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ABSTRACT
Formal models of multi-robot behaviour are fundamental to plan-
ning, simulation, andmodel checking techniques. However, existing
models are invalidated by strong assumptions that fail to capture
execution-time multi-robot behaviour, such as simplistic duration
models or synchronisation constraints. In this paper we propose
a novel multi-robot Markov automaton formulation which mod-
els asynchronous multi-robot execution in continuous time. Robot
dynamics are captured using phase-type distributions over action
durations. Moreover, we explicitly model the effects of robot inter-
actions, as they are a key factor for the duration of action execution.
We also present a scalable discrete-event simulator which yields
realistic statistics over execution-time robot behaviour by sampling
through the Markov automaton. We validate our model and simula-
tor against a Gazebo simulation in a range of multi-robot navigation
scenarios, demonstrating that our model accurately captures high-
level multi-robot behaviour.
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1 INTRODUCTION
A formal high-level model of a multi-robot system (MRS) reasons
over robot decision making abstract of low-level components such
as controllers. Formal models of MRSs have been used for plan-
ning [26], simulation [11], and verification [20]. However, the suc-
cess of these techniques is limited by the accuracy of themulti-robot
model [2]. Existing multi-robot models make strong assumptions,
such as simplistic duration models, e.g. deterministic or Gaussian
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models [9, 12], robot independence [4], and synchronised execu-
tion [5]. Often, these assumptions do not correlate with execution-
time behaviour. For example, by assuming robot independence, we
ignore execution-time interactions such as congestion, which can
cause significant robot delays [34]. To accurately capture high-level
multi-robot behaviour, we require formal models that capture un-
certain action durations and robot interactions in continuous time.

In this paper, we present a multi-robot Markov automaton
(MRMA) formulation that accurately models asynchronous multi-
robot execution in continuous time. Markov automata (MA) [14]
extendMarkov decision processes (MDPs) [30] by separating instan-
taneous decision making from stochastic action durations. Robot
dynamics are abstracted into continuous stochastic processes over
action durations. We model these processes using phase-type dis-
tributions (PTDs) [6], which can be fitted from empirical data [36].
Moreover, the MRMA explicitly handles multi-robot interactions,
such as congestion, which increase uncertainty over action execu-
tion, as robots must manoeuvre around each other to resolvemotion
planning conflicts [34]. To support this, we define two approaches
for describing the context in which robot actions are executed. Com-
bining the MRMA structure with PTDs built from empirical data
enables our model to accurately capture the behaviour of robots
interacting to achieve tasks in a physical world. Though there exist
other continuous-timemodels for asynchronousMRSs [1, 26, 28, 37],
our MRMA formulation is the first to explicitly model execution-
time robot interactions and their effects on action durations.

The MRMA has numerous applications, such as in multi-agent
reinforcement learning [7], where the MRMA could act as a surro-
gate world model to speed up learning while maintaining solution
quality [18]. Moreover, the MRMA could be used for multi-robot
planning under uncertain durations and interactions [34], or as
a discrete-event simulator (DES). DESs simulate high-level multi-
robot behaviour while avoiding the computational overhead of
more realistic physics-based simulators [22]. We present a scalable
DES called CAMAS (context-aware multi-agent simulator) which
samples through the MRMA under a set of robot policies to evaluate
high-level multi-robot properties, such as the time to complete a set
of tasks, or the number of robot failures. We use CAMAS to empiri-
cally validate the MRMA. To the best of our knowledge, CAMAS is
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the first DES to explicitly model the effects of robot interactions on
action durations.

The main contributions of this work are (i) an MRMAmodel for a
team of robots interacting in a shared space, which allows for asyn-
chronous execution and duration uncertainty; (ii) a DES that sam-
ples through the MRMA to compute statistics over MRS behaviour;
and (iii) an empirical validation demonstrating that our model can
accurately capture the behaviour of an MRS simulated in Gazebo.

2 RELATEDWORK
Multi-agent MDPs (MMDPs) extend MDPs to model non-
deterministic multi-agent systems under uncertainty [5]. However,
MMDPs enforce synchronisation, assuming all actions have the
same fixed duration. In practice, robot action durations are inher-
ently continuous and uncertain, where robot interactions contribute
towards this uncertainty [34]. Therefore, to capture multi-robot be-
haviour we must model uncertainty over action duration, which re-
quires a continuous-time Markov model. Semi-MDPs use arbitrary
duration distributions for each state/action pair [35]. However, they
cannot model concurrent behaviour, limiting their use as models
for MRSs, where modelling concurrent execution is key. In contrast,
continuous-time MDPs enable concurrency, but restrict durations
to exponential delays [17]. Generalised semi-MDPs (GSMDPs) also
handle concurrency, and have been applied to MRSs [28, 37], but
are complex to define, and hard to solve. In fact, a standard solu-
tion method involves the use of PTDs, similar to our MA-based
model [37]. By modelling the MRS as an MA, we avoid the complex-
ity of GSMDPs. Our MA-based formulation is a more natural model
for MRSs, separating instantaneous decisions (robot action choice)
from durative events (the duration of such actions) represented as
exponential delays [14]. This later enables us to detect robot inter-
actions at the instant an action is triggered. Further, MA can be
used as a semantics for generalised stochastic Petri nets [13], which
have been used for modelling, analysis and planning for MRSs
under uncertain action durations [1, 10, 26]. Our approach uses
the notions of interactions and MA-based robot models introduced
in [33] and [34] respectively. There, the effects of interactions are ap-
proximated on single-robot models using congestion distributions
computed from continuous-time Markov chain models of policy
execution. This is too inaccurate for simulation or model checking,
and so in the MRMA we detect interactions in the joint state.

Physics-based simulators such as Gazebo [23], Webots [29], Cop-
peliaSim [32] and RaiSim [21] accurately reproduce system dynam-
ics for realistic simulations. However, the computational overhead
incurred when simulating complex MRSs forces the simulator to
run close to real time, which is cumbersome when evaluating high-
level multi-robot behaviour [19]. DESs such as CAMAS, which we
propose in Section 6, mitigate this complexity by abstracting away
low-level robot dynamics [3]. DESs typically use an event queue,
which facilitates asynchronous robot execution by ordering events
based on occurrence time [22]. However, stochastic durationmodels
have been limited to Gaussians or exponentials [11, 12, 16]. In this
paper, we use PTDs to model stochastic action durations, which ap-
proximate nonnegative distributions to an arbitrary precision [36].
In a DES, robot behaviour may be fixed [19], specified as finite
state machines [12], or presented as generic software libraries [3].

Similar to [11], CAMAS receives a set of policies defined over the
joint state. As the joint MRMA state models action progress, robots
can make decisions based on the progress of others.

CAMAS simulates robot behaviour by sampling through an
MRMA, similar to statistical model checking (SMC) techniques,
which evaluate properties on formal models by sampling [24]. SMC
has been applied to MRSs in [20], and MA in [8], where sample
termination conditions are given for bounded and unbounded prop-
erties. SMC techniques for MA can be directly applied to CAMAS.

3 PRELIMINARIES

Markov Automata (MA).We use MA [14] to model multi-robot
execution. MA extend MDPs to explicitly consider durative events
through exponentially timed transitions.

Definition 3.1. An MA is a tuple M = ⟨S, s̄,A,δ ,∆⟩, where S is
a finite set of states; s̄ is the initial state; A is a finite set of actions;
δ : S ×A×S → [0, 1] is an immediate transition function, such that
δ (s,a, t) returns the probability of instantaneously transitioning
to state t after executing action a in state s; and ∆ : S × S → R>0
is an exponential transition function, such that ∆(s, t) returns the
rate between states s and t .

Similar to MDP transitions, immediate transitions represent ac-
tion choices that occur instantaneously. Exponential transitions are
associated with a value ∆(s, t), representing the rate parameter of an
exponential distribution associated with their duration. The proba-
bility of the transition firing within time τ is given by 1−e−∆(s,t )·τ .
The exit rate is the sum of outgoing rates in a state s , i.e. E(s) =∑
t ∈S ∆(s, t). The probability of leaving state s within time τ is 1 −

e−E(s)·τ ; the probability of branching to state t from s is ∆(s, t)/E(s).
When a state has multiple exponential transitions, a race condition
occurs, i.e. there is a race overwhich transition fires. Race conditions
can be efficiently resolved by sampling a duration using the exit rate,
and sampling a successor state under the branching distribution.

Phase-Type Distributions (PTDs). PTDs approximate non-
negative continuous distributions using the time taken to reach
an absorbing state in a continuous-time Markov chain [6]. We use
PTDs to model action durations.

Definition 3.2. A PTD is a tupleP = ⟨S, init ,∆, sf ⟩, where S and∆
are as in an MA. Function init : S → [0, 1] gives the probability of a
state being the initial state; and sf ∈ S is the single absorbing state
such that the probability of reaching sf is 1. Further, init(sf ) = 0.

We denote the set of all PTDswith P. Moreover, subscripts denote
an element belonging to a model, e.g. SP for the state space of PTD
P, or AM for the action set of MAM. Given a set P of PTDs, we
define the disjoint union of all their state spaces as SP =

⊔
P∈P SP .

4 CONTEXT-AWARE TOPOLOGICAL MAP
We represent the environment as a context-aware topological map,
where contexts describe interactions at nodes and edges, and PTDs
model context-dependent edge durations [34]. Topological maps
simplify the environment by considering the relevant locations for
tasks, assuming continuous navigation.

Definition 4.1. A topological map is a tuple T = ⟨V ,E⟩ where V
is a finite set of nodes representing locations in the environment,
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and E ⊆ V ×V is a set of directed edges which robots can travel
on. We refer to nodes and edges as map resources, the set of which
is given by X = E ∪V .

The outcome and duration of robot actions are dependent on the
precise spatiotemporal situation in which they are executed. We
refer to this as the context.

Definition 4.2. The set of contexts is given by C =
⋃
x ∈X Cx ,

where Cx denotes the contexts observable at map resource x ∈ X .

Contexts provide a framework for representing phenomena that
affect action durations. For example, the time for a mobile robot
to navigate through an office increases during the day, due to the
increased presence of people [15], and so the context should con-
sider an action’s start time. In this paper, we describe the context
in terms of robot presence at map resources, which causes robot
interactions that affect action durations. An example interaction
mode for mobile robots is congestion, where duration uncertainty
increases as more robots traverse an edge simultaneously [34]. We
capture robot presence by counting the robots at a map resource
when an action is executed. In Section 5, we present two methods
for describing the context using these robot counts. Finally, we
define a context-aware topological map:

Definition 4.3. A context-aware topological map is a tu-
ple TC = ⟨V ,E,C, ρE ⟩, where C is the set of contexts, and
ρE : E ×C → P maps an edge and context for that edge to a PTD
over the duration for a robot to traverse that edge.

5 CONTEXT-AWARE MULTI-ROBOT
MARKOV AUTOMATA

In this section, we present an MRMA that models robot interactions
with contexts, and stochastic action durations with PTDs.

5.1 MRS Assumptions
Prior to building the MRMA, we first define our assumptions over
the joint MRS state space and robot action execution.

Definition 5.1. Let R = {r1, ..., rn } be a team ofn robots. We repre-
sent robot ri ’s local state space as Sli = Sl,1i × ...×Sl,kii . Sl, ji is a local
state feature, such as the robot’s battery level. We assume Sl,1i = V ,
whichwe shorten to Svi , i.e. a robot’s local state contains its location.
We also consider a possibly empty set of global state features shared
among robots, such as whether doors are open, which we denote
as Sд = Sд,1 × ... × Sд,m . The joint system state space is composed
of the local and global state features, S J = Sl1 × ... × Sln × Sд .

Each robot ri can navigate on the topological map and execute
a set of non-navigation actions Ni at topological nodes, such as
grasping an object or opening a door. We denote the actions ri can
execute with Ai = (E ∪ Ni ). The complete set of non-navigation
actions is denoted N =

⋃
i Ni . Non-navigation action durations are

defined by ρN : N ×C → P, where ρN (a, c) returns a PTD over the
duration of executing action a under context c . Our MRMA formal-
ism allows for stochastic outcomes, as demonstrated in Section 8.
However, to simplify notation we assume actions are determinis-
tic. We assume actions can only change the robot’s local state and
the global state features. We define the effect(s) of an action with

Figure 1: An MRS on a topological map, where squares rep-
resent robots and there is a door at v2. Robot r1 is stationary
and about to navigate along topological edge (v1,v2).

eff i : Sli ×Sд ×Ai → Sli ×Sд , where eff i (s
l
i , s

д ,a) = (t li , t
д) returns

the new local state for robot ri and the updated global state features
after ri executes action a.

Example 1. Consider Fig. 1, where robot ri ’s local state con-
tains its latest topological node and battery level bi . There is a
closed door atv2, represented in Sд as open or closed. The current
joint state is ((v1,b1), (v2,b2), (v3,b3), closed) ∈ S J . Upon reach-
ing v2, robot r3 opens the door. The effects of opening the door
are eff 3((v2,b3), closed, open_door) = ((v2,b3 −γ ), open), i.e. r3’s
battery is decreased by γ , and the door is now open.

5.2 Single-Robot MA
In this subsection we build a single-robot MA Mi for each
robot ri , which we later compose to build the MRMA. In Mi ,
robot ri chooses an action and follows exponential transitions
corresponding to the PTD for that action and a context that
assumes no other robot is present.

Definition 5.2. A single-robot MA is a tuple Mi =

⟨SMi , s̄Mi ,AMi ,δMi ,∆Mi ⟩, where SMi = Sli × S⊥P × Sд ,
with S⊥P = SP ∪ {⊥}. A state s = (sli , s

p
i , s

д) ∈ SMi comprises the
robot’s local state sli , a PTD state spi , and the global state feature val-
ues sд . The PTD state tracks progress through the robot’s current
PTD, where spi = ⊥means the robot is not executing an action. The
initial state s̄Mi = (s̄li ,⊥, s̄

д) specifies the initial local and global
state feature values, where the robot is idle. AMi = Ai , i.e. robots
can navigate along edges and execute non-navigation actions. We
write Ai (s) to denote the enabled actions in state s ∈ SMi .

Before defining the transition functions δMi and ∆Mi , we
require additional notation. For each action and context, there
is a corresponding PTD, and each PTD maps to a single action
(cf. Fig. 2a). Thus, for PTD state spi , we write P(s

p
i ) to denote the

PTD s
p
i belongs to, and a(s

p
i ) to denote the action modelled by

P(s
p
i ); we define a(spi ) = ⊥ when s

p
i = ⊥. Further, we define a

function PTDi : SMi ×AMi → P, which returns the PTD followed
by robot ri when executing action a in state s:

PTDi (s,a) =

{
ρE (a, ci (s,a)) if a ∈ Ai (s) ∩ E

ρN (a, ci (s,a)) if a ∈ Ai (s) ∩ Ni ,
(1)

where ci (s,a) is the context observed by ri immediately before
executing action a in state s . For Mi , ci (s,a) = c0,∀s ∈ SMi and
∀a ∈ Ai (s), where c0 denotes the absence of other robots. When
composing the single-robot models into the MRMA, we will mod-
ify ci to count the robots in locations that affect an action’s duration.

δMi models instantaneous action choice. When action a is
chosen in state s , the PTD state is updated to an initial state of
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PTDi (s,a), where the transition probability is the initial PTD state
probability. Formally, for s = (sli , s

p
i , s

д) and t = (t li , t
p
i , t

д):

δMi (s,a, t) =


initPTDi (s,a)(t

p
i ) if spi = ⊥ and

(sli , s
д) = (t li , t

д) and
a ∈ Ai (s)

0 otherwise.

(2)

∆Mi captures the effects of the PTDs. If the robot is in PTD
state spi , the rate to a non-absorbing state tpi ∈ S

P(spi )
is defined

according to ∆
P(spi )

. When the robot finishes a PTD, its PTD state
is set to ⊥ and its local state, as well as the global state features, are
updated. The rate of this transition is the rate to the absorbing state
according to ∆

P(spi )
. Formally, for s = (sli , s

p
i , s

д) and t = (t li , t
p
i , t

д):

∆Mi (s, t) =



∆
P(spi )

(s
p
i , t

p
i ) if P(s

p
i ) = P(t

p
i ) and

(sli , s
д) = (t li , t

д) and
t
p
i , s

f
P(tpi )

∆
P(spi )

(s
p
i , s

f
P(spi )

) if tpi = ⊥ and

eff i (s
l
i , s

д ,a(s
p
i )) = (t li , t

д)

0 otherwise.

(3)

The transition functions can be extended to handle stochastic
outcomes by using a PTD for each outcome, where upon action
choice there are immediate transitions to the initial states of these
PTDs, weighted by the outcome probability. Upon finishing a PTD,
the state update is outcome dependent. We demonstrate this in Sec-
tion 8, where we integrate robot navigation failure into the MRMA.

Example 2. Consider robot r1 in Fig. 1, where the current state
in M1 is s = ((v1,b1),⊥, closed). The only enabled action for r1
is A1(s) = {(v1,v2)}, i.e. navigate along (v1,v2). Upon choosing
action (v1,v2), r1’s state is updated to ((v1,b1), s

p
1 , closed), where

s
p
1 ∈ SρE ((v1,v2),c0), as r1 has begun to navigate. Robot r1 then
follows a sequence of exponential transitions until it arrives at v2.

5.3 Multi-Robot MA
To model asynchronous multi-robot execution and interactions, we
compose the single-robot MAMi , i ∈ J1,nK, where Ji, jK denotes
the discrete interval {i, ..., j}, j ≥ i , into an MRMAM J that models
the state features in S J and each robot’s PTD state. Each transition
models a robot’s action choice, or PTD progression. Upon action
choice, we observe interactions by counting the robots at relevant
locations in the joint state. From this, we determine the context.

Definition 5.3. A context-aware MRMA is a tuple M J =

⟨SM J , s̄M J ,AM J ,δM J ,∆M J ⟩, where SM J = (
>

i ∈J1,nK(S
l
i ×

S⊥P )) × Sд , i.e. each robot’s local and PTD state, and the global
state features. The initial state is s̄M J = (s̄li ,⊥, ..., s̄

l
n ,⊥, s̄

д), i.e.
each robot’s initial local and PTD states, and the initial global
state feature values. The action set AM J =

⋃
i AMi is the union of

each robot’s action set. Let [·]i project states in SM J onto SMi , i.e.
[(sl1, s

p
1 , ..., s

l
n , s

p
n , s

д)]i = (sli , s
p
i , s

д). Immediate transitions model
a single robot’s action choice, which changes only their local state:

δM J (s,a, t) =


δMi ([s]i ,a, [t]i ) if a ∈ AMi and

∀j , i, [s]j = [t]j

0 otherwise.
(4)

Exponential transitions model a single robot’s PTD progress,
which may change only their local state and the global state
features:

∆M J (s, t) =

{
∆Mi ([s]i , [t]i ) if ∀j , i, [s]lj = [t]lj
0 otherwise.

(5)

Recall that ci (s,a) is the context observed by robot ri when
executing action a in state s . In Equation (1), ci ignores robot
interactions. We now present two methods for redefining
ci : SM J ×AM J → C that consider interactions in MRMA states.
Each method defines the context set C differently. However, both
methods require counting how many other robots are at map
resource x in joint state s:

cnti (s,x) =
∑

k ∈J1,nK\{i }

1[L(svk ,a(s
p
k )) = x]. (6)

In the above, 1 is the indicator function and L : V × (E ∪ N ∪

{⊥}) → X represents where an action is taking place, defined as
L(v,a) = a if a = (v,v ′) ∈ E, and L(v,a) = v otherwise. In words,
navigation actions take place on the edge being navigated, and
non-navigation actions occur at the node the action is executed at.
Robots that are idle in a node are also considered: if rk is in a state
where spk is such that a(spk ) = ⊥, then L(svk ,a(s

p
k )) = s

v
k .

To support the context computation, we also model spatial de-
pendencies between map resources using map resource groups.

Definition 5.4. A map resource group function д : X → 2X maps
each map resource x to the set of map resources that affect robot
action execution at x .

Example 3. Consider Fig. 1, where robot r1 is about to navigate
along edge (v1,v2). The presence of robot r2 on (v2,v1) affects the
duration of navigating on (v1,v2), and so (v2,v1) ∈ д((v1,v2)).

Scalar Contexts. Scalar contexts describe the context with a single
number of robots, Cx = J0,n − 1K, ∀x ∈ X . To observe the context
for an action, we count the robots present anywhere in the action
location’s map resource group. Formally:

ci (s,a) =
∑

x ∈д(L(svi ,a))

cnti (s,x). (7)

In practice, we fit PTDs for each context from empirical data (cf.
Section 8). Scalar contexts provide data efficiency by aggregating
multiple interaction scenarios together. However, this lacks preci-
sion, as the context is computed as if all robots are at the action
location. To improve precision, we consider vectorising the context.

VectorContexts.Vector contexts describe the context for an action
as a set of (resource, #robots) pairs for each location in the action lo-
cation’s map resource group, Cx = 2X×J0,n−1K, ∀x ∈ X . Formally:

ci (s,a) = {(x , cnti (s,x)) | x ∈ д(L(svi ,a))}. (8)
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(a) An MRS which visualises the leftmost state in Fig. 2b. (b) The simulation run. Grey transitions are enabled but not sampled.

Figure 2: A simulation run through a 2 robot MRMA M J . Solid arrows represent immediate transitions, dashed arrows repre-
sent exponential transitions, and concentric circles represent PTD absorbing states.

Vector contexts distinguish between different interaction sce-
narios more precisely than scalar contexts by counting each map
resource separately. However, since there are many vector contexts
per action, we require large datasets to build accurate PTDs per
context. We compare scalar and vector contexts in Section 8.

Example 4. In Fig. 1, robot r1 is about to navigate edge (v1,v2), and
so we must observe the context. In this example, let д((v1,v2)) =
{(v1,v2), (v2,v1), (v3,v2)}. Since r2 is present on (v2,v1), and
r3 on (v3,v2), the scalar context is 2. The vector context is
(((v1,v2), 0), ((v2,v1), 1), ((v3,v2), 1)).

Example 5. Consider the MRS in Fig. 2a, where each robot’s local
state is its current node, Sli = V , and there are no global state fea-
tures. Robot r1 is stationary, and r2 is navigating (v3,v2) under con-
text c1. The current MRMA state is (v1,⊥,v3, µ) (cf. Fig. 2b), i.e. r1 is
idle at v1, and r2 is in PTD state µ ∈ SρE ((v3,v2),c1), coming from v3.

6 CONTEXT-AWARE MULTI-ROBOT
SIMULATION

In this section, we introduce CAMAS, a DES which simulates
robot behaviour by sampling through an MRMA. First, we define
single-robot behaviour policies, which we input to CAMAS.

Definition 6.1. A policy for a robot ri is defined as πi : SM J → Ai .
πi (s) defines which action ri will execute in state s ∈ SM J .

Next, we describe the MRMA sampling procedure. In the MRMA,
immediate transitions fire before exponential transitions. Policy πi
determines the action choice for robot ri . In states where multiple
robots need to choose an action, we apply the policy action and
sample the successor state for each robot in turn. If the current
state has no immediate transitions, we resolve the race condition
induced by the exponential transitions. Simulation time is recorded
by summing the sampled durations. The simulation termination
condition is problem dependent. For example, we may terminate
each simulation after a fixed time, or when a certain condition
over states is satisfied.

Example 6. Consider Fig. 2, which demonstrates a run through
MRMA M J , where each robot’s local state is its current node,
Sli = V . In state (v1,⊥,v3, µ) in Fig. 2b, robot r1 chooses action
π1(v1,⊥,v3, µ) = (v1,v2). Assume that the context for (v1,v2) is
c2; the corresponding PTD is shown along the edge of (v1,v2) in

Fig. 2a. The immediate transition samples the initial PTD state. From
state (v1,α ,v3, µ), r1 wins two consecutive race conditions which
progresses it along its PTD until it arrives at the new local state v2.

7 COMPLEXITY ANALYSIS

MRMA Space Complexity. First, we consider the size of the joint
system state space S J , given by O((maxi ∈J1,nK |S

l
i |)

n · |Sд |), which
is exponential in the number of robots. Next, we consider the PTD
states. Let Pmax be the largest PTD across ρE and ρN . For each
action enabled in a state, we need at most |SPmax | states for that
action. In any MRMA state, there are at most |Amax | · n enabled
actions, i.e. |Amax | actions for each robot, whereAmax is the largest
robot action set. PTD evolution in the MRMA does not affect the
local or global state features, and so from each s ∈ S J there are
at most O(|SPmax | · |Amax | · n) states in the MRMA. Therefore,
the MRMA size is O((maxi ∈J1,nK |S

l
i |)

n · |Sд | · |SPmax | · |Amax | ·n),
which remains exponential in the number of robots.

CAMAS Complexity. CAMAS employs lazy MRMA construction,
only expanding states reached during simulation runs. We consider
the complexity of a single MRMA simulation run. Let amax
be the maximum number of actions executed by a robot in a
single simulation. For each action, we visit a number of PTD
states upper bounded by |SPmax |. Therefore, a robot visits at
most O(amax · |SPmax |) states. The number of states visited per
robot is unaffected by the team size, and so we visit at most
O(n ·amax · |SPmax |) states per simulation. At each state, we sample
from a branching distribution of size n, which has worst-case
complexity O(n) [25]. Therefore, the complexity of CAMAS is
O(n2 ·amax · |SPmax |), which is quadratic in the number of robots.

8 EXPERIMENTS
In this section, we validate the MRMA by using CAMAS to predict
the behaviour of an MRS simulated in the Gazebo physics simula-
tor [23]. If CAMAS provides accurate predictions, then the MRMA
is accurately capturing high-level multi-robot behaviour. We do
this for scalar and vector contexts, and compare against two base-
lines. Further, we compare two duration data collection methods
for building the MRMA duration models in practice. Gazebo simu-
lations are run on AWS RoboMaker. All other simulations are run
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Figure 3: The warehouse environment with topological map
overlaid. Blue circles show initial robot locations.

Figure 4: The supermarket environment with topological
map overlaid. Blue circles show initial robot locations.

on Ubuntu 18.04, with an Intel Core i9-10900K CPU@3.7GHz and
32GB of RAM. All software is written in Python.

Experimental Environments. In our experiments, we model
robot interactions caused by congestion [34]. We consider two
environments: a warehouse (Fig. 3), and a supermarket (Fig. 4). The
warehouse is small, forcing congestion. The larger supermarket
allows us to evaluate the MRMA and CAMAS over longer
horizons. Both environments are rendered in Gazebo [23], and
a topological map is created for each. We observe that robots
travelling on different edges to the same node often cause
temporary blockages, increasing navigation durations. Therefore,
we define the map resource group at an edge (v1,v2) ∈ E as
д((v1,v2)) = {(v1,v2), (v2,v1),v2} ∪ {(v ′,v ′′) ∈ E | v ′′ = v2}, i.e.
the edge itself, the reverse edge, the target nodev2, and all edges that
arrive atv2. For a nodev ∈ V , д(v) = {v}∪ {(v ′,v ′′) ∈ E |v ′′ = v},
i.e. all edges that arrive at v , and v itself.

Data Collection. To capture robot dynamics, we require PTDs fit-
ted from data that is representative of real robot execution. We use
Gazebo to build action duration datasets under each context by sim-
ulating five Clearpath Jackals navigating using Move Base Flex [31]
for 24 hours. Whenever a robot traverses an edge, the duration and
context are recorded. We record the context when a robot starts an
edge as this is when we observe the context in the MRMA. We com-
pare twomethods for data collection. The first is random navigation
across the topological map. For the second, we exploit regularity

within robotic environments, such as the aisles of a warehouse (cf.
Fig. 3), by partitioning edges based on length, where equal length
edges appear in the same subset. We then target data collection on
one edge from each subset by forcing robots to follow routes con-
taining the target edge, which forces interactions to occur. The data
for a target edge is used for all edges in its subset. Random naviga-
tion observes all edges but is slow to collect data. Edge partitioning
obtains a dataset quickly, but ignores differences between equal
length edges, such as the floor surface or physical surroundings.
We fitted PTDs from the data using the method in [36].

As well as collecting duration data, we also observe the proba-
bility of successful edge navigation for each context by counting
the number of successes and failures. With this, we add uncertain
outcomes to immediate transitions in the MRMA, and sample the
outcome in CAMAS when robots choose to navigate. If a robot
fails, it stops on the failed edge and executes no further actions,
increasing congestion for any future robot navigating that edge.

During data collection, we may not observe all possible contexts.
Further, we exclude data for contexts with less than θ = 10 samples.
For contexts without data, we use the PTDs and success probabilities
of the nearest context for that action with sufficient data, which
for scalar contexts we compute using the difference in the number
of robots. The nearest vector context is computed by summing the
robot differences for each map resource in the context.

Experimental Baselines. To validate the MRMA we compare CA-
MAS to Gazebo simulations identical to those used for data collec-
tion. We also introduce two baseline models to justify our use of
contexts and stochastic action durations. Runs can be simulated
through these models identically to CAMAS. The first baseline
ignores action contexts. For each action, we fit a single PTD and
success probability using all of the data collected for that action.
Therefore, the distribution over contexts is fixed to that observed
during data collection. The second baseline assumes deterministic
action durations, but uses vector contexts. The duration for an ac-
tion and context is the mean value observed during data collection.

Experimental Problem. In both environments, robots simulate
pick and place tasks. We generate five random pick locations for
each robot in each environment, which are consistent between all
methods. After visiting the pick location, robots return to a fixed
drop-off location, shown by the blue circles in Fig. 3 and Fig. 4. The
supermarket drop-off locations are set close to each other to force
congestion. For the supermarket, we also consider a variant where
drop-off locations are randomised to compare the duration datasets
when congestion is sparse during execution. For each method, each
robot has three local state features: their location, their current
task, and whether they have reached the pick location. There are no
global state features. CAMAS and the baseline simulators terminate
when all robots have finished their 5 tasks or stopped due to failure.

EvaluatingDuration-BasedMetrics. To validate that theMRMA
accurately captures high-level multi-robot behaviour, we first
analyse how closely CAMAS predicts task durations. We compare
40 successful Gazebo runs (i.e. no robots fail) to 40 runs of CAMAS
and the baseline simulators, where all actions succeed with prob-
ability 1. In Fig. 5, we measure the sum of task durations. Further,
we compare the empirical duration distributions for each pick and
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Figure 5: The sum of task durations for each method.

Table 1: The error betweenGazebo and eachmethod, computed using the sumof Kolmogorov-Smirnov test results. Bold values
give the lowest error for that problem setup. All values are unitless.

Method CS(R) CS(E) CV(R) CV(E) NC(R) NC(E) DD(R) DD(E)
Warehouse 8.55 12.27 8.00 10.27 10.60 10.75 18.30 22.68
Supermarket (fixed drop-off) 15.57 11.80 16.60 13.15 15.90 16.28 22.85 21.90
Supermarket (randomised drop-off) 13.45 15.05 13.88 15.05 14.63 21.87 22.53 24.25
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Figure 6: CAMAS scalability results.

place task. For each method and task, we compute the error against
Gazebo using a two-sided Kolmogorov-Smirnov (KS) test, which
computes the maximum difference between empirical cumulative
distribution functions [27]. A low KS result means the distributions
are similar, i.e. the method closely predicts the task duration
distribution observed in Gazebo. We sum the task errors for each
method/problem setup and present the results in Table 1. In all plots
and tables, we write CS and CV for scalar and vector CAMAS, NC
for the no context baseline, and DD for the deterministic duration
baseline. We follow these with (R) or (E) to denote whether random
navigation or edge partitioning was used for data collection.

A CAMAS variant gives the lowest error for each problem in Ta-
ble 1, demonstrating the accuracy of the MRMA. Conversely, the
deterministic duration baseline gives the highest error. The Gazebo
simulations are inherently uncertain, due to environmental factors
and uncertainty caused by robot interactions (cf. Fig. 5). Though the
deterministic duration baseline observes action contexts, it ignores du-
ration uncertainty. The no context baseline performs well when the
distribution over contexts observed during data collection matches
what we observe during execution. However, this doesn’t gener-
alise, as highlighted when using edge partitioning, where robots

frequently travel through the target edge. This causes heavy interac-
tions during data collection which do not occur during the pick and
place tasks. Therefore, the no context baseline inaccurately models the
frequency of interactions during execution, decreasing performance.
The MRMA avoids this by using a distribution per context.

CAMAS with vector contexts gives the lowest error in the ware-
house, as in small environments we can collect sufficient data for
most contexts. Vector contexts describe the spatiotemporal situation
an action is executed in more precisely, which allows us to build
distributions that better reflect the subtleties in different interaction
scenarios. However, CAMAS with scalar contexts produces lower
errors in the supermarket problems. In large environments, we are
unlikely to gain sufficient data for many vector contexts, decreasing
the accuracy of our duration models. Scalar contexts improve the
duration models by aggregating data, thus building larger datasets.

Random navigation produces better duration models in the ware-
house. As the environment is small, we obtain large samples for
each edge and context. Further, random navigation enables contexts
to occur in a natural way that is representative of real execution. Edge
partitioning creates artificial scenarios to observe high-interaction
contexts, which creates less realistic datasets. However, edge
partitioning improves performance for the supermarket with fixed
drop-off locations, where the drop-off locations force congestion.
The environment size prevents random navigation from gaining
sufficient data for many observable contexts. Though edge
partitioning collects data from less realistic scenarios, it provides a
better view of high-interaction contexts, which improves performance.
Random navigation produces better duration models in the
supermarket with randomised drop-off locations as the data is
more representative and there are few interactions, which renders
much of the data collected by edge partitioning unnecessary.

Simulation Speed. To evaluate the scalability of CAMAS, we simu-
late 40 runs of 10 minutes for team sizes ranging from 1 to 20 robots.
Robots operate in the supermarket environment, and navigate ran-
domly during the simulation. The results in Fig. 6 demonstrate the
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Table 2: Evaluation of the failure-basedmetrics. Bold values have the closest mean to Gazebo. Highlighted cells showmethods
whose distribution is not statistically significantly different to Gazebo, according to a Mann-Whitney U test with p = 0.05.

Predictions for the average number of tasks completed, ± standard deviation.
Method Gazebo CS(R) CS(E) CV(R) CV(E) NC(R) NC(E)
Warehouse 22.07 ± 3.52 19.93 ± 3.83 19.68 ± 4.17 20.70 ± 3.61 20.08 ± 4.14 20.57 ± 3.46 19.62 ± 4.23
Supermarket (fixed drop-off) 23.72 ± 2.79 16.45 ± 4.49 17.82 ± 3.21 22.85 ± 2.14 10.38 ± 3.13 20.77 ± 3.32 15.03 ± 4.33
Supermarket (randomised drop-off) 24.13 ± 1.72 23.52 ± 2.41 17.40 ± 3.79 24.17 ± 1.54 15.70 ± 4.83 23.75 ± 1.91 15.45 ± 4.95

Predictions for the average number of robots succeeded, ± standard deviation.
Method Gazebo CS(R) CS(E) CV(R) CV(E) NC(R) NC(E)
Warehouse 3.73 ± 0.98 3.53 ± 1.06 3.45 ± 1.13 3.65 ± 1.01 3.57 ± 1.09 3.75 ± 0.83 3.37 ± 1.17
Supermarket (fixed drop-off) 4.40 ± 1.17 1.92 ± 1.42 2.75 ± 0.87 4.22 ± 0.71 0.63 ± 0.68 3.40 ± 1.11 1.98 ± 1.18
Supermarket (randomised drop-off) 4.63 ± 0.71 4.40 ± 0.88 2.67 ± 1.07 4.68 ± 0.53 2.4 ± 1.16 4.53 ± 0.64 2.23 ± 1.19

Predictions for the probability of a run being successful.
Method Gazebo CS(R) CS(E) CV(R) CV(E) NC(R) NC(E)
Warehouse 0.283 0.183 0.200 0.233 0.217 0.167 0.150
Supermarket (fixed drop-off) 0.717 0.067 0.017 0.383 0.000 0.200 0.017
Supermarket (randomised drop-off) 0.767 0.617 0.033 0.717 0.033 0.600 0.033

quadratic complexity of CAMAS. However, for 20 robots, CAMAS
still runs 22 times faster than real-time, validating it as a scalable DES.

Evaluating Failure-Based Metrics. Next, we validate the MRMA
accuracy on problems with uncertain outcomes by evaluating CA-
MAS against metrics concerning navigation failure. All methods use
the success probabilities obtained during data collection. We carry
out 60 simulations of Gazebo, CAMAS and the baseline simulators,
where navigation may fail, and evaluate 3 metrics:

(1) The average number of tasks completed. A task is completed
if a robot does not fail during its execution.

(2) The average number of robots succeeded. A robot succeeds if
it completes all 5 of its tasks.

(3) The probability of a run being successful. A run is successful
if all 5 robots complete all of their tasks without failure.

We provide results for these metrics in Table 2. We omit results
for the deterministic duration baseline as failures are modelled
identically to the MRMA with vector contexts. CAMAS with vector
contexts under the random navigation dataset produces the closest
Gazebo predictions, except for the average robots succeeded in the
warehouse. In this case, the no context baseline provides the closest
prediction, as the observed distribution over contexts during data
collection is close to that observed during the pick and place tasks.

Edge partitioning leads to poorer predictions of navigation failure,
as the failure probabilities of the target edges are shared amongst
all equal length edges, which may not hold in practice. Even if this
probability is small, if robots execute long routes the probability of
sampling a failure quickly increases.

For the same dataset, vector contexts typically lead to better
predictions than scalar contexts. Vector contexts provide a more
precise view of interactions than scalar contexts, which aggregate
multiple vector contexts.As a result, scalar contexts generalise failure
probabilities across all vector contexts it encapsulates. Though data
aggregation in the scalar context will decrease this probability, it
results in less accurate models of navigation failure.

Comparing the empirical distributions for the metrics in Table 2,
CAMAS is not always statistically similar to Gazebo, as modelling

assumptions in the MRMA prevent us from perfectly capturing
multi-robot behaviour. However, theMRMA still allows us to closely
predict the values in Table 2, while providing faster simulations.

In summary, the combined use of contexts and stochastic du-
ration models in the MRMA accurately captures high-level multi-
robot behaviour. Vector contexts precisely discriminate between
different interaction situations. However, if limited data is avail-
able, scalar contexts can provide better task duration estimates.
For duration-based metrics, edge partitioning is beneficial in large
environments with frequent robot interactions. However, problems
arise when generalising uncertain action outcomes. For smaller
environments, or those with fewer interactions, random navigation
collects more realistic execution data, improving performance.

9 CONCLUSION
In this paper we have presented an MRMA formulation that cap-
tures asynchronous multi-robot execution in continuous time. We
capture robot dynamics with PTDs, and model spatial interactions
between robots. Our model is the first to explicitly consider how
robot interactions affect action durations. Moreover, we presented
CAMAS, a scalable DES that samples through the MRMA to ac-
curately evaluate high-level multi-robot properties. Though we
have focused on robotics, the MRMA and CAMAS are applicable
to any multi-agent system. In future work, we will use the MRMA
as a model-based surrogate for reinforcement learning. Further, we
will apply statistical model checking techniques to the MRMA, and
consider generalising PTDs across different environments.
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