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ABSTRACT

Fairly dividing a set of indivisible resources to a set of agents is
of utmost importance in some applications. However, after an al-
location has been implemented the preferences of agents might
change and envy might arise. We study the following problem
to cope with such situations: Given an allocation of indivisible
resources to agents with additive utility-based preferences, is it
possible to socially donate some of the resources (which means
removing these resources from the allocation instance) such that
the resulting modified allocation is envy-free (up to one good). We
require that the number of deleted resources and/or the caused
utilitarian welfare loss of the allocation are bounded. We conduct a
thorough study of the (parameterized) computational complexity
of this problem considering various natural and problem-specific
parameters (e.g., the number of agents, the number of deleted re-
sources, or the maximum number of resources assigned to an agent
in the initial allocation) and different preference models, including
unary and 0/1-valuations. In our studies, we obtain a rich set of
(parameterized) tractability and intractability results and discover
several surprising contrasts, for instance, between the two closely
related fairness concepts envy-freeness and envy-freeness up to
one good and between the influence of the parameters maximum
number and welfare of the deleted resources.
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1 INTRODUCTION

Zarah is in big troubles due to numerous complains about an unfair
allocation of resources. Alice thinks that Bob is much better off
because of his new screen and laptop. Bob and Carol explain that
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Dan’s room is way bigger than that of everyone else and that
only his key can unlock the backdoor. Dan complains about Alice
owning a new tablet and keyboard, while everyone admires Carol’s
mouse and that she has a large fridge in her room just for herself.
While we leave it to the reader whether the protesters are Zarah’s
children, PhD students or employees, we remark that this situation
needs to be cleared quickly, because envy blocks Zarah’s protégés
from doing anything other than complaining. Since an envy-free
reallocation of the resources turned out to be impossible in her
case, Zarah implements another effective solution: She decides that
Carol’s fridge is now usable by everyone and puts it into Dan’s
room to take away his extra space while donating Alice’s keyboard
and Bob’s screen to the orphanage. Doing so, Zarah completely
eliminates all envy between her protégés.

Real-world allocations, as in our toy example, are often not envy-
free for various reasons (even in envy-free allocations, envy can
emerge if preferences change over time). While reallocating re-
sources might generally be an option, this can be very expensive or
even impossible (e.g., Alice’s room might be too small for Carol’s
fridge). Moreover, envy-free (re)allocations may simply not exist.
Nevertheless, the need for envy-freeness is undoubtful in some
applications (such as heritage or divorce disputes), so that every
possible way out should be considered. This work focuses on one of
the most natural such possibilities: Given an allocation of resources,
we ask to make the allocation envy-free (EF) or envy-free up to one
good (EF1) by donating, that is, taking away some of the resources.
Since empty allocations are envy-free but obviously unwanted, we
additionally aim for an upper bound on the number of resources
being donated and/or on the social welfare decrease.

There is also a more subtle interpretation of donating a resource
as sharing it, i.e., making it accessible to everyone. If reallocating
resources is impossible or not sufficient, then making a resource
accessible to everyone (like Carol’s fridge in our example) can be a
very attractive way out, increasing the overall social welfare.

1.1 Related Work

We are not aware of previous work capturing exactly our setting
but remark that the idea of improving the fairness of an allocation
is trending and considered in many different ways and models. We
give an overview of the most related work.

Segal-Halevi [23] studied a model similar to ours for divisible
resources, where an initial unfair allocation of a cake is given, and
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the goal is to redivide the cake to balance fairness and ownership
rights. In contrast to our work, he considered divisible resources
(in contrast to indivisible resources) and he assumed that resources
can only be reallocated and not donated (while we do not allow for
reallocating resources but only for donating them).

For indivisible resources, assuming that agents have linear pref-
erences over individual resources, Aziz et al. [3] studied the problem
of adding/deleting a minimum number of resources from a given
set of resources such that an envy-free allocation of the remaining
resources exists. Our model differs from this in that we assume ad-
ditive utility-based preferences, we modify a given initial allocation,
and we aim for bounding the number of deleted resources and/or
the decrease in social welfare. In a follow-up work to the work of
Aziz et al., Dorn et al. [12] considered the goal of modifying a given
set of resources such that there exists a proportional allocation,
also in the setting with ordinal preferences. Notably, besides the
case without an initial allocation, they also considered the variant
where an initial allocation is given as in our model.

To settle up the existence of envy-free up to any good (EFX)
allocations for indivisible resources, a series of works considered
finding partial allocations (where some resources are allowed to
remain unallocated; the unallocated resources can be interpreted as
being donated) that satisfy EFX and have good qualitative and/or
quantitative guarantees on the unallocated resources. Caragiannis
et al. [9] showed that there always exists a partial EFX allocation
whose Nash welfare is at least half of the maximum possible Nash
welfare for the full set of resources. Chaudhury et al. [11] showed
that there always exists a partial EFX allocation such that the num-
ber of unallocated resources is bounded by the number of agents
minus one. Our goal is also to find fair partial allocations with good
guarantees on the unallocated resources, but we assume that an
initial allocation is already given and we study different fairness
notions (EF and EF1).

To overcome that envy-free allocations often do not exist when
dividing a set of indivisible resources and to generally improve
existing allocations, many more approaches have been considered,
including making a few resources divisible or sharable [6–8, 22, 24],
subsidies and money transfers [1, 10, 19, 21], or reallocation of some
resources [2, 16, 18].

1.2 Our Contributions

We study the complexity of EF/EF1 By Donating Goods (EF-/EF1-
DG), where given an initial allocation and two integers 𝑘− and ℓ+

the question is whether we can donate at most 𝑘− resources such
that the resulting allocation satisfies EF/EF1 and has utilitarian
welfare at least ℓ+. Apart from this we also consider two special
cases of this problem: EF-/EF1-DG (#) where we set ℓ+ to zero and
EF-/EF1-DG (e) where we set 𝑘− to the number𝑚 of resources.

We split the paper into two parts. First, in Section 3, we start
with the case of binary-encoded valuations. Second, in Section 4
we consider the computationally easier case with unary-encoded
valuations (which is quite realistic to assume, as inmost applications
valuations should be “small” numbers). All hardness results for
unary valuations directly imply hardness for binary valuations and
all algorithms for binary valuations are also applicable to unary
valuations. Moreover, notably, some of our algorithmic results from

Table 1: Overview of our results for agents with identical

binary valuations. Note that all hardness results already

hold for only two agents. Additionally, we prove in Propo-

sition 3.6 that for non-identical binary valuations EF-DG (#)

is W[1]-hard with respect to 𝑘− andW[1]-hard with respect

to 𝑘+ even for only two agents.

DG (#) DG (e) DG

EF1 O(|I| +𝑚 log𝑚) (Th. 3.2) NP-h. (Pr. 3.3) O((ℓ+)6 + |I|) (Th. 3.4)
O((ℓ−)6 + |I|) (Th. 3.4)
W[1]-h. wrt. 𝑘− (Pr. 3.5)
NP-h. for 𝑘+ = 0 (Pr. 3.3)

EF NP-h. for 𝑘+ = 1 (Th. 3.7) NP-h. for ℓ+ = 1 (Th. 3.7) O((ℓ−)5 + |I|) (Th. 3.8)
W[1]-h. wrt. 𝑘− (Th. 3.7)

Section 4 initially designed for unary valuations also work for
binary valuations.

In Section 3, where we assume binary valuations, we mostly fo-
cus on the natural special case of identical valuations, as otherwise
our problems remain computationally intractable even under quite
severe restrictions. We conduct a complete parameterized analysis
taking into account the following five parameters: (i) the number 𝑛
of agents, (ii) the number 𝑘− of donated resources, (iii) the number
𝑘+ of remaining resources, (iv) the summed welfare ℓ− of donated
resources, and (v) the summed welfare ℓ+ of the resulting allocation.
An overview of our results from this part can be found in Table 1:
Considering EF and identical binary valuations, we prove that our
problems are NP-hard even for constant values of 𝑛, ℓ+, and 𝑘+. For
the dual parameters 𝑘− and ℓ−, while EF-DG (#) is W[1]-hard with
respect to 𝑘−, the general problem EF-DG is solvable in time poly-
nomial in ℓ−. Switching from EF to EF1 leads to further tractability
results: EF1-DG (#) becomes solvable in polynomial-time, while
EF1-DG is now solvable in time polynomial in ℓ− or ℓ+. Our re-
sults reveal several interesting contrasts. First, they suggest that
for identical valuations computational problems for EF1 are easier
to solve than for EF, which on a high-level is due to the fact that
there always exists an EF1 sub-allocation where the least happy
agents in the initial allocation get their full bundle (i.e., they keep
their original bundle). Second, at least for EF1, DG (#) is easier to
solve thanDG (e). Third, the parameters ℓ− and ℓ+ seem to be more
powerful than the related parameters 𝑘− and 𝑘+.

In Section 4, where we assume that the agents have unary-
encoded arbitrary (non-identical) valuations, in addition to the
parameters considered in the first part, we also consider (vi) the
maximum number 𝑑 of resources allocated to an agent in the initial
allocation, (vii) the maximum number𝑤𝑎 of resources an agent val-
ues as non-zero, (viii) the maximum number𝑤𝑟 of agents that value
a resource as non-zero, and (ix) the maximum utility 𝑢∗ that an
agent assigns to a resource.1 An overview of these results grouped
by the involved parameters can be found in Tables 2 to 4 in Sec-
tion 4. We discuss the results in detail in Section 4, but provide four
highlights already here:

1We do not consider these parameters in the first part because the parameter 𝑤𝑟 is
upper-bounded by the number of agents. Moreover, for the parameter 𝑢∗ it makes no
difference whether valuations are encoded in binary or unary. For the parameters 𝑑
and 𝑤𝑎 , our hardness results and some of our algorithmic result from the second part
translate to the first part.
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• We identify two relevant cases where one of our problems
is fixed-parameter tractable in one of our parameters alone:
EF-/EF1-DG (e) is fixed-parameter tractable with respect
to 𝑑 or 𝑤𝑎 (Theorem 4.4). In contrast to this, EF-/EF1-DG
(#) is NP-hard for constant 𝑑 +𝑤𝑎 +𝑤𝑟 for 0/1-valuations
(Theorem 4.3). Notably, in all other cases, the complexity of
EF-DG (e) and EF-DG (#) and of EF1-DG (e) and EF1-DG (#)
are the same.

• Even for unary-encoded valuations, our problems are mostly
computationally intractable. With the above mentioned ex-
ception, none of our parameters alone is sufficient to estab-
lish fixed-parameter tractability. Nevertheless, we still iden-
tify some tractable and realistic cases, for instance, when the
number of agents and the maximum utility value is bounded
(Proposition 4.6) or when the number/welfare of the deleted
resources and the maximum number of resources assigned to
an agent in the initial allocation is bounded (Proposition 4.9).

• In contrast to the binary case, the number 𝑘− of resources
to delete is a more powerful parameter than the welfare ℓ−
of the deleted resources, as for some parameter combina-
tions involving 𝑘− our general problem is fixed-parameter
tractable but not for the respective combination involving ℓ−.

• The number 𝑘+/welfare ℓ+ of the remaining resources is
a less powerful parameter than the number 𝑘−/welfare ℓ−
of the deleted resources, because 𝑘+/ℓ+ constitutes a lower
bound (on the remaining resources/welfare), while 𝑘−/ℓ− is
an upper bound (on the deleted resources/welfare).

Several proofs (marked with [⋆]) are deferred to the full version [5].

2 PRELIMINARIES

Resource Allocation. We consider a set 𝐴 = {𝑎1, . . . , 𝑎𝑛} of 𝑛
agents and a set 𝑅 = {𝑟1, . . . , 𝑟𝑚} of𝑚 resources. We assume that the
agents have additive and cardinal preferences: For each agent 𝑎 ∈ 𝐴

and resource 𝑟 ∈ 𝑅, let𝑢𝑎 (𝑟 ) ∈ N0 denote the utility agent 𝑎 assigns
to resource 𝑟 . In this context, we also say that 𝑎 values 𝑟 as 𝑢𝑎 (𝑟 ).
We denote as 𝑢∗ the maximum utility value an agent assigns to a
resource, i.e., 𝑢∗ := max𝑎∈𝐴,𝑟 ∈𝑅 𝑢𝑎 (𝑟 ). Further, for a subset 𝑅′ ⊆ 𝑅

of resources, we set 𝑢𝑎 (𝑅′) =
∑
𝑟 ∈𝑅′ 𝑢𝑎 (𝑟 ). We say that agents

have binary/unary valuations if for all 𝑎 ∈ 𝐴 and 𝑟 ∈ 𝑅 the utility
values 𝑢𝑎 (𝑟 ) in the input are encoded in binary/unary. Further, we
say that agents have 0/1-valuations if 𝑢𝑎 (𝑟 ) ∈ {0, 1} for all 𝑎 ∈ 𝐴

and 𝑟 ∈ 𝑅.
In our parameterized analysis, we denote as 𝑤𝑎 ∈ [𝑚] the

maximum number of resources an agent values as non-zero, i.e.,
𝑤𝑎 := max𝑎∈𝐴 |{𝑟 ∈ 𝑅 | 𝑢𝑎 (𝑟 ) > 0}| and as 𝑤𝑟 ∈ [𝑛] the max-
imum number of agents that value a resource as non-zero, i.e.,
𝑤𝑟 := max𝑟 ∈𝑅 |{𝑎 ∈ 𝐴 | 𝑢𝑎 (𝑟 ) > 0}|.

An allocation 𝜋 of resources to agents is a function 𝜋 : 𝐴 ↦→ 2𝑅
such that 𝜋 (𝑎) and 𝜋 (𝑎′) are disjoint for 𝑎 ≠ 𝑎′ ∈ 𝐴. For an
agent 𝑎 ∈ 𝐴 and an allocation 𝜋 , 𝜋 (𝑎) ⊆ 𝑅 is the set of resources
assigned to agent 𝑎 in 𝜋 . We also refer to 𝜋 (𝑎) as 𝑎’s bundle in 𝜋 . For
readability, we always assume that initial allocations are complete,
i.e., for every 𝑟 ∈ 𝑅 there exists an agent 𝑎 ∈ 𝐴 such that 𝑟 ∈ 𝜋 (𝑎).
We refer to

∑
𝑎∈𝐴 𝑢𝑎 (𝜋 (𝑎)) as the (utilitarian) welfare of 𝜋 .

For two agents 𝑎 ≠ 𝑎′ ∈ 𝐴 and an allocation 𝜋 , we say that
agent 𝑎 envies agent 𝑎′ in 𝜋 if 𝑎 prefers 𝑎′’s bundle to its own bundle,

i.e., 𝑢𝑎 (𝜋 (𝑎′)) > 𝑢𝑎 (𝜋 (𝑎)). Further, we say that agent 𝑎 envies

agent 𝑎′ up to one good in 𝜋 if, for all resources 𝑟 ∈ 𝜋 (𝑎′), 𝑎 prefers
𝜋 (𝑎′) \ {𝑟 } to 𝜋 (𝑎), i.e.,min𝑟 ∈𝜋 (𝑎′) 𝑢𝑎 (𝜋 ′(𝑎) \ {𝑟 }) > 𝑢𝑎 (𝜋 (𝑎)). An
allocation is envy-free (EF) [envy-free up to one good (EF1)] if there
is no agent that envies another agent [up to one good].

Envy-Freeness by Donating Goods. We now define our central
problem. In the following, for clarity, as donating a resource cor-
responds to deleting the resource from the instance, we say that a
resource is deleted if it is donated.
EF/[EF1] by Donating Goods (EF-DG/[EF1-DG])
Input: Given a set 𝐴 of agents, a set 𝑅 of resources, an initial
allocation 𝜋 of resources to agents, and integers 𝑘− and ℓ+.
Question: Is it possible to delete at most 𝑘− resources from 𝜋

such that the resulting allocation 𝜋 ′ is envy-free [up to one
good] and has utilitarianwelfare at least ℓ+, i.e., 𝜋 ′(𝑎) ⊆ 𝜋 (𝑎) for
all 𝑎 ∈ 𝐴,

∑
𝑎∈𝐴 |𝜋 (𝑎)\𝜋 ′(𝑎) | ≤ 𝑘−, and

∑
𝑎∈𝐴 𝑢𝑎 (𝜋 ′(𝑎)) ≥ ℓ+?

We also consider two special cases of this general problem. That
is, the so-called number variant (EF-DG (#)/EF1-DG (#)) where we
only have a bound on the number of deleted resources, i.e., ℓ+ = 0,
and the so-called welfare variant (EF-DG (e)/EF1-DG (e)) where
we only have a bound on the utilitarian welfare of the resulting allo-
cation, i.e., 𝑘− =𝑚. For notional convenience, we write EF-DG (#/e)
and EF1-DG (#/e) to refer to both the number and welfare variant.

Apart from 𝑘− and ℓ+, we also consider the respective dual pa-
rameters. That is, the minimum number 𝑘+ :=𝑚 −𝑘− of remaining
resources and the maximum welfare ℓ− :=

∑
𝑎∈𝐴 𝑢𝑎 (𝜋 (𝑎)) − ℓ+ of

the deleted resources. In addition, we consider the maximum num-
ber 𝑑 := max𝑎∈𝐴 |𝜋 (𝑎) | of resources that an agent holds in the
initial allocation 𝜋 as a parameter. Throughout the paper, we as-
sume that basic arithmetic operations (i.e., addition and subtraction)
of natural numbers can be performed in constant time.

Auxiliary Problems. We introduce problems from which or to
which we reduce. Given positive integers 𝑥1, 𝑥2, . . . , 𝑥𝜈 , and 𝑆 , Sub-
set Sum is the problem to decide whether there is a set 𝐼 ⊆ [𝜈]
such that

∑
𝑖∈𝐼 𝑥𝑖 = 𝑆 . Partition is the Subset Sum problem with

𝑆 = 1
2
∑
𝑖∈[𝜈 ] 𝑥𝑖 . Both Subset Sum and Partition are NP-hard

assuming that numbers are encoded in binary [20]. The Minimum
Size Subset Sum problem (resp. the Maximum Size Subset Sum
problem) is to find the size of the minimum (resp. maximum) subset
whose sum is equal to 𝑆 . Subset Sum andMinimum/Maximum Sub-
set Sum can be solved in O(𝜈𝑆) time by dynamic programming [4].
Subset Sum with the goal of finding a subset of size exactly 𝑘 (i.e.,
|𝐼 | = 𝑘) is called 𝑘-Sum. It is W[1]-hard with respect to 𝑘 [13].

We reduce some of our problems to:
Multiple-Choice Knapsack
Input: A capacity 𝑐 , an integer 𝑘 , and ℓ sets 𝑆𝑖 (𝑖 ∈ [ℓ]), each
resource 𝑗 ∈ 𝑆𝑖 has a profit 𝑝𝑖, 𝑗 and a weight𝑤𝑖, 𝑗 .
Question: Is it possible to choose for each 𝑖 ∈ [ℓ] one resource 𝑗𝑖
from 𝑆𝑖 such that

∑
𝑖∈[ℓ ] 𝑤𝑖, 𝑗𝑖 ≤ 𝑐 and

∑
𝑖∈[ℓ ] 𝑝𝑖, 𝑗𝑖 ≥ 𝑘?

TheMultiple-Choice Knapsack problem can be solved in O(𝑐 ·∑
𝑖∈[ℓ ] |𝑆𝑖 |) time by dynamic programming [14].

3 BINARY VALUATIONS

In this section, we assume that the valuations of agents are encoded
in binary and mostly (except from Section 3.2) focus on situations
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where agents have identical valuations (as we obtain NP-hardness
even in this case). We start by considering EF1 (Sections 3.1 and 3.2)
and afterwards turn to EF (Section 3.3).

For identical valuations, we assume that there are no resources
that are valued as 0 by all agents, as otherwise we can remove them
and update 𝑘+ and𝑚 to get an equivalent instance. For identical
valuations, we will call the utility function of all agents 𝑢.

3.1 EF1 and Identical Valuations

We now analyze EF1-DG and its two special cases EF1-DG (#/e)
assuming that agents have identical binary valuations and identify
several tractable cases for these problems. We start with two gen-
eral results concerning EF1 allocations. First, we observe that as
valuations are identical, an agent 𝑎 is envied by another agent up
to one good if 𝑎 is envied by a least happy agent up to one good:

Observation 1. For identical valuations, an allocation is EF1 if

and only if the agents with the minimum utility in the allocation do

not envy other agents up to one good.

Moreover, for identical valuations, if we are given an EF1 alloca-
tion 𝜋 ′ with 𝜋 ′(𝑎) ⊆ 𝜋 (𝑎) for each 𝑎 ∈ 𝐴, then from this we can
construct an EF1 allocation where all agents 𝑎 ∈ 𝐴 get at least 𝜋 ′(𝑎)
and all agents 𝑎 ∈ 𝐴 that have the minimum utility in 𝜋 get their
full bundle 𝜋 (𝑎) in 𝜋 ′. This can be done by successively adding
for an agent 𝑎 ∈ 𝐴 who has the minimum utility under 𝜋 ′ and
fulfills 𝜋 (𝑎) ≠ 𝜋 ′(𝑎) an arbitrary resource from 𝜋 (𝑎) \ 𝜋 ′(𝑎).

Lemma 3.1 (⋆). Let𝐴0 be the set of agents that have the minimum

utility in the initial allocation. For identical valuations, if there exists

a solution for an instance EF1-DG (or EF1-DG (#) or EF1-DG (e)),
then there is a solution such that all agents from 𝐴0 get their full

initial bundle and all other agents have higher utility than them.

Using Observation 1 and Lemma 3.1, one can reduce EF1-DG (#)
to finding for each agent 𝑎 ∈ 𝐴 \ 𝐴0 a minimum size set 𝑃𝑎 ⊆
𝜋 (𝑎) such that deleting it makes agents from 𝐴0 no longer envy
agent 𝑎 up to one good. This problem can be solved using a simple
greedy algorithm by moving the most valuable resources from 𝜋 (𝑎)
to 𝑃𝑎 until all envy is resolved. This establishes that EF1-DG (#) is
polynomial-time solvable for identical binary valuations:

Theorem 3.2 (⋆). For identical valuations, EF1-DG (#) can be

solved in O(|I| +𝑚 log𝑚) time.

In contrast to this, for EF1-DG (e), solving said subproblem of
finding for each agent who is not part of 𝐴0 a subset of its initial
bundle with minimum summed welfare such that deleting it makes
agents from 𝐴0 no longer envy the agent up to one good basically
requires solving an instance of Subset Sum. Indeed, by reducing
from Partition, we can show that in contrast to EF1-DG (#), EF1-
DG (e) is NP-hard for two agents with identical binary valuations:

Proposition 3.3 (⋆). For identical binary valuations, EF1-DG (e)
with 𝑛 = 2 agents is NP-hard.

Our hardness reduction from Proposition 3.3 does not have any
implications on the parameterized complexity of EF1-DG (e) with
respect to ℓ+ respectively ℓ−. In fact, parameterized by ℓ+ respec-
tively ℓ−, EF1-DG (e) (and even the general problem EF1-DG) be-
come tractable. This stands in contrast with the previously proven

NP-hardness for EF1-DG (e), which implies that EF1-DG is NP-
hard for 𝑘+ = 0. While this contrast between 𝑘+ and ℓ+ might look
surprising at first glance, recall that ℓ+ bounds the otherwise binary
encoded welfare of the deleted resources. Thus, it is quite intuitive
that ℓ+ is more powerful than 𝑘+.

Theorem 3.4 (⋆). For identical valuations, EF1-DG can be solved

in O((ℓ+)6 + |I|) or O((ℓ−)6 + |I|) time.

Proof for ℓ+. We begin with some pre-processing. Let 𝑢0 =

min𝑎∈𝐴 𝑢 (𝜋 (𝑎)). If 𝑢0 = 0, in an EF1 allocation 𝜋 ′, each agent can
hold at most one resource with non-zero value. Thus, in an optimal
solution, each agent gets assigned its most valuable resource. In the
following, we assume 𝑢0 ≥ 1. Using Theorem 3.2, we can get an
EF1 allocation 𝜋 ′ with the maximum number of resources left but
without any guarantee on the welfare of 𝜋 ′. If 𝑢0 ≥ ℓ+ or 𝑛 ≥ ℓ+,
then

∑
𝑎∈𝐴 𝑢 (𝜋 ′(𝑎)) ≥ 𝑛𝑢0 ≥ ℓ+ is guaranteed by Lemma 3.1. In the

following we assume 0 < 𝑢0 < ℓ+ and 𝑛 < ℓ+. Let 𝑟∗ be the resource
with maximum value and 𝑎∗ be the agent such that 𝑟∗ ∈ 𝜋 (𝑎∗). If
𝑢 (𝑟∗) ≥ ℓ+, then either 𝑟∗ ∈ 𝜋 ′(𝑎∗) and hence∑𝑎∈𝐴 𝑢 (𝜋 ′(𝑎)) ≥ ℓ+,
or 𝑟∗ ∉ 𝜋 ′(𝑎∗), in which case we can replace the most valuable
resource from 𝜋 ′(𝑎∗) with 𝑟∗. In both cases, we have constructed a
solution. In the following, we assume that 𝑢 (𝑟∗) < ℓ+.

Now, we turn to the main part of the algorithm. Let𝐴0 be the set
of agents who have the minimum utility in the initial allocation and
𝐴∗ ⊆ 𝐴 \𝐴0 be the set of agents that are envied by agents in 𝐴0 up
to one good. According to Observation 1 and Lemma 3.1, for each
𝑎𝑖 ∈ 𝐴∗, we need to find a set 𝑅𝑖 ⊆ 𝜋 (𝑎𝑖 ) such that by keeping all
resources from 𝑅𝑖 and deleting all resources from 𝜋 (𝑎𝑖 )\𝑅𝑖 , agent 𝑎𝑖
will not be envied by agents in𝐴0 up to one good, and

∑
𝑎𝑖 ∈𝐴∗ |𝑅𝑖 | ≥

�̃�+ and
∑
𝑎𝑖 ∈𝐴∗ 𝑢 (𝑅𝑖 ) ≥ ℓ̃+, where �̃�+ := 𝑘+ −∑

𝑎𝑖 ∈𝐴\𝐴∗ |𝜋 (𝑎𝑖 ) | and
ℓ̃+ := ℓ+ − ∑

𝑎𝑖 ∈𝐴\𝐴∗ 𝑢 (𝜋 (𝑎𝑖 )). We will solve this problem in two
steps. In Step 1, for each agent 𝑎𝑖 ∈ 𝐴∗ we compute the set of all
possible 𝑅𝑖 such that after deleting 𝜋 (𝑎𝑖 ) \ 𝑅𝑖 no agent envies 𝑎𝑖
up to one good. Then, in Step 2 we check whether it is possible to
select one candidate 𝑅𝑖 for each 𝑎𝑖 ∈ 𝐴∗ such that

∑
𝑎𝑖 ∈𝐴∗ |𝑅𝑖 | ≥ �̃�+

and
∑
𝑎𝑖 ∈𝐴∗ 𝑢 (𝑅𝑖 ) ≥ ℓ̃+.

Step 1: Fix some agent 𝑎𝑖 ∈ 𝐴∗. We want to guess the utility 𝑡
of 𝑢 (𝑅𝑖 ) and the utility 𝑡1 of the most valuable resource in 𝑅𝑖 . Let
𝑡2 := 𝑡 − 𝑡1 be the utility of the remaining resources in 𝑅𝑖 . By EF1,
we have 𝑡2 ≤ 𝑢0 < ℓ+. Since 𝑡1 ≤ 𝑢 (𝑟∗) < ℓ+, we have 𝑡 < 2ℓ+.
Thus, we can iterate over at most 2(ℓ+)2 different pairs (𝑡, 𝑡1). For
each (𝑡, 𝑡1) such that 𝑡2 = 𝑡 − 𝑡1 ≤ 𝑢0 < ℓ+, we find an arbitrary
resource 𝑟0 ∈ 𝜋 (𝑎𝑖 ) with 𝑢 (𝑟0) = 𝑡1 (if there is no such resource,
then we can skip this pair), and then, we want to compute the
maximum size of a subset 𝑅𝑖 = 𝑅′

𝑖
∪{𝑟0} such that 𝑅′

𝑖
⊆ 𝜋 (𝑎𝑖 ) \ {𝑟0}

and 𝑢 (𝑅′
𝑖
) = 𝑡2. This is an instance of the Maximum Size Subset

Sum problem (see Section 2). Since 𝑢 (𝑅′
𝑖
) = 𝑡2 < ℓ+, for each

value 𝑣 ∈ [1, ℓ+], set 𝑅′
𝑖
can contain at most ℓ+ resources with

value 𝑣 (recall that we do not have resources valued as 0). Thus, we
can pick a subset 𝑆𝑖 ⊆ 𝜋 (𝑎𝑖 ) \ {𝑟0} of resources with |𝑆𝑖 | ≤ (ℓ+)2
such that we only need to include resources from 𝑆𝑖 in 𝑅′

𝑖
. We then

construct an instance of Maximum Size Subset Sum with target
value 𝑡2 < ℓ+ and set {𝑢 (𝑟 ) | 𝑟 ∈ 𝑆𝑖 } with |𝑆𝑖 | ≤ (ℓ+)2. Using
dynamic programming, the instance can be solved in O((ℓ+)3)
time. We need to do this for each agent 𝑎𝑖 ∈ 𝐴∗ and each pair (𝑡, 𝑡1),
separately. As we have 𝑛 < ℓ+ agents and, as observed above,
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2(ℓ+)2 valid pairs, this can be done in O((ℓ+)6) time. For each
agent 𝑎𝑖 ∈ 𝐴∗, we get a family 𝐿𝑖 of candidate sets (each such set
consists of the resources selected by the dynamic program and 𝑟0).
For all candidate sets in 𝐿𝑖 with the same utility, we just keep one
candidate set of maximum cardinality. Thus, for each 𝑡 ∈ [1, 2ℓ+],
there is at most one candidate in 𝐿𝑖 and hence |𝐿𝑖 | ≤ 2ℓ+.

Step 2: For each agent 𝑎𝑖 ∈ 𝐴∗ and each 𝑅
𝑗
𝑖
∈ 𝐿𝑖 , we compute

a pair (𝑠 𝑗
𝑖
, 𝑡

𝑗
𝑖
), where 𝑠

𝑗
𝑖

= |𝑅 𝑗
𝑖
| ≤ 2ℓ+ and 𝑡

𝑗
𝑖

= 𝑢 (𝑅 𝑗
𝑖
) ≤ 2ℓ+

resulting in a set 𝑄𝑖 = {(𝑠 𝑗
𝑖
, 𝑡

𝑗
𝑖
) | 𝑗 ∈ {1, . . . , |𝐿𝑖 |} of such pairs.

Without loss of generality, assume 𝑡1
𝑖

≥ 𝑡
𝑗
𝑖
for 𝑗 ∈ {1, . . . , |𝐿𝑖 |}.

Now the problem is to find a pair (𝑠 𝑗𝑖
𝑖
, 𝑡

𝑗𝑖
𝑖
) from each 𝑄𝑖 such that∑

𝑎𝑖 ∈𝐴∗ 𝑠
𝑗𝑖
𝑖

≥ �̃�+ and
∑
𝑎𝑖 ∈𝐴∗ 𝑡

𝑗𝑖
𝑖

≥ ℓ̃+. This can be reduced to the
Multiple-Choice Knapsack Problem (MCKP) (see Section 2) as
follows. Let 𝑆∗ =

∑
𝑎𝑖 ∈𝐴∗ 𝑠1

𝑖
and 𝑇 ∗ =

∑
𝑎𝑖 ∈𝐴∗ 𝑡1

𝑖
. If 𝑇 ∗ < ℓ̃+, then

our instance is clearly a No-instance. If 𝑇 ∗ ≥ ℓ̃+ and 𝑆∗ ≥ �̃�+,
then we get a solution by selecting the corresponding set 𝑅1

𝑖
for

each agent 𝑎𝑖 ∈ 𝐴∗. Finally, if 𝑇 ∗ ≥ ℓ̃+ but 𝑆∗ < �̃�+, then we need
to select a pair (𝑠 𝑗𝑖

𝑖
, 𝑡

𝑗𝑖
𝑖
) ∈ 𝑄𝑖 for each agent 𝑎𝑖 ∈ 𝐴∗ such that∑

𝑎𝑖 ∈𝐴∗ (𝑡1
𝑖
− 𝑡

𝑗𝑖
𝑖
) ≤ 𝑇 ∗ − ℓ̃+ and

∑
𝑎𝑖 ∈𝐴∗ (𝑠 𝑗𝑖

𝑖
− 𝑠1

𝑖
) ≥ �̃�+ − 𝑆∗. This

is an instance of MCKP with sets 𝐿𝑖 (∀𝑎𝑖 ∈ 𝐴∗), capacity 𝑇 ∗ − ℓ̃+,
and lower bound of the target value �̃�+ −𝑆∗. For each 𝑎𝑖 ∈ 𝐴∗, each
set 𝑅 𝑗

𝑖
∈ 𝐿𝑖 has weight 𝑡1𝑖 − 𝑡

𝑗
𝑖
and value 𝑠 𝑗

𝑖
−𝑠1

𝑖
. Since

∑
𝑎𝑖 ∈𝐴∗ |𝐿𝑖 | ≤

2(ℓ+)2 and𝑇 ∗− ℓ̃+ ≤ 𝑇 ∗ ≤ |𝐴∗ | ·max𝑎𝑖 ∈𝐴∗ 𝑡1
𝑖
≤ 2(ℓ+)2 the instance

can be solved in O((ℓ+)4) time [14]. Summing up, our problem can
be solved in O((ℓ+)6 + |I|) time. □

While we have seen in Theorem 3.2 that EF1-DG (#) is
polynomial-time solvable, we now show that EF1-DG parameter-
ized by 𝑘− is W[1]-hard even for only two agents, which stands in
contrast to the preceding tractability results for ℓ−:

Proposition 3.5 (⋆). For identical binary valuations, EF1-DG

with 𝑛 = 2 agents is W[1]-hard parameterized by 𝑘−.

3.2 EF1 and Non-Identical Preferences

Our positive result for EF1-DG (#) from Theorem 3.2 for identical
binary valuations raises the question whether there is hope for
tractability results for EF1-DG (#) parameterized by 𝑛, 𝑘−, or 𝑘+
with non-identical binary valuations. We answer this question nega-
tively with a strong (parameterized) hardness result in the following
proposition:

Proposition 3.6 (⋆). For binary valuations, EF1-DG (#) with

𝑛 = 2 agents is W[1]-hard parameterized by 𝑘+ or 𝑘−, even if the two

agents only disagree on the valuation of two resources.

3.3 EF and Identical Valuations

We now turn to EF and start by proving a strong hardness result
for EF-DG (#/e): Reducing from Subset Sum, we show that even
if we only have two agents with identical valuations, EF-DG (#/e)
is NP-hard. Even stronger, EF-DG (#/e) is NP-hard even if we are
allowed to delete all but one resource.

Theorem 3.7 (⋆). For identical binary valuations, EF-DG (#) with

𝑘+ = 1 and EF-DG (e) with ℓ+ = 1 are NP-hard for 𝑛 = 2 agents, and
EF-DG (#) with 𝑛 = 2 agents is W[1]-hard parameterized by 𝑘−.

This strong hardness result puts EF1 and EF in a sharp contrast,
as EF1-DG (#) is polynomial-time solvable and EF1-DG is solvable
in time polynomial in ℓ+. Concerning the later contrast, on a high
level, the reason why ℓ+ is a more powerful parameter for EF1-DG
than for EF-DG is that we know by Lemma 3.1 that there always is
an EF1 allocation where all agents hold a bundle of utility at least
min𝑎∈𝐴 𝑢 (𝜋 (𝑎)). Thus, for “small” values of ℓ+ we can return yes,
while “larger” values of ℓ+ allow for a tractable algorithm in ℓ+.

However again similar to the EF1 case, using a simplified version
of Step 1 from Theorem 3.4, in the following theorem, we show
that in contrast to the W[1]-hardness with respect to 𝑘− and NP-
hardness for ℓ+ = 1 from the previous theorem, EF-DG (e) (and, in
fact, even EF-DG) is solvable in time polynomial in ℓ−.

Theorem 3.8 (⋆). For identical valuations, EF-DG can be solved

in O((ℓ−)5 + |I|) time.

4 UNARY VALUATIONS

In this section, we consider unary-encoded valuations and conduct
a thorough parameterized complexity analysis of our problems
with respect to various natural and problem-specific parameters.
We start by proving that all our problems are NP-hard even for
0/1-valuations by establishing a simple reduction from Set Cover
to EF-DG (#/e)/EF1-DG (#/e):

Theorem 4.1 (⋆). EF-DG (#/e) and EF1-DG (#/e) are NP-hard
for 0/1-valuations.

This hardness result motivates us to explore the parameterized
complexity of our problems.2 We start by considering in Section 4.1
our problems in case that valuations and the initial allocation are
“sparse”. Subsequently, in Section 4.2, we consider the influence of
the number of agents on the problem. Afterwards, in Section 4.3, we
turn to the problem specific parameter 𝑘− and ℓ−, i.e., the maximum
number/welfare of the deleted resources. Lastly, in Section 4.4, we
consider the dual parameters 𝑘+ and ℓ+ that quantify the minimum
number/welfare of remaining resources. We also consider combined
parameters, where we mostly include results for a combined pa-
rameter in the latest section regarding one of the parameters from
the combination. We refer to Table 2 for an overview of results
from Sections 4.1 and 4.2, to Table 3 for an overview of results
from Section 4.3, and to Table 4 for an overview of results from
Section 4.4.

4.1 Sparse Valuations and Allocations

In this section, we consider instances where the initial allocation
is sparse, i.e., the maximum number 𝑑 of resources assigned to an
agent in the initial allocation is bounded, and valuations are sparse,
i.e., the maximum number 𝑤𝑎 of resources that an agent values
as non-zero and the maximum number 𝑤𝑟 of agents that value
a specific resource as non-zero are bounded (see Table 2 for an
overview of our results from this and the next section). We prove
that EF-DG (#) and EF1-DG (#) are NP-hard even for constant value
of 𝑑 +𝑤𝑎 +𝑤𝑟 and 0/1-valuations. In a sharp contrast to this, we

2Note that in the reduction from Theorem 4.1, we set the number/welfare of the
deleted resources 𝑘−/ℓ− to be the requested size 𝑧 of the set cover. As Set Cover is
W[2]-hard parameterized by 𝑧, the reduction already establishes that EF-DG (#/e) and
EF1-DG (#/e) are W[2]-hard for 𝑘−/ℓ− .
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Table 2: Overview of our results for parameters 𝑛, 𝑤𝑎 , 𝑤𝑟 ,

and 𝑑 and their combinations.

EF-DG (#) EF-DG (e) EF-DG
EF1-DG (#) EF1-DG (e) EF1-DG

NP-h. for 𝑑 = 3/𝑑 = 7, NP-h. for𝑤𝑟 = 4 and 0/1 val. (Co. 4.2)
𝑤𝑎 = 4/𝑤𝑎 = 7,𝑤𝑟 = 3, and 0/1-val. (Th. 4.3) FPT wrt. 𝑑 , FPT wrt.𝑤𝑎 (Th. 4.4)

W[1]-h. wrt. 𝑛 + 𝑘− (Th. 4.5) W[1]-h. wrt. 𝑛 + ℓ− (Th. 4.5)
FPT wrt. 𝑢∗ + 𝑛 (Pr. 4.6)
FPT wrt. 𝑑 + 𝑛 (Ob. 2)
FPT wrt.𝑤𝑎 + 𝑛 (Ob. 2)

show that EF-DG (e) and EF1-DG (e) are fixed-parameter tractable
with respect to𝑤𝑎 or 𝑑 for arbitrary valuations (and NP-hard for a
constant value of𝑤𝑟 and 0/1-valuations).

First of all note that one can reduce Restricted Exact Cover by
3-Sets, which is an NP-hard special case of Set Cover where each
set consists of exactly three elements and each element appears in
exactly three sets [17, Problem SP2] to our problems (by applying
the reduction from Theorem 4.1 but reducing from Restricted
Exact Cover by 3-Sets instead of Set Cover). This allows us to
establish the following:

Corollary 4.2. EF-DG (#)/EF1-DG (#) is NP-hard for 0/1-

valuations even if𝑤𝑎 = 5/𝑤𝑎 = 4 and𝑤𝑟 = 3. EF-DG (e)/EF1-DG (e)
is NP-hard for 0/1-valuations even if𝑤𝑟 = 4.

Indeed, using a more involved reduction, one can show that for
EF-DG (#)/EF1-DG (#) this para-NP hardness result can be extended
to also include the maximum number 𝑑 of resources an agent holds
in the initial allocation:

Theorem 4.3 (⋆). EF-DG (#) is NP-hard for 0/1-valuations, even if

𝑑 = 3,𝑤𝑎 = 4, and𝑤𝑟 = 3. EF1-DG (#) is NP-hard for 0/1-valuations,

even if 𝑑 = 7,𝑤𝑎 = 7, and𝑤𝑟 = 3.

In contrast to this, we now show that EF-DG (e) and EF1-DG (e)
are fixed-parameter tractable with respect to 𝑑 or𝑤𝑎 for arbitrary
(even binary) valuations. This result is surprising in two ways. First,
we have proven in the previous theorem that EF-DG (#) and EF1-
DG (#) are NP-hard even for a constant value of 𝑑 +𝑤𝑎 +𝑤𝑟 and
0/1-valuations. Notably, this is our first and only case for unary
valuations where one of EF-DG (#) and EF-DG (e) (or EF1-DG (#)
and EF1-DG (e)) is harder than the other. Second, we have already
seen that EF-DG (e) and EF1-DG (e) are NP-hard for a constant
value of the closely related parameter𝑤𝑟 for 0/1-valuations.

Theorem 4.4 (⋆). EF-DG (e)/EF1-DG (e) are solvable in O(22𝑑 ·
𝑑 · 𝑛2 + |I|) time and solvable in O(22𝑤𝑎 ·𝑤𝑎 · 𝑛2 + |I|) time.

Beginning of proof. We only describe our approach for EF-
DG (e). First, we delete all resources that are valued as zero by the
agent holding them in the initial allocation and denote the resulting
allocation by 𝜋0. Next, as long as there is an agent 𝑎 that is envied
by some agent, we compute a subset 𝑆𝑎 ⊆ 𝜋0 (𝑎) of resources with
the highest utility for 𝑎 such that 𝑎 will not be envied after we delete
all resources in 𝜋0 (𝑎) \ 𝑆𝑎 . Subsequently, we set 𝑎’s bundle to be 𝑆𝑎
(but do not update 𝜋0 (𝑎)). Some agent may become envied by other
agents multiple times over the execution of the algorithm. Each
time, we recompute the optimal subset 𝑆𝑎 from 𝜋0 (𝑎). This implies,
for instance, that an agent might get back once deleted resources.

Let 𝜋∗ be the resulting allocation. It is clear that 𝜋∗ is envy-
free. To show that 𝜋∗ has the highest utilitarian welfare among all
envy-free allocations, we show an even stronger result. We say an
allocation (which is not necessarily envy-free) is maximal if every
agent has higher or equal utility in this allocation than in every
envy-free allocation that can result from deleting resources from
the initial allocation 𝜋 . We show that 𝜋∗ is maximal by induction.
First of all, 𝜋0 is maximal, as every agent has the same utility as
in the initial allocation. Next, we show that if in some step the
current allocation 𝜋1 is maximal, then after this step the resulting
allocation 𝜋2 is also maximal. Let 𝑎 be the agent whose bundle
has been changed in this step. Since 𝜋1 is maximal and 𝑎 is the
only agent with 𝜋1 (𝑎) ≠ 𝜋2 (𝑎), it suffices to show that for each
envy-free allocation 𝜋 ′, we have 𝑢𝑎 (𝜋2 (𝑎)) ≥ 𝑢𝑎 (𝜋 ′(𝑎)). Suppose
for contradiction that 𝑢𝑎 (𝜋2 (𝑎)) < 𝑢𝑎 (𝜋 ′(𝑎)). Then, we modify
𝜋2 by giving agent 𝑎 the bundle 𝑆 ′𝑎 := 𝜋 ′(𝑎) ∩ 𝜋0 (𝑎) and get a
new allocation 𝜋 ′

2 (where by our above assumption agent 𝑎 has
a higher utility in 𝜋 ′

2 than in 𝜋2). We claim that in 𝜋 ′
2 agent 𝑎 is

not envied by other agents. Indeed, since 𝜋1 is maximal and every
agent 𝑎′ ∈ 𝐴 \ {𝑎} has the same set of resources in 𝜋 ′

2, 𝜋2, and 𝜋1,
we have that agent 𝑎′ has higher or equal utility in 𝜋 ′

2 as in 𝜋 ′, i.e.,
𝑢𝑎′ (𝜋 ′

2 (𝑎
′)) = 𝑢𝑎′ (𝜋2 (𝑎′)) = 𝑢𝑎′ (𝜋1 (𝑎′)) ≥ 𝑢𝑎′ (𝜋 ′(𝑎)). Moreover,

since 𝜋 ′ is envy-free, which means that 𝑎 is not envied by other
agents in 𝜋 ′, and 𝜋 ′

2 (𝑎) = 𝑆 ′𝑎 ⊆ 𝜋 ′(𝑎), we get that 𝑎 is not envied
by other agents in 𝜋 ′

2. However, this contradicts the choice of 𝜋2 (𝑎)
because 𝑆 ′𝑎 is a set of higher utility than 𝜋2 (𝑎) such that no agent
envies 𝑎. Thus, 𝜋∗ is maximal. □

4.2 Number of Agents

Having seen that at least for EF-DG (#) and EF1-DG (#) sparse
valuations and allocations do not help in our search for tractable
cases, we now turn to the number 𝑛 of agents. Before we identify
two tractable cases, we start by showing that our problems are
W[1]-hard with respect to the number of agents even considered
in combination with the number (welfare) of deleted resources
(we will examine the parameters number and welfare of deleted
resources in more detail in the next subsection).

Theorem 4.5 (⋆). For unary valuations, EF-DG (#/e) and EF1-
DG (#/e) are W[1]-hard parameterized by 𝑛 + 𝑘−/𝑛 + ℓ−.

On the positive side, combining the number of agents with the
maximum utility value an agent assigns to a resource, our general
problems can be encoded in an ILP where the number of constraints
is quadratic in 𝑛. Subsequently, we can employ the algorithm by
Eisenbrand and Weismantel [15]:

Proposition 4.6 (⋆). EF-DG and EF1-DG are solvable in

(𝑛2𝑢∗)O(𝑛2) ·𝑚2
time.

The previous result implies that our general problem for both
EF and EF1 is in FPT with respect to 𝑢∗ +𝑛, in XP with respect to 𝑛,
and FPT with respect to 𝑛 for 0/1-valuations.

Examining now the combination of the number 𝑛 of agents
with the parameters introduced in Section 4.1, first note that 𝑛
upper-bounds the number 𝑤𝑟 of agents that value a resource as
non-zero. However, if we combine the number 𝑛 of agents with
the maximum number 𝑤𝑎 of resources that an agents values as
non-zero or the maximum number 𝑑 of resources an agent holds in
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Table 3: Overview of our results for parameters 𝑘− and ℓ−

and all parameter combinations they are involved in.

EF-DG (#) EF-DG (e) EF-DG
EF1-DG (#) EF1-DG (e) EF1-DG

XP wrt. ℓ− XP wrt. 𝑘−
NP-h. for𝑤𝑎 = 5/𝑤𝑎 = 4,
𝑤𝑟 = 3, ℓ− = 0, and 0/1-val. (Co. 4.8)

W[2]-h. wrt. 𝑘− W[2]-h. wrt. ℓ−
for 0/1-val. (Co. 4.7) for 0/1-val. (Co. 4.7)

W[1]-h. wrt. 𝑛 + 𝑘− (Th. 4.5) W[1]-h. wrt. 𝑛 + ℓ− (Th. 4.5)

FPT wrt. 𝑑 (Th. 4.4) FPT wrt. 𝑑 + 𝑘− (Pr. 4.9)
XP wrt. 𝑑 + ℓ− (Pr. 4.10)
W[1]-h. wrt. ℓ−
for 𝑑 = 4/𝑑 = 5 (Pr. 4.10)

FPT wrt.𝑤𝑎 (Th. 4.4) FPT wrt.𝑤𝑎 + 𝑘− (Pr. 4.9)
FPT wrt. 𝑢∗ +𝑤𝑟 + ℓ− (Pr. 4.11) FPT wrt. 𝑢∗ +𝑤𝑟 + 𝑘− (Pr. 4.11)

the initial allocation, then we can bound the number of “relevant”
resources and thereby the size of the whole instance in a function
of the combined parameter 𝑛 +𝑤𝑎 or 𝑛 + 𝑑 :

Observation 2 (⋆). EF-DG and EF1-DG are solvable in O(|I| +
𝑛2 ·𝑚 · 2𝑛 ·𝑤𝑎 ) time and solvable in O(|I| + 𝑛2 ·𝑚 · 2𝑛 ·𝑑 ) time.

4.3 Number/Welfare of Deleted Resources

In this section, we examine the influence of the num-
ber/welfare 𝑘−/ℓ− of resources to be deleted and identify some
tractable cases (see Table 3 for an overview of our results). On the
hardness side, in Theorem 4.5, we have already shown that this
parameter (even in combination with the number of agents) is not
sufficient to lead fixed-parameter tractability (unless FPT=W[1]).
Moreover, in Theorem 4.1 we have constructed a (parameterized)
reduction from the W[2]-hard Set Cover problem to our problems
which also establishes the following:

Corollary 4.7. Parameterized by 𝑘−/ℓ−, EF-DG (#/e) and EF1-
DG (#/e) are W[2]-hard for 0/1-valuations.

On the algorithmic side, there is an XP algorithm with respect to
parameter 𝑘− for EF-DG and EF1-DG running in time O(|I| +𝑚𝑘− ·
𝑘− ·𝑛2) by simply iterating over all size-𝑘− subsets of resources and
checking whether the allocation that results from deleting these
resources is envy-free (up to one good). For the parameter ℓ−, there
also is an XP algorithm running in O(|I| +𝑚ℓ− · ℓ− · 𝑛2) for EF-
DG (e) and EF1-DG (e) by first deleting all resources that are valued
as zero by the agent holding it (which never creates any envy)
and subsequently iterating over all size-ℓ− subsets of resources
and checking whether additionally deleting these resources makes
the allocation envy-free (up to one good). However, in the first
step of the XP algorithm for ℓ−, an arbitrary number of resources
might get deleted which raises the question whether there is an
XP algorithm for the parameter ℓ− for the general problems. In
fact, using the construction from Theorem 4.1 for EF-DG (#)/EF1-
DG (#) and reducing from Restricted Exact Cover by 3-Sets
while setting 𝑘− = 𝑧 and ℓ− = 0 rules out this possibility:

Corollary 4.8. EF-DG/EF1-DG is NP-hard for 0/1-valuations even

if ℓ− = 0,𝑤𝑎 = 5/𝑤𝑎 = 4, and𝑤𝑟 = 3.

We now consider 𝑘−/ℓ− in combination with sparse valuations
or a sparse initial allocation and design several fixed-parameter

tractable algorithms. Using a search-tree approach, we show fixed-
parameter tractability of the parameter combination 𝑑 + 𝑘−/𝑑 + ℓ−

and𝑤𝑎 +𝑘−/𝑤𝑎 + ℓ− for arbitrary (even binary) valuations (notably,
we have already proven in Theorem 4.4 that EF-DG (e)/EF1-DG (e)
is fixed parameter tractable in 𝑑 or𝑤𝑎):

Proposition 4.9 (⋆). EF-DG/EF1-DG is solvable in O(|I| + 𝑛 ·
𝑑𝑘

− ) time and solvable in O(|I| + 𝑛 · 𝑤𝑘−
𝑎 ) time . EF-DG (e)/EF1-

DG (e) is solvable in O(|I| + 𝑛 · 𝑑ℓ− ) time and solvable in O(|I| +
𝑛 ·𝑤 ℓ−

𝑎 ) time.

As already observed above for the XP algorithm, here again ℓ−

in contrast to 𝑘− is not enough to establish an algorithmic result for
the general problem. Observe that we have already seen in Corol-
lary 4.8 that both general problems are NP-hard for constant 𝑤𝑎

and constant ℓ−. Moreover, we show in the following proposition
using a slightly involved reduction from Cliqe that the FPT algo-
rithm for 𝑑 + ℓ− cannot be extended to the general problem (like
for 𝑑 + 𝑘−). However, EF-DG/EF1-DG parameterized by 𝑑 + ℓ− is in
XP for arbitrary (binary or unary) valuations.

Proposition 4.10 (⋆). EF-DG/EF1-DG is solvable in O(|I| +
𝑚ℓ− · 2𝑑 ·𝑚 · 𝑛) time. For unary valuations, parameterized by ℓ−,
EF-DG/EF1-DG is W[1]-hard even if 𝑑 = 4/𝑑 = 5.

Lastly, we turn to the combined parameter 𝑘− plus the max-
imum number of agents 𝑤𝑟 that value a resource as non-zero.
As the number 𝑛 of agents upper-bounds 𝑤𝑟 , as proven in The-
orem 4.5, this parameter combination is not enough to achieve
fixed-parameter tractability. However, by adding the maximum
utility value, tractability can be regained:

Proposition 4.11 (⋆). EF-DG and EF1-DG are solvable in

O((𝑢∗ + 1)𝑘−2 · (𝑤𝑟+1) ·𝑘− · |I |) time. EF-DG (e) and EF1-DG (e) are

solvable in O((𝑢∗ + 1)ℓ−2 · (𝑤𝑟+1) · ℓ− · |I |) time.

Proof Sketch for EF and parameter 𝑘−. Our algorithm cru-
cially relies on the simple observation that by deleting 𝑘− resources
the envy of at most𝑘− ·𝑤𝑟 agents can be resolved. Assuming that we
are given a valid solution where we delete at most 𝑘− resources one
after each other, let𝐴′ ⊆ 𝐴 be the set of agents fromwhose bundle a
resource got deleted or that envy another agent at some point. From
our above observation it follows that |𝐴′ | ≤ 𝑘− · (𝑤𝑟 +1). Assuming
that we would knew𝐴′ we could as long as we still have budget left
and there is an agent 𝑎 that envies another agent 𝑎′ guess the utility
profile (𝑢𝑏 (𝑟 ))𝑏∈𝐴′ of the resource 𝑟 ∈ 𝜋 (𝑎′) to be deleted from 𝑎′’s
bundle restricted to 𝐴′ (there exist 𝑢∗𝑘

− · (𝑤𝑟+1) such guesses) and
subsequently delete this resource. However, unfortunately, we do
not know the set 𝐴′ of agents upfront which makes it necessary
to update this set of agents on the fly and complete the previous
guesses concerning the utility profiles of deleted resources. We
do so by initializing 𝐴′ with the set of agents that initially envy
another agent. Then, as long as there is an agent 𝑎 ∈ 𝐴′ envying
another agent 𝑎′, which implies that a resource from 𝑎′’s bundle
needs to be deleted, we guess the utility which agents from 𝐴′

have for the resource to be deleted from 𝑎′’s bundle and adjust the
utility that these agents have for 𝑎′’s bundle. Moreover, if 𝑎′ is not
already part of 𝐴′, then we add 𝑎′ to 𝐴′ and guess the value that
𝑎′ has for all already “deleted” resources and adjust 𝑎′’s valuations
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Table 4: Overview of our results for parameters 𝑘+ and ℓ+

and parameter combinations involving them.

EF-DG (#/e) EF1-DG (#) EF1-DG (e)

NP-h. for 𝑘+ = 1/ℓ+ = 1 W[1]-h. wrt. 𝑘+ for𝑤𝑎 = 2 W[1]-h. wrt ℓ+
and𝑤𝑟 = 4 (Th. 4.12) and 0/1 val. (Pr. 4.14) for 0/1 val. (Pr. 4.14)

FPT wrt. 𝑘+/ℓ+ for 0/1-val. (Pr. 4.13)

FPT wrt. 𝑘+ + 𝑑 (Pr. 4.15) FPT wrt. ℓ+ + 𝑑 (Pr. 4.15)

accordingly. Finally, we check whether there in fact exists a set of
at most 𝑘− resources satisfying our guesses. □

Notably, Corollary 4.8 rules out the possibility that the FPT-
algorithm from above for EF-DG (e) and EF1-DG (e) for parameters
ℓ− + 𝑢∗ +𝑤𝑟 can be extended to the respective general problem.

4.4 Number/Welfare of Remaining Resources

In this section, we examine the influence of the number/welfare
𝑘+/ℓ+ of resources that remain after the deletion of resources (see
Table 4 for an overview of our results). We show that, generally
speaking, these parameters are less powerful than the respective
dual parameters but we nevertheless identify two tractable cases.
We also show an interesting contrast between EF and EF1.

We start by proving a very strong intractability result for EF,
namely, that deciding whether there is a solution that does not
delete all resources is already NP-hard:

Theorem 4.12 (⋆). For unary valuations, EF-DG (#/e) is NP-hard
even if 𝑘+ = 1/ℓ+ = 1 and𝑤𝑟 = 4.

Proof sketch. We reduce from Independent Set on cubic
graphs, i.e., graphs where each vertex has exactly three neighbors.
Given a cubic graph 𝐺 = (𝑉 , 𝐸 = {𝑒1, . . . , 𝑒𝑞}) and an integer 𝑡 , the
task is to decide whether 𝐺 contains an independent set of size 𝑡 .
We first add a special agent 𝑎∗ and for each 𝑖 ∈ [𝑞] an edge agent 𝑎𝑒𝑖 .
Moreover, for each 𝑣 ∈ 𝑉 , we add a vertex resource 𝑟𝑣 , which is
valued as one by the special agent and by all edge agents corre-
sponding to edges incident to 𝑣 . We allocate all vertex resources to
the special agent. Furthermore, for 𝑖 ∈ [𝑞], we add a resource 𝑟𝑒𝑖
which we allocate to 𝑎𝑒𝑖 and which is valued as one by 𝑎𝑒𝑖 and by
𝑎𝑒𝑖−1 mod 𝑞 and as 𝑡 by the special agent. Lastly, we set 𝑘+ = 1/ℓ+ = 1.

One can show that after the deletion of resources, each edge
agent needs to hold its resource and the special agent needs to hold
at least 𝑡 resources. Then, the vertices𝑉 ′ ⊆ 𝑉 corresponding to the
vertex resources the special agent holds form an independent set,
as the existence of an edge 𝑒𝑖 ∈ 𝐸 with both endpoints in 𝑉 ′ would
imply that 𝑎𝑒𝑖 envies the special agent. □

Note that the above reduction crucially relies on the fact that
the special agent values some resources as 𝑡 . In fact, if we have
0/1-valuations, we can establish fixed-parameter tractability for the
number and welfare (but not the general) problem by first deleting
all agents with zero welfare in the initial allocation and all resources
they value as non-zero and then making a case distinction based
on whether 𝑘+/ℓ+ is larger than the remaining number of agents:

Proposition 4.13 (⋆). EF-DG (#/e) is solvable in |I | +
(𝑘+2)O(𝑘+2) ·𝑚2

/|I | + (ℓ+2)O(ℓ+2) ·𝑚2
time for 0/1-valuations.

In contrast to this result for EF, EF1-DG (#/e) parameterized by
𝑘+/ℓ+ is W[1]-hard for 0/1-valuations. We use a reduction similar
to the one used in Theorem 4.12 but reduce from Independent Set
and delete all resources held by edge agents and set 𝑘+ = 𝑡/ℓ+ = 𝑡 .

Proposition 4.14 (⋆). Parameterized by 𝑘+, EF1-DG (#) is W[1]-

hard for 0/1-valuations, even if𝑤𝑎 = 2 and the initial allocation has

zero utilitarian welfare. Parameterized by ℓ+, EF1-DG (e) is W[1]-

hard for 0/1-valuations.

It is an intriguing open question whether EF1-DG (#/e) is in XP
with respect to 𝑘+/ℓ+ or para-NP-hard. Note that an XP algorithm
for unary valuations would be quite surprising, as this would imply
that for the parameter 𝑘+/ℓ+, for unary valuations, EF1 is easier
than EF, while, for 0/1-valuations, EF is easier than EF1.

Lastly, by making a case distinction based on whether more or
less than 𝑘+/ℓ+ agents hold a resource in the initial allocation, we
show that EF1-DG (#/e) is fixed-parameter tractable with respect
to 𝑘+ + 𝑑/ℓ+ + 𝑑 for arbitrary (unary or binary) valuations:

Proposition 4.15 (⋆). EF1-DG (#/e) is solvable in O(|I|+2𝑘+ ·𝑑 ·
𝑚 · 𝑛2)/O(|I| + 2ℓ

+ ·𝑑 ·𝑚 · 𝑛2) time.

While our picture for the other parameters is nearly complete,
there exist various open questions for parameters 𝑘+ and ℓ+. For
instance, the complexity of our problems parameterized by 𝑛 + 𝑘+,
𝑛 + ℓ+, 𝑑 + 𝑘+, 𝑑 + ℓ+,𝑤𝑎 + 𝑘+, and𝑤𝑎 + ℓ+ is open.

5 CONCLUSION

We studied the complexity of making an initial allocation envy-free
by donating a subset of resources satisfying certain constraints.
While we have shown that this problem is NP-hard even under
quite severe restrictions on the input, resorting to parameterized
complexity theory, we identified numerous tractable cases. More-
over, we discovered several interesting contrasts between seemingly
closely related parameters and problem variants. For future work,
it would be possible to change the considered fairness criterion and
to consider, for example, proportionality or maximin share. Further-
more, instead of or in addition to allowing that some resources are
donated, one could also analyze reallocating some resources, which
seems to be a harder setting as many of our intractability results
(such as Theorem 4.1) can be converted to this setting by adding
some dummy agents to “receive” donated resources. Lastly, from a
more practical point of view, it would be interesting to experimen-
tally measure how many resources would need to be donated to
make allocations envy-free that are computed using an algorithm
or heuristic which tries to compute an allocation with few envy.
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