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ABSTRACT
Self-imitation learning is a Reinforcement Learning (RL) method
that encourages actions whose returns were higher than expected,
which helps in hard exploration and sparse reward problems. It
was shown to improve the performance of on-policy actor-critic
methods in several discrete control tasks. Nevertheless, applying
self-imitation to the mostly action-value based off-policy RL meth-
ods is not straightforward. We propose SAIL, a novel generalization
of self-imitation learning for off-policy RL, based on a modification
of the Bellman optimality operator that we connect to Advantage
Learning. Crucially, our method mitigates the problem of stale re-
turns by choosing the most optimistic return estimate between
the observed return and the current action-value for self-imitation.
We demonstrate the empirical effectiveness of SAIL on the Arcade
Learning Environment, with a focus on hard exploration games.
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1 INTRODUCTION
Some approaches combine Reinforcement Learning (RL) and learn-
ing from (expert) demonstrations [22, 35]. It is efficient, but having
access to expert demonstrations might not be possible in many
situations. An interesting and more practical alternative is to learn
from oneself, by focusing on one’s own instructive experiences. In
the context of RL [40], self-imitation learning is a technique that
takes advantage of this idea and proposes to learn from positive
experiences, using actions whose payoff was superior to what had
been predicted. It was introduced by Oh et al. [32] for on-policy
learning, where interaction data is obtained via a behaviour policy
and is used to improve this policy, never to be reused again. In
that context, self-imitation provides a practical way to revisit and
reinforce interesting actions.

In the off-policy setting, agents learn instead from the behaviour
of different policies than their own, while they are still periodically
allowed to interact in the environment to generate new interaction
data. Off-policy learning is attractive because it would make RL
useful in situations where interacting in the environment is costly
or impractical, which is the case in many real-world scenarios [12].
In the most extreme case, offline RL [27], no interaction at all is
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possible and one must learn a policy just by looking at a dataset
of past experiences generated by potentially many different poli-
cies. Sadly, the canonical form of self-imitation learning relies on a
modified policy gradient [39], which requires the ability to modify
the current policy in a given direction. This requirement makes
it incompatible with most off-policy methods [21, 24, 30], whose
policy is obtained by applying an exploration method on top of
the current estimate of the optimal action-value. Since the policy
is implicit, gradient ascent in the policy space is impractical. As
an example, a straightforward adaptation of SIL for a standard off-
policy RL algorithm such as Deep Q-Networks [DQN, 30] seems
out-of-reach. Indeed, the action-value network that is central to
DQN encapsulates the two aspects SIL targets separately in the
actor-critic: value estimation and decision-making.

The focus of this work is on providing a self-imitation method
that is applicable across the full spectrum of off-policy methods.
A common denominator to all off-policy algorithms is the use of
the action-value to inform decision-making, be it with an implicit
policy [30], or an explicit one [18]. Hence, a way to control which
actions are reinforced in off-policy learning is to artificially increase
the reward of such actions. Staying in the line of reasoning of SIL,
a natural idea is to use the difference between the observed return
and the estimated value as the reward bonus. It turns out that
doing so creates a problem because the observed return becomes
stale over time, biasing action-value towards pessimism instead of
optimism, and eventually reducing the self-imitation contribution
to none. To circumvent this issue, we opt for the simple strategy
of using the most optimistic between the return and the estimated
action-value, with which we extend the benefits of self-imitation.
We show a connection to Advantage Learning [AL, 5, 6], an action-
gap increasing off-policy algorithm.

Our contributions are the following: 1) we propose SAIL, a gen-
eralization of self-imitation learning for off-policy methods, 2) we
show how it connects to Advantage Learning and complements
it, 3) we demonstrate the practicality of our method in terms of
simplicity, efficiency and performance on the Arcade Learning En-
vironment [ALE, 8] benchmark, under several base off-policy RL
methods. Notably, we report considerable performance gains on
hard exploration games.

2 BACKGROUND AND NOTATIONS
2.1 Reinforcement Learning
We use the standard Markov Decision Processes (MDP) formal-
ism [36]. An MDP is a tuple 𝑀 = {S,A, 𝑃, 𝑅,𝛾}, where S is the
state space, A is the action space, 𝑃 is the transition kernel, 𝑅
is the bounded reward function and 𝛾 ∈ [0, 1) is the discount
factor. We note 𝜏 = {𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 }𝑖=[0,𝑇 ] a (random) trajectory and
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the associated return is 𝐺 =
∑∞
𝑡=0 𝛾

𝑡𝑟𝑡 . A policy 𝜋 ∈ ΔSA out-
puts action probabilities in a given state, and can be used for
decision-making in a given environment. We place ourselves in
the infinite-horizon setting, which means that we look for a policy
that maximizes 𝐽 (𝜋) = E𝜋 [𝐺0]. The value of a state is the quantity
𝑉𝜋 (𝑠) = E𝜋 [

∑∞
𝑡=0 𝛾

𝑡𝑟𝑡 |𝑆0 = 𝑠]. The action-value of a state-action
couple is the quantity 𝑄𝜋 (𝑠, 𝑎) = E𝜋 [

∑∞
𝑡=0 𝛾

𝑡𝑟𝑡 |𝑆0 = 𝑠, 𝐴0 = 𝑎].
The Bellman operator T𝜋 is T𝜋𝑉 (𝑠) = E𝜋 [𝑟 (𝑠, 𝑎) + 𝛾𝑉 (𝑠 ′)], its
unique fixed point is 𝑉𝜋 . The Bellman optimality operator T ∗ is
defined as T ∗𝑄 (𝑠, 𝑎) = E𝜋 [𝑟 (𝑠, 𝑎) + 𝛾 max𝑎′ 𝑄 (𝑠 ′, 𝑎′)], its unique
fixed point is the optimal action value 𝑄∗. A policy belongs to the
set of optimal policies iff 𝑄𝜋 (𝑠, 𝑎) = 𝑄∗ (𝑠, 𝑎).The action-gap [14]
𝑔𝑄∗ of a particular state quantifies the difference between the
value of the best action and that of the other actions: 𝑔𝑄∗ (𝑠, 𝑎) =
max𝑎′ 𝑄∗ (𝑠, 𝑎′) − 𝑄∗ (𝑠, 𝑎). The advantage 𝐴 is the difference be-
tween the action-value and the value: 𝐴(𝑠, 𝑎) = 𝑄 (𝑠, 𝑎) −𝑉 (𝑠).

Actor-critic. Actor-critic methods use a policy and a value func-
tion. In the standard formulation, the value (from the critic) guides
the policy via the policy gradient, L𝑃𝐺 = − log𝜋𝜃 (𝑎𝑡 |𝑠𝑡 ) (𝐺𝑡 −
𝑉𝜃 (𝑠𝑡 )), while the value itself is updated via temporal difference on
data generated by the actor: L𝑉 = 1

2 (𝑟𝑡 + 𝛾𝑉𝜃 (𝑠𝑡+1) −𝑉𝜃 (𝑠𝑡 ))
2.

Off-policy RL. DQN [31] is an adaptation of Q-learning [49] to
the deep learning framework. It conserves the principal aspect of
Q-learning, that is updating the current action-value towards a
bootstrapped version of itself, following the temporal difference
algorithm. The major difference with respect to Q-learning is the
use of a function approximator for the action-value, instead of using
a tabular representation. Past transitions are sampled from a re-
play buffer [28], and, for stability, the action-value to be updated is
compared to a target function, which is a previous and periodically
updated version of the action-value function (whose parameters we
note 𝜃−). Rainbow [21] extends DQN by combining several inde-
pendently proposed algorithmic innovations [7, 15, 38, 46, 48], and
showed to be a strong baseline on the Atari Learning Environment
benchmark. IQN [11] is a distributional RL approach that estimates
the whole distribution of the returns, instead of the mean as in
standard Q-learning. More precisely, it approximates the continu-
ous quantile function of the return distribution by sampling input
probabilities uniformly. In terms of performance, it (almost) bridges
the gap with Rainbow while not having any prioritized replay and
using single-step bootstrapping.

2.2 Self-Imitation Learning
Self-imitation learning [SIL, 32] provides a set of additional loss
functions that complement the existing actor-critic losses, and en-
courage the agent to mimic rewarding past behavior. It relies on
a replay buffer that stores past transitions {𝑠𝑡 , 𝑎𝑡 ,𝐺𝑡 }, where the
observed return 𝐺𝑡 =

∑+∞
𝑖=0 𝛾

𝑖𝑟𝑡+𝑖 is obtained once the episode is
over. SIL operates off-policy, since its losses are calculated using
past transitions from the replay buffer, implying that on-policy
actor-critic methods that benefit from SIL become part on-policy,
part off-policy. For a given transition (𝑠𝑡 , 𝑎𝑡 ,𝐺𝑡 ), the additional
policy and value losses are:

Lsil
𝑃𝐺 = − log𝜋𝜃 (𝑎𝑡 |𝑠𝑡 ) (𝐺𝑡 −𝑉𝜃 (𝑠𝑡 ))+ and Lsil

𝑉 =
1
2
(𝐺𝑡 −𝑉𝜃 (𝑠𝑡 ))2+,

where the notation (𝑥)+ = max(0, 𝑥) stands for the ReLU oper-
ator. The shared term (𝐺𝑡 − 𝑉𝜃 (𝑠𝑡 ))+ is positive if the observed
return outweighs the estimated value, in which case both the action
probabilities and the value are increased. SIL also relies on prioriti-
zation [38], as transitions are sampled from the replay buffer with
probability 𝑃 (𝜏) ∝ (𝐺𝑡 −𝑉𝜃− (𝑠𝑡 ))+. As a result, transitions in which
actions led to an unexpectedly high return get revisited more often,
ensuring faster propagation of important reward signals.

A drawback of this formulation is that an explicit policy is re-
quired.Also, while it provides good empirical results, self-imitation
in general might suffer from stochasticity, both in the environment
dynamics and in the variance of the rewards. Indeed, the optimistic
updates of SIL can lead to overestimating the value of actions that
bring high rewards once in a while. See Sec. 4.5 for a more in-depth
discussion about the role of stochasticity.

2.3 Advantage Learning
Advantage Learning (AL) is an action-gap increasing algorithm
introduced by Baird [5] and further studied by Bellemare et al.
[6]. It corresponds to the following modified Bellman operator,
T𝐴𝐿𝑄 (𝑠, 𝑎) = T ∗𝑄 (𝑠, 𝑎) + 𝛼 (𝑄 (𝑠, 𝑎) −max𝑎′ 𝑄 (𝑠, 𝑎′)), which trans-
lates to the following reward modification:

𝑟𝐴𝐿 (𝑠, 𝑎) = 𝑟 (𝑠, 𝑎) + 𝛼 (𝑄 (𝑠, 𝑎) −max
𝑎′

𝑄 (𝑠, 𝑎′)) .

It can be seen as adding the advantage𝑄 (𝑠, 𝑎) −𝑉 (𝑠) to the reward,
with 𝑉 (𝑠) = max𝑎 𝑄 (𝑠, 𝑎) (hence the name). Generally speaking,
increasing the action-gap makes the RL problem easier, as it facili-
tates the distinction from experience between the optimal action
and the others. In practice, AL was shown to bring consistent per-
formance improvement across the whole support of Atari games
for off-policy agents [6].

3 SAIL: SELF-IMITATION ADVANTAGE
LEARNING

In essence, self-imitation drives the policy towards actions whose
returns are unexpectedly good. Off-policy methods usually opti-
mize an action-value function, which only implicitly defines the
policy through a given exploration method. Nevertheless, there is
a sensible proxy for increasing the probability of picking an action:
increasing its action-value (which is nothing more than a reward
increase). Hence, we propose to adapt self-imitation for off-policy
using the following modified reward:

𝑟𝑆𝐴𝐼𝐿 (𝑠𝑡 , 𝑎𝑡 ) = 𝑟 (𝑠𝑡 , 𝑎𝑡 )+𝛼 (max(𝐺𝑡 , 𝑄𝜃− (𝑠𝑡 , 𝑎𝑡 ))−max
𝑎

𝑄𝜃− (𝑠𝑡 , 𝑎)),

The corresponding loss function is:

L𝑆𝐴𝐼𝐿 =
1
2

(
𝑟𝑆𝐴𝐼𝐿 (𝑠𝑡 , 𝑎𝑡 ) + 𝛾 max

𝑎
𝑄𝜃− (𝑠𝑡+1, 𝑎) −𝑄 (𝑠𝑡 , 𝑎𝑡 )

)2
.

We now motivate this expression in more details.
First, note that if we replacemax(𝐺𝑡 , 𝑄 (𝑠, 𝑎)) by𝐺𝑡 and apply the

ReLU operator to the additional term we get the modified reward:

𝑟 (𝑠𝑡 , 𝑎𝑡 ) = 𝑟 (𝑠𝑡 , 𝑎𝑡 ) + 𝛼 (𝐺𝑡 −max
𝑎

𝑄𝜃− (𝑠𝑡 , 𝑎))+, (1)

which would be a more straightforward adaptation of SIL, since it
increases the action-value by the same term used in SIL for both
policy and value updates. Empirically, this formulation compares
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Figure 1: Illustration of the stale returns problem, in the
Key-Door-Treasure environment [32]. In past experiences
(in faded red), the agent ("A") got the key ("K") but failed
to reach the goal ("T"). The corresponding transitions still
get sampled from the replay buffer, so actions leading to the
key are paired with zero returns. This is inconsistent with
the current policy (in red), which gets the key, opens the
door and reaches the goal. SAIL avoids undervaluing the role
of the key by using the most optimistic return estimate be-
tween the observed return and the current action-value.

unfavorably to ours (see Sec. 4.6). We posit it could be due to a lim-
itation of self-imitation: the problem of stale returns. This problem
is the following: when off-policy, the return used for self-imitation
corresponds to the observed return of a policy that becomes in-
creasingly different from the current one, under the hypothesis
that the agent is still learning. Inevitably, returns become outdated.
More precisely, these returns drift towards pessimism, since the
agent mostly improves over time. As a result, the self-imitation
bonus disappears for most transitions. In addition to making self-
imitation ineffective, it could lead to emphasizing wrong signals
and biasing the updates. We illustrate this phenomenon in Fig. 1.
By exchanging the return for the maximum between the return
and the current action-value estimate, our method forms a more
optimistic return estimate, which promotes optimism and alleviates
staleness. Additionally, by replacing the ReLU operator with the
identity, we update our action-value estimate using information
from both positive and negative experiences. Finally, compared to
SIL, we do not make use of prioritization, as we think it emphasizes
the impact of stochasticity on the algorithm. In our experiments, we
measure the benefits of our method under increasing stochasticity
in Sec. 4.5, and show that the gains over the baseline remain even
when stochasticity is high. Second, the proposed modified reward
can be decomposed as:

𝑟𝑆𝐴𝐼𝐿 (𝑠𝑡 , 𝑎𝑡 ) = 𝑟𝐴𝐿 (𝑠𝑡 , 𝑎𝑡 ) + 𝛼 (𝐺𝑡 −𝑄𝜃− (𝑠𝑡 , 𝑎𝑡 ))+,

Thus, our approach actually combines AL, an action-gap increasing
method, with SIL, which helps reproducing interesting trajectories
from the past. We show next that it outperforms AL.

We name the resulting algorithm Self-ImitationAdvantage Learn-
ing (SAIL1). It is: 1) general, i.e. compatible across a large spectrum
of off-policy methods,2) easy to use, as it arranges existing quanti-
ties to form a reward bonus, and 3) lightweight, in the sense that
it does not add much to the computational budget of the algorithm

1We take the liberty of inverting the middle letters to form a nice acronym.

(other than computing discounted returns, which is neglectible).
The pseudo-code is in Alg. 1.

Algorithm 1: SAIL: Self-Imitation Advantage Learning
Initialize the agent weights 𝜃 ;
Initialize the replay buffer B;
Initialize the return placeholder 𝐺∅;
for each iteration do

/* Collect and store interaction data. */

for each interaction step do
In 𝑠𝑡 , sample 𝑎𝑡 ∼ 𝜋𝜃 , act, observe 𝑟𝑡 and 𝑠𝑡+1;
𝐺𝑡 ← 𝐺∅;
Store 𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1,𝐺𝑡 in B;
if the episode is over then

𝐺𝑡 ←
∑𝑇
𝑡 ′=𝑡 𝛾

𝑡 ′−𝑡𝑟𝑡 ′ for 𝑡 ∈ [0,𝑇 ];
end

end
/* Update the agent weights (off-policy). */

for each training step do
Sample a minibatch D𝑏𝑎𝑡𝑐ℎ from B;
/* Loss expression in Equation 3. */

𝜃 ← 𝜃 − 𝜂∇𝜃L𝑆𝐴𝐼𝐿 (D𝑏𝑎𝑡𝑐ℎ);
end

end

4 EXPERIMENTS
In this section, we aim to answer the following questions: 1) How
does SAIL perform on various tasks, including hard exploration,
using various off-policy algorithms as baselines? (see Sec. 4.2 & 4.3);
2)Does SAIL compare favorably to exploration bonuses? (see Sec. 4.4);
3)What is the impact of stochasticity on SAIL? (see Sec. 4.5); and
4)How does SAIL compare to a more straightforward self-imitation
algorithm? (see Sec. 4.6).

4.1 Experimental setting
We benchmark our method and baselines on the Arcade Learning
Environment [8], with sticky actions and no episode termination
on life losses, following [29]. Sticky actions make the Atari games
stochastic by repeating the agent’s previous action with a fixed
probability (0.25 by default). Hard exploration games are games
where local exploration methods fail to achieve high scores. We
use the list of hard exploration games from [6], and set them apart
with a bold font in bar plots. We use the Dopamine framework [10]
to get reference implementations for the agents and setup our ex-
periments. Whether using the base off-policy algorithms as is or
in combination with SAIL, we use Dopamine reference hyperpa-
rameters for all methods, unless explicitly mentioned. The only
SAIL-specific hyperparameter is 𝛼 , that we set to 𝛼 = 0.9 in all
experiments. The bonus term is also clipped in [−1, 1] (as are the
rewards in ALE). We use 6 random seeds for comparative studies on
subsets of games, and 3 random seeds for experiments on the 592
Atari games, due to the computational demand of such experiments.
2We didn’t report results for ElevatorAction, whose ROM failed to load in our setup.
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Figure 2: Human-normalized median performance of sev-
eral off-policy methods. SAIL-IQN outperforms every other
method, including Rainbow, which uses prioritized experi-
ence replay and n-step bootstrapping. SAIL-DQN, though
based on DQN, outperforms C51, a distributional RL algo-
rithm that uses a more advanced optimizer (Adam).

For bar plots (e.g. Fig. 3), the mean relative improvement metric
for a method 𝑋 compared to the baseline 𝑋𝑏𝑎𝑠𝑒 is, for one game:

( 1
𝑁

200∑
𝑡=1

𝑠𝑋,𝑡 − 𝑠𝑋𝑏𝑎𝑠𝑒 ,𝑡 )/(|
1
𝑁

200∑
𝑡=1

𝑠𝑋𝑏𝑎𝑠𝑒 ,𝑡 | + 𝜖),

where {𝑠𝑋,𝑡 }𝑡=1,...,200 are the game scores for method 𝑋 , collected
every million steps in the environment, and averaged across all
random seeds. This metric roughly measures by how much the
performance of the proposed method increased or decreased com-
pared to the baseline. For aggregated plots (e.g. Fig. 2), we report
the human-normalized median score, a common metric to evaluate
RL methods based on their performance across all games:

(𝑠𝑋,𝑡 − 𝑠𝑟𝑎𝑛𝑑𝑜𝑚)/|𝑠ℎ𝑢𝑚𝑎𝑛 − 𝑠𝑟𝑎𝑛𝑑𝑜𝑚 |,
where {𝑠𝑋,𝑡 }𝑡=1,...,200 are the median scores across all games for
method 𝑋 , collected every million steps in the environment, and
averaged across all random seeds. 𝑠𝑟𝑎𝑛𝑑𝑜𝑚 is the end score of a
random policy, and 𝑠ℎ𝑢𝑚𝑎𝑛 that of the average human player, as
reported in [30], and completed for missing games as in [47].

4.2 SAIL-DQN experiments
We report the performance of SAIL combined to DQN (abbreviated
SAIL-DQN) against DQN on all Atari games in Fig. 3. We use the
Dopamine DQN hyperparameters.

We also report the same graph with AL-DQN as the baseline on
Fig. 3. AL-DQN corresponds to the limit case of SAIL where the
action-value estimate is always greater than the observed return,
and makes for a stronger baseline than vanilla DQN. With the
simple modification provided by SAIL, we get a nice average and
median performance increase across all games (+101.4% average and
+6.7% median), the gap being more apparent on hard exploration
games where self-imitation shines the most (+361.6% average and
+24.9% median relative improvement over AL-DQN).

We also zoom in on the performances of the three methods (DQN,
AL-DQN and SAIL-DQN) on individual games. We choose four hard
exploration games: Frostbite, Venture, Gravitar and PrivateEye. The

Figure 3: SAIL-DQN outperforms both DQN (top) and AL-
DQN (bottom), as shown on a relative scale on all Atari
games. On hard exploration games (in bold), SAIL-DQN pro-
vides a +654.3% average and +71.8%median relative improve-
ment over DQN, and a +361.6% average and +24.9% median
relative improvement over AL-DQN.

Figure 4: Performances of DQN, AL-DQN and SAIL-DQN on
four hard exploration Atari games. On PrivateEye, despite
sparse rewards, SAIL-DQN outperforms both C51 and IQN.

scores are displayed on Fig. 4. On Frostbite and PrivateEye, SAIL-
DQN outperforms C513 [7], a distributional RL agent that uses
Adam [25], a more advanced optimizer than DQN’s RMSProp [44].
On PrivateEye, that has particularly sparse rewards, SAIL-DQN
also outperforms IQN. Finally, we report the final performances

3C51 scores 4250 on Frostbite and 4000 on PrivateEye. Scores are available here.
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Table 1: Final scores of several off-policy algorithms based
on DQN, in hard exploration games.

DQN AL-DQN SAIL-DQN

Alien 2586 3514 4769
Amidar 1167 1380 879

BankHeist 594 909 915
Freeway 25 22 23
Frostbite 392 2833 7912
Gravitar 299 540 1292
Hero 17056 7672 30382

Montezuma’s Revenge 0 0 0
MsPacman 3405 3973 3879
Pitfall! -84 -100 -27

PrivateEye -114 153 10068
Qbert 10178 13426 9310
Solaris 1437 2216 855
Venture 35 371 989

WizardOfWor 2020 5930 6906
Zaxxon 4713 6221 10364

on hard exploration games for all three methods in Table 1, and
individual curves on all 59 games can be found in Fig. 12.

4.3 SAIL-IQN experiments
Since SAIL is a general self-imitation method for off-policy learning,
it is straightforward to apply it to other off-policy agents. Hence,
having demonstrated strong performance using DQN as a base
agent in the previous subsection, we now turn towards a more ad-
vanced off-policy algorithm. We choose IQN, a strong distributional
RL agent, and use the same IQN hyperparameters as [11], which
in contrast to those of Dopamine do not use n-step bootstrapping.
We report the performance of SAIL combined to IQN (abbreviated
SAIL-IQN) against IQN on all Atari games in Fig. 5, using the same
metric as in previous graphs. We also compare SAIL-IQN to AL-IQN
and to Rainbow across all games in the same figure. Despite the
fact that Rainbow uses prioritized experience replay and n-step
bootstrapping (with 𝑛 = 3), we report +80.3% average and +4%
median relative performance increase for SAIL-IQN over Rainbow.

Additionally, we display individual game performances of IQN,
AL-IQN and SAIL-IQN in Fig. 6. We choose two hard exploration
games: Montezuma’s Revenge and Venture; and also on an easy
exploration game: Seaquest, illustrating the versatility of SAIL. We
report the final performances on hard exploration games of all three
methods in Table 2, and individual curves on all 59 games in Fig. 13.

Finally, we compare several of the algorithms mentioned us-
ing the human-normalized median scores in Fig. 2, aggregating
scores from all games. SAIL-IQN outperforms Rainbow (itself out-
performing IQN), without using prioritization or n-step bootstrap-
ping. SAIL-DQN outperforms C51 (itself outperforming DQN).

4.4 Comparison to Intrinsic Motivation
We compare SAIL-IQN to IQN with RND [9], a popular intrinsic
motivation method for exploration. While the two methods have
different motivations, both modify the reward function and were

Figure 5: SAIL-IQN outperforms both IQN (top), AL-IQN
(middle) and Rainbow (bottom), as shown on a relative scale
on all Atari games. SAIL is responsible for important gains
over IQN and AL-IQN on sparse reward hard exploration
games such as Montezuma’s Revenge, PrivateEye, or Grav-
itar.

shown to help in hard exploration tasks. RND uses two identical
neural networks, the first of which is frozen after initialization. The
second network has to predict the output of this random network.
The prediction error is then used as a proxy of actual state-visitation
counts to reward the agent. For RND, we use code and hyperparam-
eters from Taïga et al. [41]. RND hyperparameters were calibrated
for Rainbow, thus to be fair we use the same RND hyperparame-
ters to study the combination of SAIL and RND (see below), and
keep equal SAIL hyperparameters across agents. SAIL-IQN shows
positive average and median relative improvement scores com-
pared to RND-IQN (+72.2% average and +28.2% median relative
improvement over RND-IQN, see Fig. 7).

On Montezuma’s Revenge, which is an infamously hard explo-
ration game, SAIL-IQN reaches a final score of 833 (for an average
score of 513), while RND-IQN reaches a final score of 161 (for an
average score of 45), and IQN scores 0 (final and average). SAIL
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Figure 6: Performances of IQN, AL-IQN and SAIL-IQN on
three hard exploration Atari games and one easy explo-
ration game (Seaquest), illustrating the versatility of SAIL.

Table 2: Final scores of several off-policy algorithms based
on IQN, in hard exploration games.

IQN AL-IQN SAIL-IQN

Alien 4262 5318 6245
Amidar 1131 1311 1752

BankHeist 1081 1105 1037
Freeway 34 34 34
Frostbite 5231 10058 10345
Gravitar 766 1213 1375
Hero 28636 16804 30083

Montezuma’s Revenge 0 0 833
MsPacman 4656 5340 4669
Pitfall! -19 -280 -42

PrivateEye 357 49 4956
Qbert 10802 11440 15189
Solaris 2165 1461 992
Venture 74 19 1525

WizardOfWor 5700 10222 8933
Zaxxon 12024 11843 15296

can be combined to RND for further improvements: using RND
(as is) and n-step bootstrapping (𝑛 = 3), SAIL-IQN reaches a final
score of 5180 on Montezuma’s Revenge. This ties SAIL-IQN with
RND-Rainbow, which has the strongest score reported in Taïga et al.
[41]. We display the evolution of that score in Fig. 8.

While we established the merits of SAIL compared to RND in
terms of in-game Atari performance, SAIL has several other advan-
tages over RND. 1) Consistency: while RND provides with better
performance gains on specific games such asMontezuma’s Revenge,
we find that the gains are not consistent across all hard exploration
games, matching the findings of Taïga et al. [41]. More precisely
(not shown), using RND with IQN brought a great performance
boost on two games (Montezuma’s Revenge and Venture), but did
not increase the median performance of IQN (-0.2% median rela-
tive improvement score). 2) Integration: SAIL requires two simple

Figure 7: SAIL-IQN outperforms RND-IQN, as shown on a
relative scale on all Atari games, including on Montezuma’s
Revenge, an infamously hard exploration game.

Figure 8: Combining SAIL and RND elevates the perfor-
mance of IQN and matches that of RND-Rainbow, the best
reported in Taïga et al. [41] on Montezuma’s Revenge.

modifications to off-policy algorithms, saving returns to the replay
buffer and modifying the action-value update (1 hyperparameter).
In comparison, RND requires two additional networks, separate
optimizers and a reward modification (many hyperparameters). We
acknowledge that this comparative benefit might be framework-
dependent. 3) Compute: on the same hardware, we find that standard
IQN processes an average of 100 frames per second, against 95 for
SAIL-IQN and 45 for RND-IQN, so completing experiments is more
than twice faster when choosing SAIL over RND.

4.5 Impact of stochasticity
To quantify the impact of stochasticity on self-imitation, we perform
an ablation and deactivate the sticky actions. Sticky actions [8]
introduce stochasticity in otherwise near-deterministic Atari games,
by repeating the previous action of the agent with a fixed repeat
probability. As in the standard settings of ALE, by default we use a
repeat probability of 0.25, that is here set to 0. We report results on
all Atari games in Fig. 9, similarly to the precedent section.

As expected, SAIL brings a larger performance increase when we
fall back to a near-deterministic setting but, interestingly, the results
do not diverge much from the ones reported with the sticky actions
(+231.6% versus +101.4% average, +12.7% versus +6.7% median).

We extend this experiment and instead increase the repeat prob-
ability, making environments more stochastic. We restrict ourselves
to hard exploration games to limit the computational cost of the
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Figure 9: Improvement of SAIL-DQN over AL-DQN on all
Atari games, without sticky actions. Result do not diverge
from those in the standard ALE setting (+222.6% versus
+101.4% average, +11.7% versus +6.7% median).

Figure 10: Even under increased stochasticity, SAIL-DQN
outperforms DQN in the standard setting (𝑝 = 0.25).

study. As Fig. 10 shows, the human-normalizedmedian performance
of SAIL-DQN decreases under higher action repeat probabilities.
This phenomenon warrants further investigation, as we would have
to tell apart the impact of stochasticity on SAIL from the general
performance loss due to making the RL problem more difficult,
which we leave for future work. Note that the performance of SAIL
stays superior to that of DQN in the standard setting.

4.6 Comparison to straightforward SIL
We compare SAIL to the more straightforward self-imitation algo-
rithm depicted Eq. (1), the alternate version of SAIL where we use
the standard return alone, and a ReLU operator instead of the iden-
tity. We display average and median relative improvement scores
with both DQN and IQN in Fig. 11.

5 RELATEDWORK
Extending self-imitation learning. Guo et al. [17] revisit GAIL [23],

an adversarial imitation method that encourages the agent to trick
a discriminator into taking its behavior for expert behavior. Their
method uses the agent’s past behavior as expert behavior, identify-
ing promising behavior in a similar way to standard self-imitation.
Guo et al. [16] use self-imitation over a diverse set of trajectories
from the agent’s past experience, showing that it helps on games

Figure 11: Relative improvement of SAIL over self-imitation
(strSIL), based on both DQN (top) and IQN (bottom). On hard
exploration games (in bold), SAIL-DQN provides a +72.2% av-
erage and +45.2% median relative improvement over strSIL-
DQN, and SAIL-IQN a +16.0% average and +22.3%median rel-
ative improvement over strSIL-IQN.

where there are local minima that hinder learning. Tang [43] studies
the impact of importance sampling corrections and using n-step
bootstrapping to replace the observed return in a generalized form
of self-imitation, which is studied under the operator view. None
of these methods explicitly target off-policy learning algorithms,
and as such none have straightforward extensions to that setting.

RL for hard exploration tasks. Being able to solve hard explo-
ration problems is an important target for RL. So far, quite different
strategies have been developed to tackle these problems. Intrin-
sic motivation methods provide an additional source of reward
to the agent, either for going to seldom visited areas of the state
space [6, 42], or for experiencing novel things, that challenge its
own predictions [9, 34, 37]. Aytar et al. [2] use expert demonstra-
tions from human player-made videos as imitation data and incen-
tivize close-to-expert progression. Ecoffet et al. [13] propose an
exhaustive exploration method that encourages the agent to visit
promising areas of the state space while jointly learning how to
get back to those areas. Badia et al. [4] combine intrinsic motiva-
tion with an episodic motivation based on episodic memory. Paine
et al. [33] uses expert demonstrations combined with a recurrent
learner to solve partially observable hard exploration tasks. Badia
et al. [3] uses a neural network to encapsulate multiple policies
with different degrees of exploration and switches between policies
using a multi-arm bandit algorithm. While SAIL proves to be useful
for hard exploration, its main motivation is to learn properly from
the agent’s own instructive experiences. It is not an exploration
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Figure 12: Curves on all games for DQN-based methods.

method per se, but could generally be combined to said exploration
methods for further improvements, as we illustrated with RND.

Sparse reward RL. There is a lot of ongoing effort regarding RL
for sparse rewards as well, which is related to hard exploration
and overlaps on many environments. In the goal-oriented setting,
Andrychowicz et al. [1] propose to modify the replay buffer in
hindsight and change the desired goal state by a state the agent
actually visited, providing it with free reward signal. Lee et al. [26]
accelerate the propagation of sparse reward signals by sampling
whole episodes from the replay buffer and performing updates
starting from the end of the sampled episode. In a related way,
Hansen et al. [19] combine standard off-policy with episodic con-
trol, estimating the action-value as the convex combination of the
action-value learned off-policy and another estimate from episodic
memory. Trott et al. [45] use reward shaping to explore while avoid-
ing local minima. Since the additions of SAIL to off-policy agents
are purely restricted to the action-value updates, SAIL and sparse
reward RL techniques could synergize well, which we leave for
future experiments.

Figure 13: Curves on all games for IQN-based methods.

Misc. He et al. [20] show that there are tractable bounds to the op-
timal action-value function and use them to increase the Q-function
when it is inferior to the lower bound (resp. decrease when superior
to the upper bound).

6 DISCUSSION
In this work, we presented SAIL, a novel self-imitation method
for off-policy learning. In comparison with standard self-imitation,
SAIL revolves around the action-value function, which makes it
compatible with many off-policy algorithms. SAIL is a simple, gen-
eral and lightweight method that can be equivalently viewed as a
modified Bellman optimality operator (that is related to Advantage
Learning) or as a modified reward function. Notably, it combines
the advantages of self-imitation, that is better reinforcement in
sparse reward scenarios, and those of Advantage Learning, that is
increasing the action-gap. We studied its performance in the Ar-
cade Learning Environment and demonstrated that SAIL brought
consistent gains, especially on hard exploration games, at virtually
no cost.
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