0, β0), hz = 0, sz = 0, Sz = (β0 − α0)
ResetInnerNode(z): reset hz and Sz based on the children of z

hz ← 1+max{hleft(z), hright(z) }, Sz ← esz /b (Sleft(z)+Sright(z))
AddShares(z, s): increase the number of shares held in z by s

sz ← sz + s , Sz ← es/bSz

2: Initialize z ← root
3: while αz , α and z is not a leaf do ▷ add s shares to z ∈ Z
4: if α < αright(z) then
5: AddShares(right(z), s)
6: z ← left(z)
7: else
8: z ← right(z)
9: if αz < α then ▷ split the leaf z
10: left(z) ← NewLeaf(αz, α), right(z) ← NewLeaf(α, βz)
11: z ← right(z)
12: AddShares(z, s)
13: while z is not a root do ▷ trace the binary-search path back

14: z ← par(z)
15: if |hleft(z) − hright(z) | ≥ 2 then ▷ restore height balance

16: Rotate z and possibly one of its children

(details in Appendix A.2, Algorithm 5)

17: ResetInnerNode(z) ▷ update hz and Sz

We begin by considering the case α ∈ vals(T). Similar to price

queries, we conduct binary search for α to obtain the set of nodes

Z that covers I = [α , 1). We update the values of sz across z ∈ Z
by adding s , and obtain T ′ that has the same structure as T with

the updated share quantities

s ′z =

{
sz + s if z ∈ Z

sz otherwise.

Thus, the resulting market state is

θ (T ′) =
∑
z∈T ′

s ′z1Iz =
∑
z∈T

sz1Iz +
∑
z∈Z

s1Iz = θ (T) + s1I .

We then rely on the recursive relationship defined in Eq. (7) to

update the partial normalization constants Sz . It suffices to update

the ancestors of the nodes z ∈ Z, all of which lie along the search

path to α , and each update requires constant time.

When α < vals(T), we split the leaf z that contains α ∈ [αz , βz)
before adding shares to right(z). This may violate the height-balance
property. Similar to the AVL insertion algorithm [17, Section 6.2.3],

we fix any imbalance by means of rotations, as we go back along the
search path. Rotations are operations that modify small portions

of the tree, and at most two rotations are needed to rebalance the

tree [3]. We show in Appendix A.2, Lemma 1, that in each rotation,

only a constant number of nodes needs to be updated to preserve

the partial-normalization correctness. Thus, the overall running time

of the buy operation, presented in Algorithm 2, is O(lognvals).

Theorem 2. Algorithm 2 implements buy in time O(lognvals).

Main Track AAMAS 2021, May 3-7, 2021, Online

468

Remarks. We show that price, cost and buy can be implemented

in time O(lognvals), which is bounded above by the log of the

number of buy transactions O(lognbuy) and the bit precision of the

outcome O(logN) = O(K).4 We note that none of the operations

require the knowledge of K , so the market in fact supports queries

with arbitrary precision. However, the market precision affects the

worst-case loss bound for the market maker, which is O(logN) =
O(K). Next section presents a different construction that achieves

a constant worst-case loss independent of the market precision.

4 A MULTI-RESOLUTION LINEARLY
CONSTRAINED MARKET MAKER

We introduce our second design, referred to as the multi-resolution
linearly constrained market maker (multi-resolution LCMM). The

design is based on the LMSR, but it enablesmore flexibility by assign-

ing two or more parallel LMSRs with different liquidity parameters

to orchestrate submarkets that offer interval securities at different

resolutions. However, running submarkets independently can cre-

ate arbitrage opportunities, as any interval expressible in a coarser

market can also be expressed in a finer one. To maintain coherent

prices, we design a matrix that imposes linear constraints to tie mar-

ket prices among different submarkets to support the efficient re-

moval of any arbitrage opportunity, following Dudík et al. [10]. We

first define the multi-resolution LCMM and its properties, and show

that price, cost and buy can be implemented in time O(logN).

4.1 A Multi-resolution LCMM for [0, 1)
4.1.1 A Multi-resolution Market. A binary search tree remains at

the core of our multi-resolution market construction. Unlike a log-

time LMSR that uses a self-balancing tree, it builds upon a static one,
where each level of the tree represents a submarket of intervals,

forming a finer and finer partition of [0, 1). We start with an example

of a market that offers interval securities at two resolutions.

Example 2 (Two-level market for [0, 1)). We consider amarket
composed of two submarkets, indexed by I1 = {11, 12} and I2 =
{21, 22, 23, 24}, which partition [0, 1) into interval events at two levels
of coarseness:

I11 =
[
0, 1

2

)
, I12 =

[
1

2
, 1

)
;

I21 =
[
0, 1

4

)
, I22 =

[
1

4
, 1
2

)
, I23 =

[
1

2
, 3
4

)
, I24 =

[
3

4
, 1

)
.

The market provides six interval securities ϕ11, . . . ,ϕ24 associated
with the corresponding interval events, i.e., I = I1

⊎
I2 and |I | = 6.

We extend Example 2 to multiple resolutions. We represent the

initial independent submarkets with a complete binary tree T ∗ of
depth K , which corresponds to the bit precision of the outcome ω.
LetZ∗ denote the set of nodes of T ∗ andZk for k ∈ {0, 1, . . . ,K}
the set of nodes at each level.Z0 contains the root associated with

Iroot = [0, 1), and each consecutive level contains the children of

nodes from the previous level, which split their corresponding par-

ent intervals in half. Thus, level k partitions [0, 1) into 2
k
intervals

of size 2
−k

and the final levelZK contains N = 2
K
leaves.

We index interval securities by nodes, with their payoffs defined

by ϕz (ω) = 1{ω ∈ Iz }. We partition securities into submarkets

4
Clearly, nvals ≤ 2nbuy with each buy transaction introducing at most two new

endpoint values. The value of nvals is also bounded above by N + 1 since the interval
endpoints are always in Ω ∪ {1}.

corresponding to levels, i.e., Ik = Zk for k ≤ K , where |Ik | = 2
k

and I =
⊎
k≤K Ik . For each submarket, we define the LMSR cost

function Ck with a separate liquidity parameter bk > 0:

Ck (θk) = bk log
©­«

∑
z∈Zk

eθz/bk
ª®¬ . (11)

4.1.2 A Linearly Constrained Market Maker. Following the above

multi-resolution construction, the overall market has a direct-sum
cost C̃(θ) =

∑
k≤K Ck (θk), which corresponds to pricing securities

in each block Ik independently using Ck . However, as there are
logical dependencies between securities in different levels, indepen-

dent pricing may lead to incoherent prices among submarkets and

create arbitrage opportunities.

Example 3 (Arbitrage in a two-level market). Continuing
Example 2, we define separate LMSR costs, where b1 = 1 and b2 = 1:

C1(θ1) = log

(
eθ11+ eθ12

)
; C2(θ2) = log

(
eθ21+ eθ22+ eθ23+ eθ24

)
.

The direct-sum market C̃(θ) = C1(θ1) + C2(θ2) allows incoherent
prices. For example, after buying some shares of securityϕ21 associated
with I21 =

[
0, 1

4

)
in submarket I2, the market can have

p̃11(θ) = 0.5; p̃21(θ) + p̃22(θ) = 0.6.

These prices are incoherent, i.e., do not correspond to probabilities
of I11, I21, I22, because under any probability distribution over Ω,
we must have P[I11] = P[I21] + P[I22] and P[I12] = P[I23] + P[I24].
Thus, a coherent price vector µ ∈ R |I | must satisfy linear constraints
µ11− µ21− µ22 = 0 and µ12− µ23− µ24 = 0, which can be also written
as a⊤

1
µ = 0 and a⊤

2
µ = 0 where

a1 = (1, 0,−1,−1, 0, 0)⊤ and a2 = (0, 1, 0, 0,−1,−1)⊤.

We refer to A = (a1, a2) ∈ R |I |×2 as the constraint matrix.

We extend Example 3 to specify price constraints in a multi-

resolutionmarket. Later wewill show how the constraintmatrix can

be used to remove arbitrage arising from the constraint violations.

Recall that M denotes a coherent price space, where any ex-

pected payoff lies in the convex hull of {ϕ(ω)}ω ∈Ω . For the multi-

resolution market, we specify a set of homogeneous linear equalities
describing a superset ofM.

M ⊆ {µ ∈ R |I | : A⊤µ = 0}. (12)

We design the constraint matrix A to ensure that any pair of

submarkets is price coherent, meaning that any interval event I ⊆ Ω
gets the same price on all levels that can express it. Therefore, for

each inner node y ∈ Zl where l < K , we have

µy =
∑

z∈Zk : z⊂y

µz for any l < k ≤ K .

For algorithmic reasons (as we will see in Section 4.3), we further

tie the price of y to the prices of all of y’s descendants and weight

each level by its liquidity parameter bk :(∑
k>ℓ

bk

)
︸ ︷︷ ︸

Bℓ

µy =
∑
k>ℓ

(
bk

∑
z∈Zk : z⊂y

µz
)
. (13)

Now we can formally define the constraint matrix A. Let Y∗ =
Z∗\ZK be the set of inner nodes of T ∗ and let level(z) denote

Main Track AAMAS 2021, May 3-7, 2021, Online

469

the level of a node z. The matrix A ∈ R |Z
∗ |× |Y∗ |

contains the

constraints from Eq. (13) across all y ∈ Y∗:

Azy =


Blevel(z) if z = y,

−blevel(z) if z ⊂ y,

0 otherwise.

(14)

Arbitrage opportunities arise if the price of bundle aj differs
from zero, where aj denotes the jth column of A. Traders profit by
buying a positive quantity of aj if its price is negative, and selling

otherwise. Thus, the constraint matrixA gives a recipe for arbitrage

removal. We provide the intuition for this in the two-level market,

and then give the definition of the multi-resolution LCMM.

Example 4 (Arbitrage removal in a two-level market). Con-
tinuing Example 3, the prices p̃(θ) violate the constraint A⊤µ = 0,
because a⊤

1
p̃(θ) = p̃11(θ) − p̃21(θ) − p̃22(θ) = 0.5 − 0.6 , 0. The

vector a1 reveals an arbitrage opportunity: buy the security ϕ11 (at
the initial price 0.5) and simultaneously sell securities ϕ21 and ϕ22 (at
the initial price 0.6), i.e., buy bundle a1. Since under any outcome ω,
the payout for the bundle a1 is 0, this is initially profitable. However,
buying a1 will increase the price of ϕ11 and decrease the prices of ϕ21
and ϕ22. Once a sufficiently large quantity s of shares of a1 is bought,
this form of arbitrage is removed and we have a⊤

1
p̃(θ̃) = 0 in a new

state θ̃ = θ + sa1 = θ + Aη, where η := (s, 0)⊤.

A linearly constrained market maker (LCMM) [10] leverages

violated constraints similarly as in Example 4 to remove arbitrage,

and then returns the arbitrage proceeds to the trader. Formally, an

LCMM is described by the cost function

C(θ) = inf

η∈R|Y∗ |
C̃(θ + Aη). (15)

It relies on the direct-sum cost C̃ , but with each trader purchase δ
that causes incoherent prices, an LCMM automatically seeks the

most advantageous cost for the trader by buying bundles Aδ
arb

on the trader’s behalf to remove arbitrage. Trader purchases are
accumulated as the state θ , and automatic purchases made by the
LCMM are accumulated as Aη.

We note that the purchase of bundle Aδ
arb

has no effect on

the trader’s payoff, since (Aδ
arb
)⊤ϕ(ω) = 0 for all ω ∈ Ω thanks

to Eq. (12) and the fact that ϕ(ω) ∈ M. However, the purchase

of Aδ
arb

can lower the cost, so optimizing over δ
arb

benefits the

traders, while maintaining the same worst-case loss guarantee for

the market maker as C̃ [10]. Consider a fixed θ and the correspond-

ing η⋆ minimizing Eq. (15). We calculate prices as p(θ) = ∇C(θ) =
∇C̃(θ + Aη⋆). By the first order optimality, η⋆ minimizes Eq. (15)

if and only if A⊤
(
∇C̃(θ + Aη⋆)

)
= 0. This means that A⊤p(θ) = 0,

and thus arbitrage opportunities expressed by A are completely

removed by the LCMM cost function C .

To implement an LCMM, we maintain the state θ̃ = θ + Aη in

the direct-sum market C̃ . After updating θ to a new value θ ′ =
θ + δ , we seek to find η′ = η + δ

arb
that removes all the arbitrage

opportunities expressed by A. The resulting cost for the trader is

C̃(θ ′ + Aη′) − C̃(θ + Aη) = C̃(θ̃ + δ + Aδ
arb
) − C̃(θ̃).

We finish this section by pointing out two favorable properties

of the multi-resolution LCMM. Above, we have established that

LCMM removes all arbitrage opportunities expressed byA. The next

theorem shows that this actually removes all arbitrage. The proof

shows that consecutive levels are coherent, which by transitivity

implies that the overall price vector is coherent (see Appendix A.3).

Theorem 3. A multi-resolution LCMM is arbitrage-free.

The multi-resolution LCMM also enjoys the bounded-loss prop-
erty. For a suitable choice of liquidities, such as bk = O(1/k

2.01), it

can achieve a constant worst-case loss bound. The proof uses the
fact that the overall loss is bounded by the sum of losses of level

markets, which are at most bk log |Zk | = kbk log 2.

Theorem 4. Let {bk }∞k=1 be a sequence of positive numbers such
that

∑∞
k=1 kbk = B∗ for some finite B∗. Then the multi-resolution

LCMM with liquidity parameters bk for k ≤ K guarantees the worst-
case loss of the market maker of at most B∗ log 2, regardless of the
outcome precision K .

4.1.3 A Multi-resolution LCMM Tree. We can now formally de-

fine the multi-resolution LCMM tree. The market state of a multi-

resolution LCMM is represented by vectors θ ∈ R |Z
∗ |
and η ∈

R |Y
∗ |
, whose dimensions can be intractably large (e.g., on the order

of 2
K = N). However, since each LCMM operation involves only

a small set of coordinates of θ and η, we only keep track of the

coordinates accessed so far and represent them as an annotated

subtree T of T ∗, referred to as an LCMM tree.

Definition 2 (LCMM Tree). An LCMM tree T is a full binary
tree, where each node z is annotated with Iz = [αz , βz), θz ∈ R,
ηz ∈ R, such that Iroot = [0, 1), and for every inner node z:

αz = αleft(z), βleft(z) = αright(z) =
αz + βz

2

, βright(z) = βz .

The tree T contains the coordinates of θ and η accessed so far.

Since θ and η are initialized to zero, their remaining entries are

zero. We write θ (T) ∈ R |Z
∗ |
and η(T) ∈ R |Y

∗ |
for the vectors rep-

resented byT . To calculate prices, we maintain η(T) that minimizes

Eq. (15), or equivalently η(T) that satisfies A⊤p̃
(
θ (T)+Aη(T)

)
= 0.

If this property holds, we say that an LCMM tree T is coherent.

4.2 Price Queries
There aremanyways to decompose an interval I in amulti-resolution

market, but they all yield the same price thanks to coherence. The

no-arbitrage property also guarantees that the price of [α , β) can
be obtained by subtracting the price of [β, 1) from [α , 1). Therefore,
we focus on pricing one-sided intervals of the form I = [α , 1).

Let T be a coherent LCMM tree and θ B θ (T) and η B η(T) be

the vectors represented by T . Let θ̃ = θ + Aη be the corresponding

state in C̃ , so the current security prices are µ := p̃(θ̃). As before,
we identify a set of nodesZ that covers I , and then rely on price

coherence to calculate each µz along the search path.

Assume that z is not a root node and we know the price of its

parent. Let sib(z) denote the sibling of z and k = level(z). We can

then relate the price of z to the price of par(z):

µz =
µz

µpar(z)
· µpar(z) =

µz
µz + µsib(z)

· µpar(z) (16)

=
e
˜θz/bk

e
˜θz/bk + e

˜θsib(z)/bk
· µpar(z). (17)

Main Track AAMAS 2021, May 3-7, 2021, Online

470

Algorithm 3 Query price of bundle security for an interval I = [α, 1).

Input: Interval I = [α, 1), α ∈ Ω, coherent LCMM tree T .
Output: Price of bundle security for I .

1: Initialize z ← root, µz ← 1, price← 0

2: while αz , α and z is not a leaf do
3: zl ← left(z), zr ← right(z), k ← level(zl)
4: el ← exp{(θzl + Bkηzl)/bk }, er ← exp{(θzr + Bkηzr)/bk },

µzl ←
el

el +er
µz , µzr ←

er
el +er

µz ▷ calculate prices by Eq. (19)

5: if α < αright(z) then
6: z ← zl , price← price + µzr
7: else
8: z ← zr
9: return price + βz−α

βz−αz
· µz

Eq. (16) follows by price coherence and Eq. (17) follows by the price

calculation in Eq. (1). Thus, we descend the search path to calculate

each price µz , beginning with µroot = 1. It remains to obtain
˜θz , for

which we follow the construction of A in Eq. (14):

˜θz = θz +
∑
y∈Y∗

Azyηy = θz + Bkηz − bk
∑
y⊃z

ηy . (18)

Plugging the above equation back in Eq. (17), we obtain
5

µz =
exp

(
θz+Bkηz

bk

)
exp

(
θz+Bkηz

bk

)
+ exp

(
θsib(z)+Bkηsib(z)

bk

) · µpar(z). (19)

These steps yield Algorithm 3. The final line of the algorithm

addresses the case when the search ends in the leaf z with αz <
α < βz . Rather than expanding the tree to its lowest level K , we
use price coherence again: since any strict descendant z′ ⊂ z on
the path from z to a leaf node u ∈ ZK has θz′ = ηz′ = 0 by market

initialization, all leaf nodes have the same price. Therefore, the

price of [α , βz) equals
βz−α
βz−αz

· µz .

The length of search path for α is prec(α), which denotes the

bit precision of α , defined as the smallest integer k such that α is

an integer multiple of 2
−k

. As the computation at each node only

requires constant time, the time to price I = [α , 1) is O(prec(α)),
which is bounded above by O(K).

Theorem 5. Let I = [α , 1), α ∈ Ω. Algorithm 3 implements
price(I ,T) in time O(prec(α)).

4.3 Buy and Cost Operations
Different from LMSR, the cost query for a multi-resolution LCMM

cannot be directly derived from prices. We instead augment buy
to implement cost by executing buy and then reverting all the

changes. We focus on buy(I , s,T) for I = [α , 1). By buying s shares
of [α , 1) and then (−s) shares of [β , 1), we obtain buying [α , β).

We summarize the procedure in Algorithm 4, which performs

buy(I , s,T) and keeps track of cost(I , s,T). Similar to price queries,

we start with a set of nodesZ that partition I , by searching for α
and simultaneously calculating prices µz along the way (lines 3–6).

5
The factor exp{−

∑
y⊃z ηy } = exp{−

∑
y⊃sib(z) ηy } appears in both the numerator

and the denominator after plugging Eq. (18) to Eq. (17), so it cancels out.

Algorithm 4 Buy s shares of bundle security for an interval I = [α, 1).

Input: Quantity s ∈R, interval I = [α, 1), α ∈Ω, coherent LCMM tree T .
Output: Cost of s shares of bundle security for I , the updated tree T .

1: Define subroutines:

NewLeaf(α0, β0): return a new leaf node z with

Iz = [α0, β0), θz = 0, ηz = 0

RemoveArbitrage(y, µother): restore price coherence among

submarkets k ≥ level(y) following Eq. (20) and update cost

Let ℓ = level(y), y′ = sib(y), t = bℓ
Bℓ−1

log

(
1−µy
µy ·

µother
1−µother

)
S = µye tBℓ/bℓ + 1 − µy , Sother = µothere−t + 1 − µother
ηy ← ηy + t , µy ← µye tBℓ/bℓ /S , µy′ ← µy′/S
cost← cost + (bℓ log S) + (Bℓ log Sother)

AddShares(z, s): increase shares held in z by s , update cost, and
restore price coherence among submarkets k ≥ level(z)

Let ℓ = level(z), z′ = sib(z), µother = µz , S = µzes/bℓ + 1 − µz
θz ← θz + s
cost← cost + (bℓ log S)
µz ← µzes/bℓ /S , µz′ ← µz′/S
RemoveArbitrage(z, µother)

2: Initialize z ← root, µz ← 1, a global variable cost← 0

3: while αz , α do
4: if z is a leaf then
5: left(z) ← NewLeaf(αz, 1

2
(αz + βz)),

right(z) ← NewLeaf(
1

2
(αz + βz), βz)

6: Calculate µleft(z), µright(z), and update z according to α
(same as Algorithm 3 lines 3-8)

7: AddShares(z, s)
8: while z is not a root do ▷ remove arbitrage up the search path

9: z′ ← sib(z), y ← par(z)
10: if z′ = right(y) then
11: AddShares(z′, s) ▷ add shares to z ∈ Z
12: RemoveArbitrage(y , µz + µz′)
13: z ← y
14: return cost

We then proceed back up the search path, adding s shares to
nodes within the coverZ (lines 7–13). Consider one of such node

y ∈ Z at level ℓ B level(y). Increasing θy by s creates price inco-
herence between the submarket at level ℓ and submarkets at all

other levels. We design RemoveArbitrage to remove any arbitrage

opportunity between level ℓ and all finer levels with k > ℓ. We show

in Appendix A.6, Lemma 3, that in order to restore coherence, it

suffices to update ηy by a closed-form amount:

t =
bℓ
Bℓ−1

log

(
1 − µy

µy
·

µother
1 − µother

)
, (20)

where µother = µleft(y) + µright(y) records the price of y in all the

finer levels. This key algorithmic step is enabled by the arbitrage

bundle ay , which corresponds to buying ϕy on the level ℓ while

selling securities associated with all descendants of y, with their

shares appropriately weighted by the respective liquidity values as

specified in the constraint matrix A.
The market remains incoherent between ℓ and all coarser levels

k < ℓ. Since the updates have been localized to the subtree rooted

at y, we use Lemma 3 again to update ηpar(y) and restore coherence

Main Track AAMAS 2021, May 3-7, 2021, Online

471

among all levels k ≥ ℓ − 1 (line 12). We continue in this manner

back along the path to root to restore a coherent market.

The algorithm also tracks the total cost of the buy transaction by

evaluating Eq. (3) in the component submarkets. Note that costs in

all submarkets with k > ℓ can be evaluated simultaneously thanks

to the restored coherence. Since the computations in each accessed

node are constant time, Algorithm 4 runs in time O(prec(α)).

Theorem 6. Let I = [α , 1), α ∈ Ω. Algorithm 4 implements a
simultaneous buy(I , s,T) and cost(I , s,T) in time O(prec(α)).

Remarks. In Algorithms 3 and 4, we assume that each node z
can store a scalar µz , which can be modified during the run to

support price calculations but is disposed afterwards. The only

part of our algorithms that depends on K are the cumulative liq-

uidities Bℓ =
∑K
k=ℓ+1 bk . To remove such dependence, we can use

B′
ℓ
=

∑∞
k=ℓ+1 bk = B∗ −

∑ℓ
k=1 bk , where B

∗ =
∑∞
k=1 bk . This has

no impact on the correctness of our algorithms: if at a given time

the largest level in the tree T is L, we can simply view T as a multi-

resolution LCMM with K = L + 1 and liquidities b1,b2, . . . ,bL ,B
′
L .

The last level K = L + 1 then corresponds to infinitely many mutu-

ally coherent markets {Ck }
∞
k=L+1. Thus, a multi-resolution LCMM

can achieve a constant loss bound regardless of K and support

market operations for I = [α , β) in time O(prec(α) + prec(β)).

5 DISCUSSION AND ILLUSTRATION
We have proposed two cost-function-based market makers that sup-

port trading interval securities of arbitrary precision and execute

market operations exponentially faster than previous designs. In

what situations is one preferable over the other?

The log-time LMSR enjoys better storage and runtime efficiency,

because search paths in LMSR tree are shorter thanks to its height-

balance property. The log-time LMSR would therefore be com-

putationally preferable, for example, when the designer expects

betting interest to be concentrated on a smaller set of intervals.

However, the log-time LMSR implements a standard LMSR, which

faces well-known design challenges, such as the requirement to

set a suitable liquidity value and the precision of bets in advance.

Correctly setting these parameters often requires a good estimate

of trader interest even before trading in the market starts.

On the other hand, the multi-resolution LCMM does not require

a hard specification of the betting precision. Flexible pricing al-

lows the designer to attenuate liquidity across different precisions

in a way that best reflects the designer’s information-gathering

priorities. For example, an LMSR that operates at precision k = 4

with liquidity b can be represented by an LCMM with the level

liquidity values b = (0, 0, 0,b, 0, 0, . . .). Moreover, if the market

designer expects most of the information at precision 4 but also

wants to support bets up to precision 8, they could run an LCMM

with the liquidity placed at two levels as b = (0, 0, 0,b4, 0, 0, 0,b8).
By choosing different values b4 and b8, the market designer can

express utility for information at different precision levels.

We empirically highlight such flexibility by showing how LCMM

can interpolate between LMSRs at different resolutions, allowing

the market to match the coarseness of traders’ information. We

0 200 400 600 800 1000
Num of trades

0.00

0.05

0.10

0.15

0.20

Pr
ice

 c
on

ve
rg

en
ce

 e
rro

r

LMSRk= 4
LMSRk= 8
LCMM50/50

(a) k = 4.

0 200 400 600 800 1000
Num of trades

0.00

0.05

0.10

0.15

0.20

Pr
ice

 c
on

ve
rg

en
ce

 e
rro

r

LMSRk= 4
LMSRk= 8
LCMM50/50

(b) k = 8.

Figure 1: The price convergence error as a function of the
number of trades, measured at two resolution levels.

conduct agent-based simulation using the trader model with expo-

nential utility and exponential-family beliefs [2, 11].
6
We defer the

detailed trader model to Appendix B.1. Agents trade with either an

LMSR or a multi-resolution LCMM, and we are interested in evaluat-

ing market makers’ performance in terms of price convergence error,
calculated as the relative entropy between themarket-clearing price
(that is the price reached when agents only trade among themselves)

and the price maintained by the market maker.

We operate in a market over [0, 1) and the outcome is specified

withK = 10 bits.We consider budget-limitedmarket makers, whose

worst-case loss may not exceed a budget constraint B. For LMSR

at precision k , this means setting the liquidity parameter to b =

B/log(2k). Following our motivating example, we compare two

LMSR markets at precision levels 4 and 8, denoted as LMSRk=4 and
LMSRk=8, to an LCMM that evenly splits budget to precision levels

4 and 8, denoted as LCMM
50/50.

7

Fig. 1 shows the price convergence as a function of the number

of trades. As one may expect, LMSRk=4 achieves a faster price con-
vergence at the coarser precision level k = 4 compared to LMSRk=8
(Fig. 1a), but fails to elicit information at any finer granularity by

design.
8
The proposed LCMM

50/50, by equally splitting the budget

between k = 4 and k = 8, is able to interpolate between the per-

formance of LMSRk=4 and LMSRk=8 and achieves the “best of both

worlds”: it can elicit forecasts at the finer level k = 8 similarly to

LMSRk=8, but also obtain a fast convergence at the coarser level

k = 4, almost matching the convergence speed of LMSRk=4.
Two immediate questions arise from our work. First, do our

constructions generalize to two- or higher-dimensional outcomes?

One promising avenue is to combine the ideas from our log-time

LMSR market maker with multi-dimensional segment trees [19]

to obtain an efficient multi-dimensional LMSR based on a static

tree. However, it is not clear how to generalize our balanced LMSR

tree construction or the multi-resolution LCMM. Second, does our

approach extend to non-interval securities, such as call options?

We leave these questions open for future research.

6
We note that while our market makers support agents with any beliefs and utilities,

the exponential trader model is convenient, as it allows a closed-form derivation

of market-clearing price [2, 11], which can be viewed as a “ground truth” for the

information elicitation.

7
The LCMM has an infinite number of choices for its liquidity at each level. We choose

LCMM
50/50 as an instance here to showcase its interpolation ability.

8
In Fig. 1b, to facilitate comparisons, we assume that LMSRk=4 splits the price of a

coarse interval evenly into prices of finer intervals.

Main Track AAMAS 2021, May 3-7, 2021, Online

472

REFERENCES
[1] Jacob Abernethy, Yiling Chen, and Jennifer Wortman Vaughan. 2011. An

optimization-based framework for automated market-making. In Proceedings of
the 12th ACM Conference on Electronic Commerce.

[2] Jacob Abernethy, Sindhu Kutty, Sébastien Lahaie, and Rahul Sami. 2014. Informa-

tion aggregation in exponential family markets. In Proceedings of the 15th ACM
Conference on Economics and Computation. 395–412.

[3] G. M. Adel
′
son-Vel

′
skiı̆ and E. M. Landis. 1962. An algorithm for the organization

of information. Soviet Mathematics—Doklady 3 (1962), 1259–1263.

[4] Mithun Chakraborty, Sanmay Das, Allen Lavoie, Malik Magdon-Ismail, and

Yonatan Naamad. 2013. Instructor rating markets. In Proceedings of the 27th AAAI
Conference on Artificial Intelligence. 159–165.

[5] Yiling Chen, Lance Fortnow, Nicolas Lambert, David M. Pennock, and Jen-

nifer Wortman Vaughan. 2008. Complexity of combinatorial market makers.

In Proceedings of the 9th ACM Conference on Electronic Commerce.
[6] Yiling Chen, Lance Fortnow, Evdokia Nikolova, and David M. Pennock. 2007.

Betting on permutations. In Proceedings of the 8th ACM Conference on Electronic
Commerce. 326–335.

[7] Yiling Chen, Sharad Goel, and David M. Pennock. 2008. Pricing combinatorial

markets for tournaments. In Proceedings of the 40th Annual ACM Symposium on
Theory of Computing. 305–314.

[8] Yiling Chen and David M. Pennock. 2007. A utility framework for bounded-loss

market makers. In Proceedings of the 23rd Conference on Uncertainty in Artificial
Intelligence.

[9] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. 1999. Introduction
to Algorithms. The MIT Press.

[10] Miroslav Dudík, Sébastien Lahaie, and David M. Pennock. 2012. A tractable

combinatorial market maker using constraint generation. In Proceedings of the
13th ACM Conference on Electronic Commerce.

[11] Miroslav Dudík, Sébastien Lahaie, Ryan M Rogers, and Jennifer Wort-

man Vaughan. 2017. A decomposition of forecast error in prediction markets. In

Advances in Neural Information Processing Systems. 4371–4380.
[12] Xi Gao, Yiling Chen, and David M. Pennock. 2009. Betting on the real line. In

Proceedings of the 5th Workshop on Internet and Network Economics.

[13] Mingyu Guo and David M. Pennock. 2009. Combinatorial prediction markets for

event hierarchies. In Proceedings of the 8th International Conference on Autonomous
Agents and Multiagent Systems. 201–208.

[14] Robin D. Hanson. 1999. Decision markets. IEEE Intelligent Systems 14, 3 (1999),
16–19.

[15] Robin D. Hanson. 2003. Combinatorial information market design. Information
Systems Frontiers 5, 1 (2003), 107–119.

[16] Robin D. Hanson. 2007. Logarithmic market scoring rules for modular com-

binatorial information aggregation. Journal of Prediction Markets 1, 1 (2007),

1–15.

[17] Donald E. Knuth. 1998. The Art of Computer Programming, Volume 3: Sorting and
Searching. Addison Wesley.

[18] Kathryn Blackmond Laskey, Wei Sun, Robin D. Hanson, Charles Twardy, Shou

Matsumoto, and Brandon Goldfedder. 2018. Graphical model market maker for

combinatorial prediction markets. Journal of Artificial Intelligence Research 63

(2018), 421–460.

[19] Pushkar Mishra. 2016. On Updating and Querying Sub-arrays of Multidimen-

sional Arrays. CoRR abs/1311.6093 (2016).

[20] Abraham Othman, David M. Pennock, Daniel M. Reeves, and Tuomas Sandholm.

2013. A practical liquidity-sensitive automated market maker. ACM Transactions
on Economics and Computation 1, 3 (2013), 14:1–14:25.

[21] Abraham Othman and Tuomas Sandholm. 2010. Automated market-making in

the large: The Gates Hillman Prediction Market. In Proceedings of the 11th ACM
Conference on Electronic Commerce. 367–376.

[22] Abraham Othman and Tuomas Sandholm. 2012. Automated market makers

that enable new settings: Extending constant-utility cost functions. In Auctions,
Market Mechanisms, and Their Applications. 19–30.

[23] Charles R. Plott and Kay-Yut Chen. 2002. Information aggregation mechanisms:

Concept, design and implementation for a sales forecasting problem. (2002).

Working paper No. 1131, California Institute of Technology.

[24] Lirong Xia and David M. Pennock. 2011. An efficient Monte-Carlo algorithm for

pricing combinatorial prediction markets for tournaments. In Proceedings of the
22nd International Joint Conference on Artificial Intelligence. 452–457.

Main Track AAMAS 2021, May 3-7, 2021, Online

473

	Abstract
	1 Introduction
	2 Formal Setting
	2.1 Cost-Function-Based Market Making
	2.2 Complete Markets and LMSR
	2.3 Interval Securities over [0,1)

	3 A Log-time LMSR Market Maker
	3.1 An LMSR Tree for [0, 1)
	3.2 Price Queries
	3.3 Buy Transactions

	4 A Multi-resolution Linearly Constrained Market Maker
	4.1 A Multi-resolution LCMM for [0,1)
	4.2 Price Queries
	4.3 Buy and Cost Operations

	5 Discussion and Illustration
	References

