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ABSTRACT
A set of players delegate playing a game to a set of representatives,

one for each player. We imagine that each player trusts their respec-

tive representative’s strategic abilities. Thus, we might imagine that

per default, the original players would simply instruct the represen-

tatives to play the original game as best as they can. In this paper,

we ask: are there safe Pareto improvements on this default way of

giving instructions? That is, we imagine that the original players

can coordinate to tell their representatives to only consider some

subset of the available strategies and to assign utilities to outcomes

differently than the original players. Then can the original players

do this in such a way that the payoff is guaranteed to be weakly

higher than under the default instructions for all the original play-

ers? In particular, can they Pareto-improve without probabilistic

assumptions about how the representatives play games? In this

paper, we give some examples of safe Pareto improvements. We

prove that the notion of safe Pareto improvements is closely re-

lated to a notion of outcome correspondence between games. We

also show that under some specific assumptions about how the

representatives play games, finding safe Pareto improvements is

NP-complete.
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1 INTRODUCTION
Between Aliceland and Bobbesia lies a sparsely populated desert.

Until recently, neither of the two countries had any interest in the

desert. However, geologists have recently discovered that it contains

large oil reserves. Now, both Aliceland and Bobbesia would like

to annex the desert, but they worry about a military conflict that

would ensue if both countries insist on annexing.

Table 1 models this strategic situation as a normal-form game.

The strategy DM (short for “Demand with Military”) denotes a

military invasion of the desert, demanding annexation. If both

countries send their military with such an aggressive mission, the

countries fight a devastating war. The strategy RM (for “Refrain

with Mility”) denotes yielding the territory to the other country, but

building defenses to prevent an invasion of one’s original territories.

Alternatively, the countries can choose to not raise a military force
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at all, while potentially still demanding control of the desert by

sending only its leader (DL, short for “Demand with Leader”). In

this case, if both countries demand the desert, war does not ensue.

Finally, they could neither demand nor build up a mility (RL). If one

of the two countries has their military ready and the other does

not, the militarized country will know and will be able to invade

the other country. In game-theoretical terms, militarizing therefore

strictly dominates not militarizing.

Instead of making the decision directly, the parliaments of Al-

iceland and Bobbesia appoint special commissions for making this

strategic decision, led by Alice and Bob, respectively. The parlia-

ments can instruct these representatives in various ways. They can

explicitly tell them what to do – for example, Aliceland could di-

rectly tell Alice to play DM. However, we imagine that the par-

liaments trust the commissions’ judgments more than they trust

their own and hence they might prefer to give an instruction of the

type, “make whatever demands you think are best for our coun-

try” (perhaps contractually guaranteeing a reward in proportion

to the utility of the final outcome). They might not know what

that will entail, i.e., how the commissions decide what demands

to make given that instruction. However – based on their trust in

their representatives – they might still believe that this leads to

better outcomes than giving an explicit instruction.

We will also imagine these instructions are (or at least can be)

given publicly and that the commissions are bound (as if by a

contract) to follow these instructions. In particular, we imagine

that the two commissions can see each other’s instructions. Thus,

in instructing their commissions, the countries play a game with

bilateral precommitment. When instructed to play a game as best

as they can, we imagine that the commissions play that game in

the usual way, i.e., without further abilities to credibly commit or

to instruct subcommittees and so forth.

It may seem that without having their parliaments ponder equi-

librium selection, Aliceland and Bobbesia cannot do better than

leave the game to their representatives. Unfortunately, in this de-

fault equilibrium, war is still a possibility. Even the brilliant strate-

gists Alice and Bob may not always be able to resolve the difficult

equilibrium selection problem to the same pure Nash equilibrium.

In the literature on commitment devices and in particular the

literature on program equilibrium, important ideas have been pro-

posed for avoiding such bad outcomes. Imagine for a moment that

Alice and Bob will play a Prisoner’s Dilemma (rather than the De-

mand Game of Table 1). Then the default of (Defect, Defect) can be

Pareto-improved upon. Both original players (Aliceland and Bobbe-

sia) can use the following instruction for their representatives: “If

the opponent’s instruction is equal to this instruction, Cooperate;

otherwise Defect.” [9, 13, 20] Then it is a Nash equilibrium for both

players to use this instruction. In this equilibrium, (Cooperate, Co-

operate) is played and it is thus Pareto-optimal and Pareto-better

than the default.
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Player 2

DM RM DL RL

Player 1

DM −5,−5 2, 0 5,−5 5,−5
RM 0, 2 1, 1 5,−5 5,−5
DL −5, 5 −5, 5 1, 1 2, 0

RL −5, 5 −5, 5 0, 2 1, 1

Table 1: The Demand Game

In cases like the Demand Game, it is more difficult to apply this

approach to improve upon the default of simply delegating the

choice. Of course, if one could calculate the expected utility of sub-

mitting the default instructions, then one could similarly commit the

representatives to follow some (joint) mix over the Pareto-optimal

outcomes ((RM,DM), (DM, RM), (RM, RM), (DL,DL), etc.) that
Pareto-improves on the default expected utilities. However, we

will assume that the original players are unable or unwilling to

form probabilistic expectations about how the representatives play

the Demand Game, i.e., about what would happen with the default

instructions. If this is the case, then this type of Pareto-improvement

on the default is unappealing.

The goal of this paper is to show and analyze how even without

forming probabilistic beliefs about the representatives, the original

players can Pareto-improve on the default equilibrium. We will call

such improvements safe Pareto improvements (SPIs). We here briefly

give an example in the Demand Game.

The key idea is for the original players to instruct the repre-

sentatives to select only from {DL, RL}, i.e., to not raise a military.

Further, they tell them to disvalue the conflict outcome (DL,DL) as
they would disvalue the original conflict outcome of war in the de-

fault equilibrium. Overall, this means telling them to play the game

of Table 2. (Again, we could imagine that the instructions specify

Table 2 to be how Aliceland and Bobbesia financially reward Alice

and Bob.) Importantly, Aliceland’s instruction to play that game

must be conditional on Bobbesia also instructing their commission

to play that game, and vice versa. Otherwise, one of the countries

could profit from deviating by instructing their representative to

always play DM or RM (or to play by the original utility function).

The game of Table 2 is isomorphic to theDM-RM part of the orig-

inal Demand Game of Table 1. Of course, the original players know

neither how the original Demand Game nor the game of Table 2 will

be played by the representatives. However, since these games are

isomorphic, one should arguably expect them to be played isomor-

phically. For example, one should expect that (RM,DM) would be

played in the original game if and only if (RL,DL) would be played
in the modified game. However, the conflict outcome (DM,DM) is
replaced in the new gamewith the outcome (DL,DL). This outcome

is harmless (Pareto-optimal) for the original players.

Contributions. Our paper generalizes this idea to arbitrary normal-

form games and is organized as follows. In Section 2, we introduce

some notation for games and multivalued functions that we will

use throughout this paper. In Section 3, we introduce the setting of

delegated game playing for this paper and define and motivate the

concept of safe Pareto improvements in more detail. In Section 4,

Player 2’s rep.

DL RL

Player 1’s rep.

DL −5,−5 2, 0

RL 0, 2 1, 1

Table 2: A safe Pareto improvement for the Demand Game

we briefly review the the concepts of program games and program

equilibrium and show that SPIs can be implemented as program

equilibria. In Section 5, we introduce a notion of outcome corre-

spondence between games. This relation expresses the original

players’ beliefs about similarities between how the representatives

play different games. For example, in our example, the Demand

Game of Table 1 (arguably) corresponds to the game of Table 2 in

that the representatives (arguably) would play (DM,DM) in the

original game if and only if they play (DL,DL) in the new game,

and so forth. We also show some basic results (reflexivity, transitiv-

ity, etc.) about the outcome correspondence relation on games. In

Section 6 we show that the notion of outcome correspondence is

central to deriving SPIs. In particular, we show that a game Γ𝑠 is an
SPI on another game Γ if and only if there is a Pareto-improving

outcome correspondence relation between Γ𝑠 and Γ.
To derive SPIs, we need to make some assumptions about out-

come correspondence, i.e., about which games are played in similar

ways by representatives. We give two very weak assumptions of

this type in Section 7. The first is that the representatives play

isomorphic games isomorphically. The second is that the represen-

tatives’ play is invariant under the removal of strictly dominated

strategies. For example, we assume that in the Demand Game the

representatives only play DM and RM. Moreover we assume that

we could remove DL and RL from the game and the representatives

would still play the same strategies as in the original Demand Game

with certainty. Our SPI for the Demand Game can be proven using

these assumptions. Section 8 shows that determining whether there

exists an SPI based on these assumptions is NP-complete. Section 9

considers a different setting in which we allow the original players

to let the representatives choose from newly constructed strate-

gies whose corresponding outcomes map arbitrarily onto feasible

payoff vectors from the original game. In this new setting, finding

SPIs can be done in polynomial time. We conclude by discussing

the problem of selecting between different SPIs on a given game

(Section 10) and giving some ideas for directions for future work

(Section 11). For lack of space, we omit some technical detail. See

users.cs.duke.edu/~ocaspar/SPIAAMAS.pdf for a copy of this paper

with an appendix containing detailed proofs (including easy ones),

etc.

2 PRELIMINARIES
2.1 Games
We here recall some basic definitions from game theory. An𝑛-player
game is a tuple (𝐴, u) of a set 𝐴 = 𝐴1 × ... × 𝐴𝑛 of (pure) strategy
profiles (or outcomes) and a function u : 𝐴 → R𝑛 that assigns to

each outcome a utility for each player. Instead of, (𝐴, u) will also
write (𝐴1, ..., 𝐴𝑛, 𝑢1, ..., 𝑢𝑛). We say that 𝑎𝑖 ∈ 𝐴𝑖 strictly dominates
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𝑎′
𝑖
∈ 𝐴𝑖 if for all 𝑎−𝑖 ∈ 𝐴−𝑖 , 𝑢𝑖 (𝑎𝑖 , 𝑎−𝑖 ) > 𝑢𝑖 (𝑎′𝑖 , 𝑎−𝑖 ). For any given

game Γ = (𝐴, u), we will call any game Γ′ = (𝐴′, u′) a subset game
of Γ if 𝐴′

𝑖
⊆ 𝐴𝑖 for 𝑖 = 1, ..., 𝑛. Note that a subset game may assign

different utilities to outcomes than the original game. For any set of

strategies 𝑆 , we denote by Γ − 𝑆 B ((𝐴1 − 𝑆) × ...., (𝐴𝑛 − 𝑆), u) the
game that arises from Γ by removing the strategies 𝑆 for all players.

We say that some utility vector y ∈ R𝑛 is a Pareto-improvement

on (or is Pareto-better than) y′ ∈ R𝑛 if 𝑦𝑖 ≥ 𝑦′
𝑖
for 𝑖 = 1, ..., 𝑛. We

will also denote this by y ≥ y′. Note that, contrary to convention,

we allow y = y′. Whenever we require one of the inequalities to

be strict, we will say that y is a strict Pareto improvement on y′.
In a given game, we will also say that an outcome a is a Pareto-

improvement on another outcome a′ if u(a) ≥ u(a′). We say that

y is Pareto-optimal or Pareto-efficient relative to some 𝑆 ⊂ R𝑛 if

there is no element of 𝑆 that strictly Pareto-dominates y.
The Demand Game of Table 1 is an example of a game that we

will use throughout this paper. As noted earlier,DM and RM strictly

dominate DL and RL. The game of Table 2 is a subset game of the

Demand Game.

2.2 Multivalued functions
For sets𝑀 and 𝑁 , a multi-valued function Φ : 𝑀 ⊸ 𝑁 is a function

which maps each element𝑚 ∈ 𝑀 to a set Φ(𝑚) ⊆ 𝑁 . For a subset

𝑄 ⊆ 𝑀 , we define Φ(𝑄) B ⋃
𝑚∈𝑄 Φ(𝑚). Note that Φ(𝑄) ⊆ 𝑁

and that Φ(∅) = ∅. For any set𝑀 , we define the identity function

id𝑀 : 𝑀 ⊸ 𝑀 : 𝑚 → {𝑚}. Also, for two sets 𝑀, 𝑁 , we define

all𝑀,𝑁 : 𝑀 ⊸ 𝑁 : 𝑚 ↦→ 𝑁 . We define the inverse Φ−1
: 𝑁 ⊸

𝑀 : 𝑛 ↦→ {𝑚 ∈ 𝑀 | 𝑛 ∈ Φ(𝑚)}. Note that Φ−1 (∅) = ∅ for any

multi-valued function Φ. For sets𝑀, 𝑁,𝑄 and functions Φ : 𝑀 ⊸
𝑁 , Ψ : 𝑁 ⊸ 𝑄 , we define the composite Ψ ◦ Φ : 𝑀 ⊸ 𝑄 : 𝑚 ↦→
Ψ(Φ(𝑚)). As with regular functions, composition of multi-valued

functions is associative. We say that Φ : 𝑀 ⊸ 𝑁 is single-valued
if |Φ(𝑚) | = 1 for all𝑚 ∈ 𝑀 . Whenever a multi-valued function is

single-valued, we can apply many of the terms for regular functions.

For example, we will take injectivity, surjectivity, and bijectivity for

single-valued functions to have the usual meaning. We will never

apply these notions to non-single-valued functions.

3 DELEGATION AND SAFE PARETO
IMPROVEMENTS

We consider a setting in which a given game Γ is played through

what we will call representatives. For example, the representatives

could be humans whose behavior is determined or incentivized by

some contract à la the principal–agent literature [12].

We imagine that one way in which the representatives can be

instructed is to in turn play a subset game Γ𝑠 = (𝐴𝑠
1
⊆ 𝐴1, ..., 𝐴

𝑠
𝑛 ⊆

𝐴𝑛, u𝑠 ) of the original game,without necessarily specifying a strategy
or algorithm for solving such a game. We emphasize, again, that u𝑠

is allowed to be a vector of entirely different utility functions. For

any subset game Γ𝑠 , we denote by Π(Γ𝑠 ) the outcome that arises

if the representatives play the subset game Γ𝑠 of Γ. Because in

many games, it is not clear what the right choice is, the original

players might be uncertain about Π(Γ𝑠 ) for many games Γ𝑠 . We

will therefore model each Π(Γ𝑠 ) as a random variable.

The original players trust their representatives to the extent that

we take Π(Γ) to be a default way for the game to played for any Γ.

For example, in the Game of Chicken, it is not clear what the right

action is. Thus, if one can simply delegate the decision to someone

with more relevant expertise, that is the first option one would

consider.

We are interested in whether and how the original players can

jointly Pareto-improve on the default. Of course, one option is to

compute the expected utilities in the default (E [u(Π(Γ))]) and then
let the representatives play a distribution over outcomes whose

expected utility exceeds that default expected utility. However, this

is unrealistic if Γ is a complex game with multiple Nash equilibria.

For one, the precise point of delegation is that the original players

are unable or unwilling to properly evaluate Γ. Second, there is no
widely agreed upon, universal procedure for selecting an action in

the face of equilibrium selection problems.

We address this problem in a typical way. Essentially, we require

of any attempted improvement that it incurs no regret in the worst-

case. That is, we are interested in subset games Γ𝑠 that are Pareto
improvements with certainty under weak and purely qualitative

assumptions about Π.

Definition 3.1. Let Γ𝑠 be a subset game of Γ. We say Γ𝑠 is a

safe Pareto improvement (SPI) on Γ if u(Π(Γ𝑠 )) ≥ u(Π(Γ)) with
certainty. We say that Γ𝑠 is a strict SPI if furthermore, there is a

player 𝑖 s.t. 𝑢𝑖 (Π(Γ𝑠 )) > 𝑢𝑖 (Π(Γ𝑠 )) with positive probability.

4 PROGRAM EQUILIBRIUM
So far, we have been vague about the details of the strategic situation

that the original players face in instructing their representatives.

From what set of actions can they choose? How can they jointly

let the representatives play some new subset game Γ𝑠? Are SPIs
Nash equilibria of the meta game played by the representatives?

In this section, we briefly describe one way to fill this gap by dis-

cussing the concept of program games and program equilibrium

[2, 4, 6, 15, 20]. This section is essential to understanding why

SPIs are relevant. However, the remaining technical content of this

paper does not rely on this section and the main ideas presented

here are straightforward from previous work. We therefore avoid

introducing notation.

For any game Γ = (𝐴, u), the program equilibrium literature

considers the following meta game. First, each player 𝑖 chooses

from a set of computer programs. Each program then receives as

input a vector containing everyone else’s chosen program. Each

player 𝑖’s program then returns an action from 𝐴𝑖 , player 𝑖’s set of

actions in Γ. Together these actions then form an outcome a ∈ 𝐴 of

the original game. Finally, the utilities u(a) are realized according

to the utility function of Γ. The meta game can be analyzed like

any other game. Its Nash equilibria are called program equilibria.
Importantly, the program equilibria can implement payoffs not

implemented by any Nash equilibria of Γ itself. For example, in

the Prisoner’s Dilemma, both players can submit a program that

says: “If the opponent’s chosen computer program is equal to this

computer program, Cooperate; otherwise Defect.” [9, 13, 20] This

is a program equilibrium which implements mutual cooperation.

In the setting for our paper, we similarly imagine that each player

𝑖 can choose from a set of programs that in turn choose from 𝐴𝑖 .

However, the types of program that we have in mind here are more
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sophisticated than those typically considered in the program equi-

librium literature. Specifically we imagine that the programs are

executed by intelligent representatives who are themselves able to

competently choose an action for player 𝑖 in any given game Γ𝑠 ,
without the original player having to describe how this choice is

to be made. The original player may not even understand much

about this program other than that it generally plays well. Thus, in

addition to the elementary instructions used in a typical computer

program (branches, comparisons, arithmetic operations, etc.), we

allow player 𝑖 to use an instruction “Play Π𝑖 (Γ𝑠 )” in the program

she submits. To jointly let the representatives play, e.g., the SPI Γ𝑠

of Table 2 on the Demand Game of Table 1, the representatives

can both use an instruction that says, “If the opponent’s chosen

program is analogous to this one, play Π𝑖 (Γ𝑠 ); otherwise play DM”.

Assuming some minimal rationality requirements on the represen-

tatives (i.e., on how “play Π𝑖 (Γ𝑠 )” is implemented), this is a Nash

equilibrium. More generally, we can prove the following result (see

the full version for a proof).

Theorem 4.1. Let Γ be a game and Γ𝑠 be an SPI of Γ. Now consider
a program game on Γ, where each player 𝑖 can choose from a set of
computer programs that output actions for Γ. In addition to the normal
kind of instructions, we allow the use of the command “play Π𝑖 (Γ′)”
for any subset game Γ′ of Γ. Finally, assume that Π(Γ) guarantees
each player 𝑖 at least that player’s minimax utility (a.k.a. threat point)
in the base game Γ. Then Π(Γ𝑠 ) is played in a program equilibrium,
i.e., in a Nash equilibrium of the program game.

As an alternative to having the original players choose contracts

separately, we could imagine the use of jointly signed contracts

which only come into effect once signed by all players [cf. 10, 14].

5 OUTCOME CORRESPONDENCE BETWEEN
GAMES

In this section, we introduce a notion of outcome correspondence,

which we will see is essential to constructing SPIs.

Definition 5.1. Consider two games Γ = (𝐴1, ..., 𝐴𝑛, u) and Γ′ =
(𝐴′

1
, ..., 𝐴′

𝑛, u′). We write Γ ∼Φ Γ′ for Φ : 𝐴 ⊸ 𝐴′
if Π(Γ′) ∈

Φ(Π(Γ)) with certainty.

Note that Γ ∼Φ Γ′ is a statement about Π, i.e., about how the

representatives choose. Whether such a statement holds generally

depends on the specific representatives being used. In Section 7, we

describe two general circumstances under which it seems plausible

that Γ ∼Φ Γ′. For example, if two games Γ and Γ′ are isomorphic,

then one might expect Γ ∼Φ Γ′, where Φ is constructed from the 𝑛

isomorphisms of the particular action spaces.

We now state some basic facts about the relation ∼, many of

which we will use throughout this paper.

Lemma 5.2. Let Γ = (𝐴, u), Γ′ = (𝐴′, u′), Γ̂ = (𝐴, û) andΦ,Ξ : 𝐴 ⊸
𝐴′, Ψ : 𝐴′ ⊸ 𝐴.

(1) Reflexivity: Γ ∼
id𝐴

Γ, where id𝐴 : 𝐴 ⊸ 𝐴 : a ↦→ {a}.
(2) Symmetry: If Γ ∼Φ Γ′, then Γ′ ∼Φ−1 Γ.
(3) Transitivity: If Γ ∼Φ Γ′ and Γ′ ∼Ψ Γ̂, then Γ ∼Ψ◦Φ Γ̂.
(4) If Γ ∼Φ Γ′ and Φ(a) ⊆ Ξ(a) for all a ∈ 𝐴, then Γ ∼Ξ Γ′.
(5) Γ ∼

all𝐴,𝐴′ Γ
′, where all𝐴,𝐴′ : 𝐴 ⊸ 𝐴′

: a ↦→ 𝐴′.
(6) If Γ ∼Φ Γ′ and Φ(a) = ∅, then Π(Γ) ≠ a with certainty.

Items 1–3 show that ∼ has properties resembling those of an

equivalence relation. Note, however, that since ∼ is not a binary

relationship, ∼ itself cannot be an equivalence relation in the usual

sense. Item 4 states that we can make an outcome correspondence

claim less precise and it will still hold true. Item 5 states that in

the extreme, it is always Γ ∼
all𝐴,𝐴′ Γ′, where all𝐴,𝐴′ is the trivial,

maximally imprecise outcome correspondence function that confers

no information. Item 6 shows that ∼ can be used to express the

elimination of outcomes, i.e., the belief that a particular outcome

(or strategy) will never occur.

6 SAFE PARETO IMPROVEMENTS THROUGH
OUTCOME CORRESPONDENCE

We now show that as advertised, outcome correspondence is closely

tied to SPIs. The following theorem shows not only how outcome

correspondences can be used to find (and prove) SPIs. It also shows

that any SPI requires an outcome correspondence relation with

what we will call a Pareto-improving correspondence function.

Theorem 6.1. Let Γ = (𝐴, u) be a game and Γ𝑠 = (𝐴𝑠 , u𝑠 ) be a
subset game of Γ. Then Γ𝑠 is an SPI on Γ if and only if there is Φ such
that Γ ∼Φ Γ𝑠 and for all a ∈ 𝐴 it is for all a𝑠 ∈ Φ(a) the case that
u(a𝑠 ) ≥ u(a).

Proof. ⇐: By definition,Π(Γ𝑠 ) ∈ Φ(Π(Γ))with certainty. Hence,
for 𝑖 = 1, 2, 𝑢𝑖 (Π(Γ𝑠 )) ∈ 𝑢𝑖 (Φ(Π(Γ))) with certainty. Hence, by as-

sumption about Φ, with certainty, 𝑢𝑖 (Π(Γ𝑠 )) ≥ 𝑢𝑖 (Π(Γ)).
⇒: Assume that 𝑢𝑖 (Π(Γ)) ≥ 𝑢𝑖 (Π(Γ𝑠 )) with certainty for 𝑖 =

1, 2. We define Φ : 𝐴 → 𝐴𝑠
: a ↦→ {a𝑠 ∈ 𝐴𝑠 | u(a𝑠 ) ≥ u(a)}. It is

immediately obvious that Φ is Pareto-improving as required. Also,

whenever Π(Γ) = a and Π(Γ𝑠 ) = a𝑠 for any a ∈ 𝐴 and a𝑠 ∈ 𝐴𝑠
, it is

(by assumption) with certainty u(a𝑠 ) ≥ u(a). Thus, by definition of

Φ, it holds that a𝑠 ∈ Φ(a). We conclude that Γ ∼Φ Γ𝑠 as claimed. □

Note that the theorem concerns weak SPIs and therefore allows

the case where with certainty u(Π(Γ)) = u(Π(Γ𝑠 )). To show that

some Γ𝑠 is a strict SPI, we need additional information about which

outcomes occur with positive probability.

We now illustrate how outcome correspondences can be used

to derive the SPI for the Demand Game from the introduction

as per Theorem 6.1. Of course, at this point we do not have any

assumptions about when games are equivalent. We will introduce

some in the following section. Nevertheless, we can already sketch

the argument. Let Γ be the Demand Game of Table 1. First, it seems

plausible that Γ is in some sense equivalent to Γ′, where Γ′ =

Γ − {DL, RL} is the game that results from removing DL and RL

for both players from Γ. Again, strict dominance could be given as

an argument. We can formalize this as Γ ∼Φ Γ′, where Φ(𝑎1, 𝑎2) =
{(𝑎1, 𝑎2)} if 𝑎1, 𝑎2 ∈ {DM, RM} and Φ(𝑎1, 𝑎2) = ∅ otherwise. In a

second step, it seems plausible that Γ′ ∼Ψ Γ𝑠 , where Γ𝑠 is the game

of Table 2 and Ψ is the isomorphism between Γ′ and Γ𝑠 . Finally, we
can use transitivity to obtain Γ ∼Ψ◦Φ Γ𝑠 . To see that Ψ ◦Φ is Pareto-

improving for the original utility functions of Γ, notice that Φ does

not change utilities at all. Ψ maps the conflict outcome (DM,DM)
onto the outcome (DL,DL), which is better for both original players.
Other than that, Ψ, too, does not change the utilities. Hence, Ψ ◦ Φ
is Pareto-improving. By Theorem 6.1, Γ𝑠 is therefore an SPI on Γ.
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In principle, Theorem 6.1 does not hinge on Π(Γ) and Π(Γ𝑠 )
resulting from playing games. An analogous result holds for any

random variables over 𝐴 and 𝐴𝑠
. In particular, this means that

Theorem 6.1 applies also if the representatives receive other kinds of

instructions (cf. Section 4). However, it seems hard to establish non-

trivial outcome correspondences between Π(Γ) and other types

of instructions. Still, the use of more complicated instructions can

be used to derive different kinds of SPIs. For example, if there

are different game SPIs, then the original players could tell their

representatives to randomize between them in a coordinated way.

7 ASSUMPTIONS ABOUT OUTCOME
CORRESPONDENCE

To make any claims about how the original players should play the

meta-game, i.e., about what instructions they should submit, we

have to make assumptions about how the representatives choose

and (by Theorem 6.1) about outcome correspondence in particular.

We here make two fairly weak assumptions. The first is that the

representatives play two isomorphic games isomorphically.

Assumption 7.1. Let Γ = (𝐴, u) and Γ′ = (𝐴′, u′) be two games
for which there are single-valued bijections Φ𝑖 : 𝐴𝑖 → 𝐴′

𝑖
for 𝑖 =

1, ..., 𝑛 such that u(𝑎1, ..., 𝑎𝑛) = u′(Φ1 (𝑎1), ...,Φ𝑛 (𝑎𝑛)) for all a ∈ 𝐴.
Then for one tuple Φ of such bijections, Γ ∼Φ Γ′.

Similar desiderata have been discussed in the context of equi-

librium selection, e.g., by Harsanyi and Selten [8, Chapter 3.4]. In

fact, they consider a generalization in which the utilities are al-

lowed to be linear transformations of each other. Although this

generalization is extremely plausible, we omit it here for simplicity.

One could criticize Assumption 7.1 by referring to focal points

(introduced by Schelling [19, pp. 54–58]) as an example where con-

text and labels of strategies matter. A possible response might be

that in games where context plays a role, that context should be

included as additional information and not be considered part of

(𝐴, u). Assumption 7.1 would then either not apply to such games

with (relevant) context or would require one to, in some way, trans-

late the context along with the strategies. However, in this paper

we will not formalize context, and assume that there is no decision-

relevant context.

Assumption 7.2. Let Γ = (𝐴, u) be an arbitrary 𝑛-player game
where 𝐴1, ..., 𝐴𝑛 are pairwise disjoint, and 𝑎𝑖 ∈ 𝐴𝑖 be strictly domi-
nated by some other strategy 𝑎𝑖 ∈ 𝐴𝑖 . Then Γ ∼Φ Γ − {𝑎𝑖 }, where for
all 𝑎−𝑖 ∈ 𝐴−𝑖 , Φ(𝑎𝑖 , 𝑎−𝑖 ) = ∅ and Φ(𝑎𝑖 , 𝑎−𝑖 ) = {(𝑎𝑖 , 𝑎−𝑖 )} whenever
𝑎𝑖 ≠ 𝑎𝑖 .

Assumption 7.2 expresses that representatives should never play

strictly dominated strategies. Moreover, it states that we can re-

move strictly dominated strategies from a game and the resulting

game will be played in the same way by the representatives. For

example, this implies that when evaluating a strategy 𝑎𝑖 , the repre-

sentatives do not take into account how many other strategies 𝑎𝑖
strictly dominates. Assumption 7.2 also allows (via Transitivity of

∼ as per Lemma 5.2.3) the iterated removal of strictly dominated

strategies. The notion that we can (iteratively) remove strictly dom-

inated strategies is common in game theory [11, 16, 17, Section 2.9,

Chapter 12] and has rarely been questioned. It is also implicit in

the solution concept of Nash equilibrium – if a strategy is removed

by iterated strict dominance, that strategy is played in no Nash

equilibrium. However, like the concept of Nash equilibrium, the

elimination of strictly dominated strategies becomes implausible if

the game is not played in the usual way. In particular, for Assump-

tion 7.2 to hold, we will in most games Γ have to assume that the

representatives cannot in turn make credible precommitments (or

delegate to further subrepresentatives) or play the game iteratively

[1].

With Assumptions 7.1 and 7.2 we can finally state our example

SPIs formally:

Proposition (Example) 7.1. Let Γ be the Prisoner’s Dilemma
and Γ𝑠 = (𝐴𝑠

1
, 𝐴𝑠

2
, 𝑢𝑠

1
, 𝑢𝑠

2
) be any subset game of Γ with 𝐴𝑠

1
= 𝐴𝑠

2
=

{Cooperate}. Then under Assumption 7.2, Γ𝑠 is a strict SPI on Γ.

Proposition (Example) 7.2. Let Γ be the DemandGame of Table 1
and Γ𝑠 be the subset game described in Table 2. Under Assumptions 7.1
and 7.2, Γ𝑠 is an SPI on Γ. Further, if 𝑃 (Π(Γ)=(DM,DM)) > 0, Γ𝑠 is
a strict SPI.

8 COMPUTING SAFE PARETO
IMPROVEMENTS

In this section, we ask how computationally costly it is for the

original players to identify for a given game Γ a non-trivial SPI Γ𝑠 .
In particular, we ask whether a given game Γ has a non-trivial SPI

that can be proved using only Assumptions 7.1 and 7.2, Transitivity

(Lemma 5.2.3) and Theorem 6.1. Formally:

Definition 8.1. The SPI decision problem consists in deciding for

any given Γ, whether there is a sequence of outcome correspon-

dences Φ1, ...,Φ𝑘 and a sequence of subset games Γ0 = Γ, Γ1, ..., Γ𝑘

of Γ s.t.:

(1) (Non-triviality:) If we fully reduce Γ𝑘 and Γ using iterated

strict dominance (Assumption 7.2), the two resulting games

are not equal. (Of course, they are allowed to be isomorphic.)

(2) For 𝑖 = 1, ..., 𝑘 , Γ𝑖−1 ∼Φ𝑖 Γ𝑖 is valid by a single application of

either Assumption 7.1 or Assumption 7.2.

(3) For all a ∈ 𝐴, and whenever a𝑠 ∈ (Φ𝑘 ◦ Φ𝑘−1 ◦ ... ◦ Φ1) (a),
it is the case that 𝑢 (a𝑠 ) ≥ u(a).

For the strict SPI decision problem, we further require:

(4.) There is a player 𝑖 and an outcome a that survives iter-

ated elimination of strictly dominated strategies from Γ s.t.

𝑢𝑖 ((Φ𝑘 ◦ Φ𝑘−1 ◦ ... ◦ Φ1) (a)) > 𝑢𝑖 (a).
Many variants of this problem may be considered. For example,

we might generalize it to allow imposing additional properties on

the SPI. This will generally not change the computational complex-

ity of the problem. One may also wish to compute all SPIs, or –

in line with multi-criteria optimization [5, 21] – of all SPIs that

cannot in turn be safely improved upon. However, in general there

may exist exponentially many such SPIs. To retain any hope of

developing an efficient algorithm, one would therefore have to first

develop a more efficient representation scheme [cf. 18, Sect. 16.4].

Theorem 8.2. The (strict) SPI decision problem is NP-complete,
even for 2-player games.

Proposition 8.3. For games Γ with |𝐴1 | + ... + |𝐴𝑛 | =𝑚 that can
be reduced (via iterative application of Assumption 7.2) to a game
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Γ′ with |𝐴′
1
| + ... + |𝐴′

𝑛 | = 𝑙 , the (strict) SPI decision problem can be
solved in 𝑂 (𝑚𝑙 ).

The full proof is tedious (see the full version of this paper), but the

main idea is simple. To find an SPI on Γ based on Assumptions 7.1

and 7.2, one has to first iteratively remove all strictly dominated

actions to obtain a reduced game Γ′, which the representatives

would play the same as the original game. This can be done in

polynomial time. One then has to map the actions Γ′ onto the

original Γ in such a way that each outcome in Γ′ is mapped onto

a weakly Pareto-better outcome in Γ. Our proof of NP-hardness
works by reducing from the subgraph isomorphism problem, where

the payoff matrices of Γ′, Γ represent the adjacency matrices of the

graphs.

Besides being about a specific set of assumptions about ∼, note
that Theorem 8.2 and Proposition 8.3 also assume that the utility

function of the game is represented explicitly in normal form as

a payoff matrix. If we changed the game representation (e.g., to

boolean circuits, extensive form game trees, quantified boolean

formulas, or even Turing machines), this can affect the complexity

of the SPI problem [cf. 7]. In fact, even reducing a game using strict

dominance by pure strategies – which contributes only insignifi-

cantly to the complexity of the SPI problem for normal-form games

– is difficult in some game representations [3, Section 6].

9 SAFE PARETO IMPROVEMENTS UNDER
IMPROVED COORDINATION

In this section, we imagine that the players are able to simply

invent new token strategies with new payoffs that arise frommixing

existing feasible payoffs. To define this formally, we first define for

any game Γ = (𝐴, u),

C(Γ) B u(Δ(𝐴)) =
{∑
a∈𝐴

𝑝au(a)
����� ∀a∈𝐴:𝑝a∈[0, 1],∑

a∈𝐴
𝑝a = 1

}
to be the set of feasible coordinated payoff vectors of Γ, which is

exactly the convex closure of u(𝐴), i.e., of the deterministically

achievable utilities of the original game.

For any game Γ, we then imagine that in addition to subset games,

the players can let the representatives play a perfect-coordination
token game (𝐴𝑠 , u𝑠 , u𝑒 ), where for all 𝑖 ,𝐴𝑠

𝑖
∩𝐴𝑖 = ∅ and𝑢𝑠

𝑖
: 𝐴𝑠 → R

are arbitrary utility functions to be used by the representatives and

u𝑒 : 𝐴𝑠 → C(Γ) are the utilities that the original players assign to

the token strategies.

The instruction (𝐴𝑠 , u𝑠 , u𝑒 ) lets the representatives play the

game (𝐴𝑠 , u𝑠 ) as usual. However, the strategies 𝐴𝑠
are imagined

to be meaningless token strategies which do not resolve the given

game Γ. Once some token strategies a𝑠 are selected, these are

translated into some probability distribution over 𝐴, i.e., over out-

comes of the original game, thus giving rise to (expected) utilities

u𝑒 (a𝑠 ) ∈ C(Γ). These distributions and thus utilities are specified

by the original players. We here imagine in our definition of C(Γ)
that these distributions over 𝐴 could require the representatives to

correlate their choices for the original game for any given a𝑠 .

Definition 9.1. Let Γ be a game. A perfect-coordination SPI
for Γ is a perfect-coordination token game (𝐴𝑠 , u𝑠 , u𝑒 ) for Γ s.t.

u𝑒 (Π(𝐴𝑠 , 𝑢𝑠 )) ≥ u(Π(Γ)) with certainty. We call (𝐴𝑠 , u𝑠 , u𝑒 ) a

strict perfect-coordination SPI if there furthermore is a player 𝑖

for whom 𝑢𝑒
𝑖
(Π(𝐴𝑠 , 𝑢𝑠 )) > 𝑢𝑖 (Π(Γ)) with positive probability.

As an example, imagine that Γ is just the DM-RM subset game

of the Demand Game of Table 1. Then, intuitively, an SPI under

improved coordination could consist of the original players telling

the representatives, “Play as if you were playing the DM-RM subset

game of the Demand Game, but whenever you find yourself play-

ing (DM,DM), randomize [according to some given distribution]

between the other (Pareto-optimal) outcomes instead”. Formally,

𝐴𝑠
1
= {�̂�, 𝑅}, 𝐴𝑠

2
= {�̂�, 𝑅} would then consist of tokenized versions

of the original strategies. The utility functions 𝑢𝑠
1
, 𝑢𝑠

2
are then sim-

ply the same as in the original Demand Game except that they are

applied to the token strategies. E.g., u𝑠 (�̂�, 𝑅) = (2, 0). The utilities
for the original players remove the conflict outcome. For example,

the original players might specify u𝑒 (�̂�, �̂�) = (1, 1), represent-
ing that the representatives are supposed to play (RM, RM) in the

(�̂�, �̂�) case. For all other outcomes (𝑎1, 𝑎2), it must be the case

that u𝑒 (𝑎1, 𝑎2) = u𝑠 (𝑎1, 𝑎2) because the other outcomes cannot be

Pareto-improved upon. As with our earlier SPIs for the Demand

Game, Assumption 7.1 implies that Γ ∼Φ Γ𝑠 , where Φ maps the

original conflict outcome (DM,DM) onto the Pareto-optimal (�̂� ,�̂�).

Relative to the SPIs considered up until now, these new types

of instructions put significant additional requirements on how the

representatives interact. They now have to engage in a two-round

process of first choosing and observing one another’s token strate-

gies and then playing the corresponding distribution over outcomes

from the original game. Further, it must be the case that this ad-

ditional coordination does not affect the payoffs of the original

outcomes. The latter may not be the case in, e.g., the Game of

Chicken. That is, we could imagine a Game of Chicken in which

coordination is possible but that the rewards of the game change

if the players do coordinate. After all, the underlying story in the

Game of Chicken is that the positive reward (admiration from peers)

is attained precisely for accepting a grave risk.

With these more powerful ways to instruct representatives, we

can now replace individual outcomes of the default game ad libi-
tum. For example, in the reduced Demand Game, we singled out

the outcome (DM,DM) as Pareto-suboptimal and replaced it by

a Pareto-optimal outcome, while keeping all other outcomes the

same. This allows us to construct SPIs in many more games then

before.

Definition 9.2. The strict full-coordination SPI decision problem
consists in deciding for any given Γ whether under Assumption 7.1

there is a perfect-coordination SPI Γ𝑠 for Γ.

Lemma 9.3. For a given 𝑛-player game Γ and payoff vector y ∈ R𝑛 ,
it can be decided by linear programming and thus in polynomial time
whether y is Pareto-optimal in C(Γ).

Based on Lemma 9.3, Algorithm 1 decides whether there is a

strict perfect-coordination SPI for a given game Γ.
It is easy to see that this algorithm runs in polynomial time (in

the size of, e.g., the normal form representation of the game). It is

also correct: if it returns True, simply replace the Pareto-suboptimal

outcome while keeping all other outcomes the same; if it returns

False, then all outcomes are Pareto-optimal within C(Γ) and so
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Algorithm 1: An algorithm for deciding the strict perfect-

coordination SPI problem.

Data: Game Γ, set supp(Π(Γ)
1 for a ∈ supp(Π(Γ)) do
2 if u(a) is Pareto-suboptimal within C(Γ) then
3 Return True;

4 Return False;

there can be no strict SPI. We summarize this result in the following

proposition.

Proposition 9.4. Assuming supp(Π(Γ)) is known and that As-
sumption 7.1 holds, it can be decided in polynomial time whether
there is a strict perfect-coordination SPI.

From the problem of deciding whether there are strict SPIs un-

der improved coordination at all, we move on to the question of

what different perfect-coordination SPIs there are. In particular, one

might ask what the cost is of only considering safe Pareto improve-

ments relative to acting on a probability distribution over Π(Γ) and
the resulting expected utilities E [u(Π(Γ))]. We start with a lemma

that directly provides a characterization. So far, all the considered

perfect-coordination SPIs (𝐴𝑠 , u𝑠 , u𝑒 ) for a game (𝐴, u) have con-
sisted in letting the representatives play a game (𝐴𝑠 , u𝑠 ) that is
isomorphic to the original game, but Pareto-improves (from the

original players’ perspectives, i.e., u𝑒 ) at least one of the outcomes.

It turns out that we can restrict attention to this very simple type

of SPI under improved coordination.

Lemma 9.5. Let Γ = ({𝑎1
1
, ..., 𝑎

𝑙1
1
}, ..., {𝑎1𝑛, ..., 𝑎

𝑙𝑛
𝑛 }, u) be any game.

Let Γ′ be a perfect-coordination SPI on Γ. Then we can define u𝑒 with
values in C(Γ) such that under Assumption 7.1 the game

Γ𝑠 =

(
𝐴1 B {𝑎1

1
, ..., 𝑎

𝑙1
1
}, ..., 𝐴𝑛 B {𝑎1𝑛, ..., 𝑎

𝑙𝑛
𝑛 },

û : (𝑎𝑖1
1
, ..., 𝑎

𝑖𝑛
𝑛 ) ↦→ u(𝑎𝑖1

1
, ..., 𝑎

𝑖𝑛
𝑛 ), u𝑒

)
is also an SPI on Γ, with

E
[
u(Π(Γ𝑠 ))

�� Π(Γ)=a] = E [u(Π(Γ′)) �� Π(Γ)=a]
for all a ∈ 𝐴 and consequently E [u(Π(Γ𝑠 ))] = E [u(Π(Γ′))].

Because of this result, we will focus on these particular types

of SPIs, which simply create an isomorphic game with different

(Pareto-better) utilities. Note, however, that without assigning ex-

act probabilities to the distributions of Π(Γ),Π(Γ′), the original

players will in general not be able to construct a Γ𝑠 that satisfies the
expected payoff equalities. For this reason, one could still conceive

of situations in which a different type of SPI would be chosen by

the original players and the original players are unable to instead

choose an SPI of the type described in Lemma 9.5.

Lemma 9.5 directly implies a characterization of the expected

utilities than can be achieved with perfect-coordination SPIs. Of

course, this characterization depends on the exact distribution of

Π(Γ). We omit the statement of this result. However, we state the

following implication.

Corollary 9.6. Under Assumption 7.1, the set of Pareto improve-
ments that are safely achievable with perfect coordination {E[u(Γ′)] |
Γ′ is perfect-coordination SPI on Γ} is a convex polygon.

Because of this result, one can also efficiently optimize convex

functions over the set of perfect-coordination SPIs. Even without

referring to the distribution Π(Γ), many interesting questions can

be answered efficiently. For example, we can efficiently identify the

perfect-coordination SPI that maximizes the minimum improve-

ments across players and outcomes a ∈ 𝐴.

In the following, we aim to use Lemma 9.5 and Corollary 9.6 to

give maximally strong positive results about what Pareto improve-

ments can be safely achieved, without referring to exact probabili-

ties over Π(Γ). To keep things simple, we will do this only for the

case of two players. To state our results, we first need some notation:

We use PF(C) B
{
y ∈ C

�� ∄y′∈C, 𝑖 ∈ {1, ..., 𝑛} : y′ ≥ y, 𝑦′
𝑖
> 𝑦

}
to

denote the Pareto frontier of a convex polygon C (or more generally

convex, closed set). For any real number 𝑥 ∈ R, we use 𝜋𝑖 (𝑥, C(Γ))
to denote the y′ ∈ C(Γ) which maximizes 𝑦′−𝑖 under the constraint
𝑦′
𝑖
= 𝑥 . (Recall that we consider 2-player games, so 𝑦′−𝑖 is a single

real number.) Note that such a y′ exists if and only if 𝑥 is 𝑖’s utility

in some feasible payoff vector. We first state our result formally. Af-

terwards, we will give a graphical explanation of the result, which

we believe is easier to understand.

Theorem 9.7. Make Assumption 7.1. Let Γ be a two-player game.
Let y ∈ R2 be some potentially unsafe Pareto improvement on
E [u(Π(Γ))]. For 𝑖 = 1, 2, let 𝑥min/max

𝑖
= min/max𝑢𝑖 (supp(Π(Γ))).

Then:
A) If there is some element in C(Γ) which Pareto-dominates all of
supp(Π(Γ)) and if y is Pareto-dominated by an element of at least
one of the following three sets:

• 𝐿1 B the line segment between 𝜋1 (𝑥min

1
, PF(C(Γ)) and

𝜋1 (𝑥max

1
, PF(C(Γ));

• 𝐿2 B the segment of the curve PF(C(Γ)) between
𝜋1 (𝑥max

1
, PF(C(Γ)))) and 𝜋2 (𝑥max

2
, PF(C(Γ))));

• 𝐿3 B the line segment between 𝜋2 (𝑥max

2
, PF(C(Γ)) and

𝜋2 (𝑥min

2
, PF(C(Γ)).

Then there is an SPI under improved coordination Γ𝑠 such that
E [u(Π(Γ𝑠 ))] = y.
B) If there is no element in C(Γ) which Pareto-dominates all of
supp(Π(Γ)) and if y is Pareto-dominated by an element each of 𝐿1
and 𝐿3 as defined above, then there is a perfect-coordination SPI Γ𝑠

such that E [u(Π(Γ𝑠 ))] = y.

We now illustrate the result graphically. We start with Case A,

which is illustrated in Figure 1. The Pareto-frontier is the solid

line in the north and east. The points marked x indicate outcomes

in supp(Π(Γ)). The point marked by a filled circle indicates the

expected value of the default equilibrium E [u(Π(Γ))]. For some

y ∈ R2 to be a Pareto-improvement, it must be to the north-east of

the filled circle. The vertical dashed lines starting at the two extreme

x marks illustrate the application of 𝜋1 to project 𝑥
min/max

1
onto

the Pareto frontier. The dotted line between these two points is 𝐿1.

Similarly, the horizontal dashed lines starting at x marks illustrate

the application of 𝜋2 to project 𝑥
min/max

2
onto the Pareto frontier.

The line segment between these two points is 𝐿3. In this case, this
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E [𝑢1 (Π(Γ𝑠 ))]
E [𝑢1 (Π(Γ)))]

E [𝑢2 (Π(Γ)))]

E [𝑢2 (Π(Γ𝑠 ))]

Figure 1: This figure illustrates Theorem 9.7, Case A.

E [𝑢1 (Π(Γ𝑠 ))]
E [𝑢1 (Π(Γ))]

E [𝑢2 (Π(Γ))])

E [𝑢2 (Π(Γ))]

Figure 2: This figure illustrates Theorem 9.7, Case B.

line segments lies on the Pareto frontier. The set 𝐿2 is simply that

part of the Pareto frontier, which Pareto-dominates all elements of

supp(Π(Γ)), i.e., the part of the Pareto frontier to the north-east

between the two intersections with the northern horizontal dashed

line and eastern vertical dashed line.

Case B of Theorem 9.7 is depicted in Figure 2. Note that here

the two line segments 𝐿1 and 𝐿3 intersect. To ensure that a Pareto

improvement is safely achievable, the theorem requires that it is

below both of these lines.

Theorem 9.7 is proven by re-mapping each of the outcomes of

the original game as per Lemma 9.5. For example, the projection

of the default equilibrium E [u(Π(Γ))] (i.e., the filled circle) onto

𝐿1 is obtained as an SPI by projecting all the outcomes (i.e., all the

x marks) onto 𝐿1. In Case A, any utility vector y ∈ 𝐿2 that Pareto-

improves on all outcomes of the original game can be obtained

by re-mapping all outcomes onto y. Other kinds of y are handled

similarly. For brevity, we only give a detailed proof in the full

version.

As a corollary of Theorem 9.7, we can see that all (potentially

unsafe) Pareto improvements in the DM-RM subset game of the De-

mand Game of Table 1 are equivalent to some perfect-coordination

SPI. However, this is not always the case:

Proposition 9.8. There is a game Γ = (𝐴, u), representatives
Π that satisfy Assumptions 7.1 and 7.2, and an outcome a ∈ 𝐴 s.t.

𝑢𝑖 (a) > 𝑢𝑖 (Π(Γ)) for all players 𝑖 , but there is no perfect-coordination
SPI (𝐴𝑠 , u𝑠 , u𝑒 ) s.t. for all players 𝑖 , E

[
𝑢𝑒
𝑖
(Π(𝐴𝑠 , u𝑠 )

]
= 𝑢𝑖 (a).

10 THE SPI SELECTION PROBLEM
In the Demand Game, there happens to be a single non-trivial

SPI. However, in general (even without the type of coordination

assumed in Section 9) there may be multiple incomparable SPIs

that result in different payoffs for the players. If multiple SPIs

are available, the original players would be left with the difficult

decision of which SPI to demand in their instruction.

This difficulty of choosing what SPI to demand cannot be denied.

However, we would here like to emphasize that players can profit

from the use of SPIs even without addressing this SPI selection

problem. To do so, a player picks an instruction that is very compli-

ant (“dove-ish”) w.r.t. what SPI is chosen, e.g., one that simply goes

with whatever SPI the other players demand as long as that SPI

cannot further be safely Pareto-improved upon. In many cases, all

such SPIs benefit both players. For example, SPIs in bargaining sce-

narios like the Demand Game remove the conflict outcome, which

benefits all parties. Thus, a player can expect a safe improvement

even under such maximally compliant demands on the selected

SPI.

11 CONCLUSION AND FUTURE DIRECTIONS
Safe Pareto improvements are a promising new idea for delegating

strategic decision making. To conclude this paper, we discuss some

ideas for further research on SPIs.

Straightforward technical questions arise in the context of the

complexity results of Section 8. First, what impact on the complexity

does varying the assumptions have? Our NP-completeness proof is

easy to generalize at least to some other types of assumptions. It

would be interesting to give a generic version of the result. We also

wonder whether there are plausible assumptions under which the

complexity changes in interesting ways. Second, one could ask how

the complexity changes if we use more sophisticated game repre-

sentations (see the remarks at the end of that section). Third, one

could impose additional restrictions on the sought SPI. For example,

some of the players may be unable to have their representative

maximize arbitrary utility functions. We could then ask whether

there is an SPI in which only a given subset of the players adopt

different utility functions and restrictions on the set of available

strategies. Fourth, we could restrict the games under consideration.

Are there games in which it becomes easy to decide whether there

is an SPI?

It would also be interesting to see what real-world situations can

already be interpreted as utilizing SPIs, or could be Pareto-improved

upon using SPIs.
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