Main Track

AAMAS 2021, May 3-7, 2021, Online

Siting and Sizing of Charging Infrastructure for
Shared Autonomous Electric Fleets

Ramin Ahadi

Faculty of Management, Economics, and Social Sciences

University of Cologne
Cologne, Germany
ahadi@wiso.uni-koeln.de

John Collins
Department of Computer Science and Engineering
University of Minnesota
Minneapolis, Minnesota, USA
colli075@umn.edu

ABSTRACT

Business models rooted in shared economy, electrification, and
automation are transforming urban mobility. Accounting for how
these transformations interact is crucial if synergies are to be ex-
ploited. In this paper, we focus on how a cost-effective charging
infrastructure for e-mobility can support the emergence of shared,
autonomous mobility. This study addresses the problem of siting
and sizing of charging stations for a fleet of shared autonomous elec-
tric vehicles (SAEVs). We develop a hybrid simulation-optimization
model to find locations and numbers of chargers needed to serve
charging demands. Our agent-based model provides an enhanced
representation of SAEV operations allowing for smart charging and
vehicle cruising when parking/charging is not available. Also, we
model charging station placement as full covering optimization and
solve the location-allocation problem simultaneously. Finally, we
employ real-world trip data from ShareNow in Berlin to evaluate
our approach for realistic demand patterns under different charging
strategies and fleet sizes. The results show that charging station
locations depend mostly on the spatial distribution of installation
costs and charging demands. Moreover, charging strategies and
fleet size affect the charging patterns and the required number of
chargers as well as fleet performance.
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1 INTRODUCTION

Electric vehicles (EVs) offer an attractive alternative to internal
combustion engine vehicles for their lower environmental impacts
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and lower operating costs. However, high initial costs and scarcity of
charging infrastructure are still critical barriers to mass adoption of
EVs [43]. In order to promote electric mobility, many governments
and private companies invest in charging station (CS) deployment,
but as EV adoption grows, the charging network must expand
accordingly to cover the growing demands.

Electrification is not the only avenue toward more sustainable
road transportation. Currently, most mobility demand, especially
in urban areas, is satisfied by privately-owned cars, causing severe
issues such as climate change, traffic jams and heavy investment for
parking infrastructure [9]. Increased access to public transportation
can reduce reliance on car ownership. Scheduled public transport
services integrated with more flexible mobility services such as car-
sharing and Mobility-on-Demand offer attractive alternatives to car
ownership. In fact, shared mobility services are now operating in
parallel with public transportation in more than 1,000 cities world-
wide [35]. Their electrification is also imminent for both economic
and environmental reasons.

Autonomous vehicles (AVs) can extend shared mobility services
in multiple ways. First, they eliminate human driver costs while
increasing fleet utilization (i.e., available 24 hours a day, unlike
taxi drivers and non-autonomous shared vehicles). Second, faster
reaction time to ride requests than human drivers, as well as com-
munication among AVs, can improve safety and reduce accident
rates and traffic congestion. Last but not least, autonomy is cou-
pled with electrification and access-based ride sharing services. It
allows more efficient refueling strategies, particularly in the case
of Electric Vehicles (EVs), where charging is more time consuming.
AV users do not need driving licenses, do not need to pay close
attention to controlling the vehicles, and are free from the need to
find and pay for parking. These benefits can encourage people to
use shared vehicles [36].

In the literature of charging infrastructure planning for EVs,
the synergies of electrification, shared mobility and automation
have been largely overlooked. The literature has mainly focused
on the CS location problem for electric taxis [44]. Few studies
address the challenge of charging electric shared mobility fleets;
most of them are limited to station-based carsharing without in-
tegration with AVs [7]. Planning the charging infrastructure for
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shared autonomous electric (SAE) mobility services has been ad-
dressed only recently [34, 45]. We tackle this problem using a hybrid
optimization-simulation approach where the operations of the fleet
are modeled in the simulation environment using agent-based mod-
eling (ABM), and the output of the simulation - charging demand -
is used by the optimization model to plan the sites and sizes of CSs.
ABM has been already used in both energy and mobility domains to
understand the environment dynamics and robustness of decision-
making strategies [13, 29]. Moreover, to calibrate the simulation
parameters, we use real-world historical trip data of ShareNow in
Berlin, Germany to estimate the Spatio-temporal distribution of
trips. Our goal is to identify cost-optimal deployment strategies of
charging infrastructure able to service the charging demand of a
SAEV-based mobility service.

The rest of the paper is organized as follows. Section 2 reviews
the literature on charging infrastructure development for EVs as
well as the operations of SAEVs. The approach of our study is pre-
sented in Section 3. In Section 4, we apply the proposed methodol-
ogy to a real-world example and discuss the results. Finally, Section
5 concludes the paper and discusses restrictions and future work.

2 LITERATURE REVIEW

Previous related works to our paper can be categorized as: (1) stud-
ies on SAEVs (2) charging infrastructure development. We sepa-
rately review these areas and finally discuss their intersection in
the literature.

2.1 Shared Autonomous Electric Vehicles

Several researchers have modeled SAEVs to investigate their perfor-
mance and impacts on the transportation system. Some have studied
related strategic and technical problems of SAEVs, many of which
focused on required size of SAEV fleets to provide the same service
quality as conventional transportation systems [17, 33]. Dandl and
Bogenberger compare autonomous electric taxis with a current
carsharing system and demonstrate that in Munich, Germany, each
SAEV could replace between 2.8 and 3.7 traditional carsharing ve-
hicles [14]. Loeb et al. study the impact of fleet size and EV type
on trip response time and conclude that hybrid EVs are more prof-
itable than battery EVs in a shared autonomous fleet [32]. Chen et al.
show that fleet size is sensitive to battery recharge time and vehicle
range, so larger batteries and fast charging technologies reduce the
required number of vehicles [11]. He et al. address service region
design for a one-way SEV system, dealing with travel behavior
uncertainty and customer adoption in the planning phase, as well
as repositioning and recharging in the operational phase [26].
Some papers discuss SAEVs operations through case studies.
From a service provider viewpoint, vehicle assignment strategies
match vehicles with customers. Hyland and Mahmassani use vehi-
cle status (idle, in-service, charging) to drive decision support for
fleet operators [27]. Some researchers have studied the reposition-
ing problem for both station-based and free-floating shared-vehicle
systems. He et al. formulate the problem as a stochastic model
considering temporal and spatial uncertainties of trip demands,
obtaining optimal repositioning policies for a shared fleet [24]. Re-
garding electric mobility, charging decisions have a pivotal role. In
addition to being time-consuming, the major difficulty is limited CS
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availability [5, 37]. Chen et al. claim a natural synergy between AVs
and EVs as the smartness of AVs could resolve the range anxiety
and charging limitations of electric fleets [11]. Most of these papers
consider CS locations and sizes as fixed parameters, but perfor-
mance of SAEVs depends significantly on charging infrastructure;
therefore, finding optimal locations and sizes of CSs is an essential
goal to fulfil.

2.2 Charging Infrastructure Development

Some researchers have investigated charging facility placement for
EVs. This problem is similar to facility location problems, choosing
among possible locations to add facilities to optimize an objec-
tive [38]. CS placement literature can be classified into intercity
charging, where stations are located along highways, and urban
charging, where stations are located in parking spots within urban
areas. We are interested in the urban problem. Regarding shared
mobility, Boyaci et al. use a bi-objective mixed-integer linear pro-
gramming to optimize CS locations and sizes in addition to finding
optimal fleet size and vehicle allocation for shared EVs [10]. He et
al. focus on charging in an electric carsharing system to maximize
fleet profit, integrating charging infrastructure planning with vehi-
cle repositioning [25]. Brandstatter et al. describe an integer linear
programming approach for CS placement and sizing to maximize
expected value of accepted trips, as well as a heuristic solution
for real-world cases [7]. Apart from shared vehicles, several pa-
pers have discussed charging infrastructure for privately owned
EVs [12, 18, 23, 42], which tend to park for longer duration than
shared cars [40]. Other researchers study charging locations for
electric taxis [6, 39], which are similar to SAEVs since taxi dri-
vers have flexibility for charging time and location; however, they
did not consider autonomous mobility (i.e., taxi drivers are not
connected, so using a central charging strategy is not achievable,
and autonomous vehicles have no time and location preference for
charging which removes some restrictions on CS location). There
are also studies that assume EVs charge during trips, and solve the
charging infrastructure placement problem accordingly [19, 31].
They use heuristic approaches and compare the results to analytical
solutions. Funke et al. [19] optimize the minimum number of charg-
ers and their locations to cover any shortest path between any two
points of the network so vehicles need not detour their trips for
charging events. However, these problems are different from ours
since in a shared autonomous fleet vehicles do not charge while
serving customers.

Another crucial issue with charging infrastructure is the addi-
tional load on the power grid. Smart charging approaches have been
already proposed [20, 41]. Gerding et al. designed a novel online
auction mechanism to smooth the adverse effects of EV charging
demands on the distribution network [21]. Physical constraints of
distribution grids must be considered when planning CS placement;
optimal CS siting and sizing can significantly reduce the costs of
grid expansion [22]. Physical grid constraints can be substantially
relaxed if EV charging can be managed as a source of demand
flexibility [28].

A few recent papers consider the intersection of SAEV oper-
ations and charging infrastructure. Zhang et al. study charging
facility requirements for SAEVs [45]. They use an ABM simulation
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to model passenger behavior and the mobility system (e.g., driving,
parking, and charging). Then given the simulation outputs (identi-
fied times and locations of charging demands) and using clustering
algorithms, they find CS locations that satisfying charging demands.
In this work, siting and sizing are decoupled, leading to sub-optimal
solutions; also, they do not include economic factors like instal-
lation costs in the location problem, and only site CSs based on
charging demands. In the most similar work to our study, Lokhand-
wala and Cai investigate charging infrastructure development for
SAEVs using a hybrid simulation-optimization approach [34]. They
simulate the transportation environment using ABM considering
different adoption rates of AEVs and ride sharing to generate de-
mand for charging facilities. They formulate the location problem
as mixed-integer linear programming where the objective function
is evaluated using discrete event simulation. They finally deploy a
genetic algorithm to solve the optimization. They do not allocate
charging demands to CSs in their mathematical model and do not
address the problem using exact solutions, which therefore does
not guarantee global optimal. Also, grid capacity constraints and
various installation costs among different areas are not included
in the optimisation model. More importantly, this work disregards
the impact of fleet charging strategies on service quality and CS
locations.

Clearly, charging infrastructure planning for SAEVs needs more
exploration since CS placement that ignores shared autonomous
mobility might lead to sub-optimal solutions in the future. We de-
velop a methodology to simultaneously site and size the required
CSs for SAEVs while considering fleet operation complexity. The
major contribution of our work is a comprehensive ABM that ac-
counts for smart charging strategies (i.e., start and interruption)
based on trip demands and available vehicles, as well as allowing
vehicles to cruise as an alternative to parking when parking is not
available. Moreover, we model charging infrastructure deployment
as a full covering problem and solve the location-allocation problem
simultaneously using exact solutions, enabling us to evaluate the
results for a variety of circumstances. Finally, we use real-world trip
data to calibrate the simulation and evaluate our results, making it
applicable for carsharing providers aiming to electrify their fleets.

3 METHOD

Our charging infrastructure development framework contains two
components: (1) charging demand estimation of a SAE fleet using
ABM, (2) optimal CS siting and sizing using mathematical program-
ming. We first run the simulation for a given number of vehicles and
a Spatio-temporal trip distribution to generate estimated charging
demands. The generated demand is then given to the optimization
model as an input to identify optimal CS sizes and locations.

3.1 Key Assumptions
To model our problem, we make several assumptions:

e Charging demand must be covered fully by installing CSs.

e Planning horizon is cyclic and we solve the optimization
problem for a single period.

o All CSs and SAEVs are homogeneous.

o Grid constraints are considered as a limit on the number of
chargers for each zone in the optimization part.
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e Land costs and grid constraints vary across the service region
e Operational decisions (e.g., charging, relocating) are based
on flexible rule-based strategies in the simulation.

3.2 Agent-based Modeling of a SAE Fleet

We develop an ABM for two purposes; first, to model fleet opera-
tions in a discrete event simulation (DES), giving us the impacts of
autonomous and electric mobility on free-floating fleets. Second, we
use ABM again to evaluate solutions from our optimization model.
ABM has unique strengths to analyze complex system operations
and behaviors, where each agent actions affect other agents [16].
They also are capable of solving wicked problems like sustainable
transportation and energy systems where numerous social, eco-
nomic and technical factors interact [30]. Autonomous agents have
been employed to model transportation systems [8], and fit to our
problem since AVs can be assumed as agents interacting with each
other in an environment.

3.2.1 Simulation platform and setup. To simulate the SAE fleet,
we first discretize the business area into small, fixed-sized zones
over which we map trip patterns. These zones are candidates for
relocation and charging stations in ABM and optimization models,
respectively. The Uber H3 library! is applied to divide the ser-
vice region into hexagons. Employing hexagons for discretization
has gained popularity in spatial analyses as they fully cover the
area, and the distances between centers of neighboring cells are
equal. Hexagon size is chosen such that any pair of points within
a hexagon can be reached at most by 5 min (driving time) — edge
length is 1.22 km.

We initialize our simulation with fleet size, plus sizes and loca-
tions of CSs and parking lots. Each vehicle is represented by an
agent following predefined rules. Figure 1 illustrates the simulation
process, which is iterated over a certain period. It is a DES, driven by
new trip requests and by vehicle state changes. Requests are added
to a waiting list, sorted based on time of receipt. We determine
available vehicles for each request, and using a first-in-first-serve
strategy, the closest available vehicle is assigned to each request.
Availability for a trip has two conditions: (1) having enough state
of charge (SOC) to serve the request and be able to reach a CS
afterward if necessary, (2) not being too far from the request to
avoid long waiting time and inefficient vehicle assignment?. If there
is no available vehicle for a trip, it is kept in the waiting list until a
vehicle gets available. Also, we assume a waiting tolerance for cus-
tomers, after which they will cancel their request and be considered
as missed trips.

After serving a request, a vehicle checks its SOC, whether below
a threshold or not (i.e., the charging threshold is a utility function
of time, in a way that at nights when the trip demands are low
this is a larger amount than peak hours). If yes, it must go to a
CS to recharge the battery. We consider a charging strategy such
that the vehicle is sent to the closest CS even if the CS is full and
the vehicle must wait in the queue, then starts charging. In reality,

1Uber H3 is an open-source grid service that partitions areas of the Earth into identifi-
able grid cells, provided by Uber for visualizing and exploring spatial data as well as
geographic information analysis. https://eng.uber.com/h3/

21t is not the optimal vehicle assignment strategy since we exclude currently-serving
vehicles and our first-in-first-serve strategy might lead to sub-optimal solutions
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it is not the optimal strategy and the charging station selection
depends on many factors, including SOC, traffic, waiting time at
stations, demand distribution, and fleet’s state — number of available
vehicles in each zone. Although there are some optimal charging
strategies for more straightforward mobility systems like electric
buses [4] as well as EV routing strategy assuming awareness of
others’ intentions [15] to minimize queue time, optimal charging
decision-making for SAEVs is still an open problem and is not the
goal of this paper. Often a fully charged battery is not necessary; so,
we consider a charging interruption task for vehicles when there is
a significant number of requests waiting for service, but inadequate
available vehicles to serve them.

Once a charging session is over, or there is no need for charging,
the vehicle becomes available for service. If there is no request for
the vehicle, it checks the relocation task. The goal of our model’s
relocation strategy is to concentrate vehicles within high demand
zones. Thus, relocation task of each vehicle monitors the updated
status of vehicles in all zones. If the number of vehicles in its zone is
more than enough and there are some zones with the lack of avail-
able vehicles; in this case, the vehicle relocates to the closest zone
that needs more supply. In other words, we check relocation condi-
tions by comparing between the number of vehicles and estimated
demand for each zone.

If the SOC is sufficient, there is no request for the vehicle, and
no need for relocation, the vehicle goes to a parking lot. The closest
parking lot that has a free spot becomes the vehicle’s destination.
Our model also assumes that the vehicle can circle around for a
predefined period at the end of which, if no request is assigned to
it, it must park (i.e., the dilemma of parking or circling around is
an interesting topic in the field of autonomous mobility which is
beyond the scope of this paper). Finally, the vehicle is then available
for serving requests. Notice that we count available vehicles among
idle, relocating, and to-parking vehicles. In other words, if a request
assigns to a vehicle while relocating or moving to parking lot, the
action is interrupted and the vehicle serves the request.

3.2.2 Demand generation using ABM. We deploy our ABM to gen-
erate SAEV charging demands. For this purpose, in addition to
setting initial parameters including fleet size, trip demands, and
parking lot locations and capacities, we assume an infinite num-
ber of chargers with the same power capacity in all zones to have
unconstrained charging infrastructure in this phase of our work.
Although we assume that there is an unrestricted charging network
in this phase, charging rates and travel times to CSs are realistic.
The simulation runs flexible charging and relocating rules for mul-
tiple iterations to smooth the impact of uncertain trip demand on
final results, and charging events during the simulation time are
recorded as estimated charging demands. Outputs include times
and locations of charging events, as well as vehicle SOC at the start
and end of charging.

3.3 Optimization of Charging Stations

Given the charging demands, distribution system topology (maxi-
mum allowable number of chargers in each zone), and land costs as
known parameters, we can model the charging station placement
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Figure 1: Agent-based simulation flowchart of SAEVs’ oper-
ations
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problem as mixed-integer linear programming. First, sets, parame-
ters and variables are defined, then we formulate the optimization
problem.

Sets
N: set of zones
T: set of time steps

Parameters
Dj;: Demand in zone i at time t
L;j: Distance between zones i,j per kilometer
M;: Maximum number of chargers in zone i
C{ ", Installation cost for the first charger in zone i
C?dd: Installation cost of additional charger in zone i
B: Penalty rate for relocating to CSs
H: Number of weeks in the horizon time
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Variables
x;: Binary variable of installing the first charger in zone i
y;: Integer variable of the number of installed chargers in zone i
a;jr: Number of chargers in zone i allocated to the demand of zone
jattime t

Objective

o ] (g - negdd
Min Z( H

ieN

+B > aijilij)

j#IEN teT

)

The optimization problem is a location-allocation model to find
the optimal locations for facilities — charging stations - while allo-
cating the charging demands to the closest CSs. Equation 1 repre-
sents the objective function minimizing the installation costs of the
first and additional chargers (i.e., assuming that the first installation
is as twice costly as additional chargers [34]) divided by the number
of weeks in our time horizon. The second term of the objective func-
tion is a penalty on the distance between demands and allocated
CSs. This term has two roles: first, installing CSs in high demand
zones, second, jointly allocating vehicles to the installed chargers
to minimize the summation of driving distance between vehicles
and CSs.

subject to.
yi < Mix; Vie N (2)
Dir < ) aijt  VieNteT 3)
JjEN

Zaijtﬁyi VieNteT o

ieN
x; € {0,1} VieN (5)
yi€Z>0 VieN (6)
aijjt €220 VieN,jeN,teT ™)

Constraint 2 places a capacity restriction on the number of ports
in each zone due to distribution grid limitations or physical space
restrictions (i.e., we do not have access to a real-world distribution
system topology; thus for now we assign a random capacity to each
zone). It also allows installing additional chargers in a zone only if
a CS is placed there. Constraint 3 guarantees that installed CSs can
cover the whole charging demands at all time steps. The right-hand
side of the constraint is the sum of allocated ports of each installed
CS at any given time, which must not be less than the demand
of each zone at any time. Constraint 4 restricts the allocation of
each CS at any time to the number of chargers meaning that the
number of connected vehicles in each CS must not be greater than
the number of ports in that CS.

4 NUMERICAL ASSESSMENT

In order to assess the proposed method’s performance, we apply the
model to real-world data of a free-floating carsharing fleet in Berlin,
Germany. The trip dataset is used as inputs for the simulation to
calibrate trip generation parameters. The data set was collected
from November 2019 until February 2020, and covered the entire
trip set of ShareNow, comprising 684,229 trips by 897 vehicles. Each
row of the data consists of trip start and end date times, start and
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end locations (latitude and longitude), fuel level, and vehicle ID as
well as additional information like price levels that are excluded in
our study.

We discretize the business area to hexagon-shaped zones to
create distinguished areas for relocation strategy in the ABM and
candidates for CSs in both simulation and optimization models. To
describe spatial trip patterns, we visualize trip origins using a heat
map diagram (i.e., the darker zones, the higher number of trips
demands) in Figure 2. Most trips start from the city center, and
this pattern repeats for trip destinations as well (it is not shown
here). The spatial trip characteristics are essential considerations in
the simulation due to the effects on vehicle positions and charging
events.

We only include hourly patterns in the simulation model (i.e.,
not daily, weekly, or annual periodicity). Figure 3 demonstrates
that most trips occur from early morning until midnight (i.e., peak
hours are between 17 and 19 p.m). It brings an opportunity for
SAEVs to charge their batteries at night, when trip density is low
and electricity price is inexpensive (i.e., assumed using time of use
electricity tariffs). We take advantage of this temporal behavior of
users in our ABM to set a relatively higher SOC threshold at low
demand hours, avoiding a charging peak at high demand hours
(details in Section 4.1).

52.60

52.55

Latitude
o)
N
n
o

52.45

52,4010 -
Map tiles by Stamen Design, CC BY 3.0 — Map data (C) OpenStreetMap s 1
SRR

13.2

13.3 13.4

Longitude

5000 10000 15000 20000

Number of trips

25000 30000 35000

Figure 2: Heat map of trip start positions

Since there is an identified Spatio-temporal variation of trips, we
need to adjust simulation parameters accordingly. First, we fit the
trip data to an exponential distribution for each zone and each hour,
and estimate the associated parameters to develop a trip generation
in the simulation using the distribution density. This generates
trip start locations. Trip destination, given the start location and
time, is calculated as the probability of ending in each zone. Origin-
destination patterns are modeled in the simulation to reach as close
as possible to the reality.

4.1 Results

In the first step of our analysis, the simulation runs for 10 iterations
(i.e., each iteration simulates seven days of fleet operation) to take
the uncertainty of trip generation into account, and the average of
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Figure 3: Hourly patterns of the number of starting trips

results is saved as generated charging demand. We assume vehicles
are identical with a battery capacity of 50 kWh and fuel consump-
tion of 15 KWh per 100 km, based on Tesla model 3 [3]. Also, the
charging rate of chargers, is set to 11 kW, currently the most com-
mon capacity of charge points in Berlin [2]. A sample of outputs
for one iteration are shown in Table 1, where each row represents
a charging demand, giving time, location, and battery SOC.

Table 1: A sample of generated charging demands

Time Longitude, Latitude ~SOC
2020-01-01 03:22:22 13.32, 52.43 39.78
2020-01-01 04:54:12 13.46, 52.51 36.86
2020-01-01 05:43:44 13.42, 52.49 35.70
2020-01-07 23:18:36 13.28, 52.35 40.69

We aggregate the generated demands from ABM by zones and
hourly time buckets to reshape it as input for our optimization
model. The charging demands represent the number of EVs in
each zone that need charging at any time. Also, since we do not
have access to grid topology and land prices to calculate the grid
restrictions and installation costs of CSs for each zone, we generate
them randomly. It is assumed that the grid restricts each zone to
have at most 5-10 chargers. Installation and operational costs for
the first charger in each zone are randomly generated between
10000 and 15000 Euros (we assume costs of high demand areas are
higher than the other zones) [1], and the additional cost for adding
another charger is assumed to be half of the first one.

The location-allocation problem is solved for the above-stated
assumptions, and the results are pointed in Figure 4. The heat map
highlights the spatial distribution of generated charging demands
among zones, where the darker zones have more demand, following
trip demand patterns. The optimal locations of CSs, as well as
the associated sizes, are illustrated in the figure. The outcomes
heavily rely on installation costs, penalties on driving distances, and
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charging demand distribution. As a result, some CSs are installed
in the city center due to the high charging demand while others
are located in the suburbs where installation costs are lower.
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Figure 4: Heat map of generated charging demands and op-
timal sites and sizes of CSs

Since we solve the optimization problem using offline generated
charging demands for an unconstrained charging network, we need
to compare the initial charging demands with charging demands
generated by updated charging infrastructure both spatially and
temporally. If the charging results between infinite capacity net-
work and restricted network are different, we need to iteratively
solve the simulation and optimization to achieve converged solu-
tions. The comparison is shown using a box-plot in Figure 5, where
each box presents differences between the charging demands for all
zones at any hour of the day. Apart from outliers, each box’s mean
is relatively close to zero ,with a low standard deviation. Addition-
ally, we applied a t-test on the estimated charging demands, and a
p-value of 0.58 shows that there is no such a significant difference
between their averages.

Integrating the optimization outputs into the simulation, we test
CS and fleet performance for the updated charging infrastructure.
Figure 6 displays the fluctuation of CSs utilization over the entire
planning time. On average, only around 40% of the chargers are
being used by vehicles, and the maximum utilization is around
70%. This relatively low utilization is caused by the full-coverage
optimization model as our primary goal is to serve the entire charg-
ing demand and guarantee a high quality mobility service. Also,
excluding the beginning of simulation time, when vehicles are fully
charged, the other parts of the graph have a cyclic pattern indicat-
ing that charging demands follow an approximate daily pattern.
The principal source of this pattern are trip temporal distribution
as well as hourly charging strategies.

To reveal the importance of charging strategies, we assess the
simulation using two different charging strategies:

(1) The simple strategy that sends vehicles to CSs if their SOC
is below a fixed threshold (e.g., 30% of the battery capac-
ity). This strategy is used in most SAE fleet ABMs in the
literature [16, 33].
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Figure 6: Charging infrastructure utilization over the plan-
ning time

(2) A smarter version of the first strategy where the SOC thresh-
old is a function of time, adjusted by trip demands (e.g., in
this example, the threshold is between 20% and 60%).

Figure 7 compares these strategies. The solid graph represents
charging distribution of the first strategy over 24 hours, and the
dashed graph represents the second one. With a fixed strategy,
charging demand follows trip patterns due to the fixed SOC thresh-
old. On the other hand, the smart charging strategy’s goal is to
charge more during low demand hours — night hours - to keep
vehicles available during the peak time. It shifts the peak from late
evening to the midnight while the amount of peak does not in-
crease significantly. Although the smart strategy brings benefits of
charging often at off-peak hours (i.e., regarding traffic congestion,
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mobility demand and electricity consumption), these results only
show that charging strategies affect the fleet performance and CS
placement; finding an optimal charging strategy for other specific
goals is beyond the scope of this paper.
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Figure 7: Distribution of the number of charging events for
two different charging strategies

We evaluate our method across a range of fleet size scenarios.
Table 2 summarizes charging infrastructure and fleet’s performance
under a variety of fleet sizes. The most remarkable result is that
reducing the fleet size (FS) increases the required number of charg-
ers (NoC) (i.e., fleet size reduction increases the fleet utilization
(FU) leading to higher charging demands during peak demand pe-
riods and therefore a need for additional chargers). The findings
of charging infrastructure utilization (CIU) need to be interpreted
with caution. Although reducing the fleet size increases the num-
ber of chargers, there is no significant difference among charger
utilization as the additional chargers are used by more charging
demands. Regarding the fleet’s performance, as anticipated, fewer
vehicles leads to lower service quality — more waiting time (WT).
Note that waiting time is in minutes and as we do not take traffic
delays into account, these results might be optimistic. Apart from
that, the important measurement for our analysis is the difference
between scenarios, not the absolute numbers. Moreover, we test
the outputs for the smart and fixed charging strategies, and report
the missed trip percentages in the two last columns of Table 2 —
denoted by MT1 and MT2, respectively. There is a considerable
difference between these strategies concerning missed trips since
the smart strategy forces vehicles to charge mostly at night, leading
to more available vehicles during peak hours.

Our final results can be compared with a naive strategy in the
demand generation section where there is an infinite number of
chargers (i.e. 50 chargers in each zone and 4450 chargers in total). Al-
though the optimal number of chargers reduces dramatically nearly
by 98%, the fleet performance remains approximately the same.
Trips are rarely missed with fewer CSs using the smart charging
strategy, and waiting time is increased by less than 5% on average
compared to the infinite setting.

A difference of autonomous vehicles from conventional vehicles
in the CS placement problem is that the travel distance to the CSs
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Figure 8: Optimal CS sites and sizes for 900 fleet size with (a) low (b) high driving distance penalties

Table 2: Results of CS and fleet performance for different
fleet sizes

FS NoC CIU FU wT MT1 MT2
900 70 0.41 0.11 6.67 0.00 0.00
800 72 0.42 0.13 7.20 0.00 0.06
700 78 0.39 0.14 7.80 0.00 0.08
600 79 0.41 0.16 11.27  0.06 0.11

is less costly as there is no need for operators to relocate vehicles
to CSs because they automatically relocate to charge their batteries.
To clarify, we solve the optimization problem with higher penalty
factor for driving distance — the case of conventional vehicles — and
the comparison is shown in Figure 8. Although the total number
of required chargers is the same for both cases, the higher penalty
for driving distance leads to more stations with smaller sizes to
distribute more evenly across the landscape.

5 CONCLUSION AND FUTURE WORK

This paper gives an account of charging infrastructure planning for
a fleet of SAEVs, a likely feature of future road transportation sys-
tems. We devise a viable methodology, optimally siting and sizing
CSs to cover fleet charging demands while minimizing installation
and operational costs. To estimate charging demands, we employ
ABM to model mobility system complexities — vehicle assignment,
relocation and charging strategies. The generated demands are then
used to solve the location-allocation problem, using mixed-integer
linear programming to find the ideal charging infrastructure.

We apply this method to real-world data and evaluate our results
under various scenarios. Our initial finding indicates that optimal
CS location hinges on spatial distribution of charging demands
plus installation costs. Optimal CSs are located in both central
areas where demand is high, and suburbs where installation costs
are lower. Moreover, a comparison across a range of fleet sizes
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indicates that the number of vehicles affects the size of charging
infrastructure. With a smaller fleet size, vehicles utilization slightly
increases, which leads to higher peaks of charging demands and
more need of chargers. Our analysis also underlines the importance
of fleet charging strategies. In addition to a fixed rule, we tested our
ABM for a smart strategy — SOC threshold as a function of time —
that improved fleet performance. Finally, to study the significance of
autonomous mobility, we solve the optimization model for different
driving distance penalties. For conventional vehicles where the
driving costs are higher, the number of stations rises to have a
more spread charging network while the total number of chargers
remains the same.

Despite improving charging infrastructure planning for a SAE
fleet, this study contains some limitations. First, siting and sizing of
CS is solved in an optimization model while unrestricted charging
demands are generated in the simulation part without taking the
constraints of charging infrastructure into account. Connecting
simulation and optimization parts could yield more realistic re-
sults. Second, operational decisions in our ABM are made based
on flexible and straightforward rules, which may not be optimal.
Developing a more nearly-optimal decision support system for fleet
management could improve performance and avoid sub-optimal so-
lutions. One possible approach is to distribute the decision-making
to the vehicles, perhaps by having them bid in a synthetic market
for trips, charging sessions, and perhaps parking. The third short-
coming is that we have not considered different types of chargers;
some areas might benefit from fast chargers based on their time-
sensitive charging demands. Finally, this study solves the charging
station placement problem for a SAE fleet, but the charging de-
mands of a diverse EVs population (e.g., private EVs, electric public
transportation, and electric delivery fleets) would likely be more
complex. A more holistic approach to charging infrastructure plan-
ning for heterogeneous electric fleets could increase efficiency and
utilization and lower overall cost.
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