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ABSTRACT
Given a Markov decision process (MDP) and a linear-time (𝜔-

regular or Linear Temporal Logic) specification which reasons

about the infinite-trace behavior of a system, the controller synthe-

sis problem aims to compute the optimal policy that satisfies said

specification. Recently, problems that reason over the complemen-

tary infinite-frequency behavior of systems have been proposed

through the lens of steady-state planning or steady-state policy

synthesis. This entails finding a control policy for an MDP such

that the Markov chain induced by the solution policy satisfies a

given set of constraints on its steady-state distribution. This paper

studies a generalization of the controller synthesis problem for

a linear-time specification under steady-state constraints on the

asymptotic behavior of the agent. We present an algorithm to find

a deterministic policy satisfying 𝜔-regular and steady-state con-

straints by characterizing the solutions as an integer linear program,

and experimentally evaluate our approach.
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1 INTRODUCTION
The controller synthesis problem is often used to establish safety

and performance guarantees of stochastic systems such as Markov

decision processes (MDPs) by inducing Markov chains exhibiting

some desirable behavior. The 𝜔-regular languages [1, 2] provide

an expressive formalism to unambiguously express such safety

and progress properties of MDPs, while Linear Temporal Logic

(LTL) provides a convenient and interpretable way to encode such

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9–13,
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Systems (www.ifaamas.org). All rights reserved.

𝜔-regular properties. For the verification or synthesis of systems

subject to these properties, an 𝜔-regular objective is usually trans-

lated into a finite-state machine that monitors the traces of the

MDP [3]. Successful executions cause the finite-state machine to

take certain accepting transitions infinitely often, and ultimately

avoid certain rejecting transitions. That is, 𝜔-regular objectives

reason about the asymptotic trace behavior of an MDP. The related

notion of asymptotic frequency of states visited is not accounted

for in such objectives. To illustrate the utility of being able to rea-

son about both of these types of behavior, consider a simple robot

tasked to explore terrain on Mars. For such a mission, one may

come up with 𝜔-regular specifications that its traces of behavior

should satisfy. For example, we may impose that, whenever a state

labeled “ice” is encountered, the robot must collect a sample and

drop it off at a state labeled “base”. Furthermore, the robot may also

need to spend a certain proportion of its time – but not too much

time so as not to conflict with gathering ice samples – exploring

certain regions of the Martian landscape. Indeed, the robot may be

requested to spend at least 25% of its time in regions of interest, but

no more than 50% of its time. This is easily encoded as a steady-state

specification. Such specifications cannot be directly expressed in

LTL.

LTL controller synthesis through probabilistic model checking

approaches [3, 4] generally begins by computing the product MDP

from the original MDP and the finite-state machine representation

of the given objective. Then, the union of accepting maximal end

components (AMECs) are computed and a policy is found such that

the agent reaches some such component. Once there, actions can be

chosen arbitrarily such that all states within the AMEC are visited

infinitely often, thereby ensuring that the acceptance condition of

the automaton is met and the objective is therefore satisfied by

said policy. Generally, this choice of actions within the AMECs

is arbitrary. However, it is evident that these choices are critical in
the situations with constraints on the steady-state distribution. This
distribution characterizes the asymptotic frequency behavior of a

Markov chain induced by some policy in an MDP.

The controller synthesis problem subject to steady-state specifi-

cations has been explored recently [5–8] and the integration of LTL

constraints has been considered for stochastic policy settings [9].

In this paper, we seek to complement and unify much of the pre-

ceding work by reasoning about both 𝜔-regular properties as well

as steady-state distributions simultaneously and without making
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common assumptions of ergodicity on the underlying MDP. The

proposed approach finds an optimal expected-reward deterministic

policy that satisfies given 𝜔-regular and steady-state specifications.

The computation of deterministic policies is an important avenue

of inquiry when guarantees or predictable behavior are desired

[10].

2 PRELIMINARIES
We recall classical definitions and introduce notation for the paper.

Markov Decision Processes. A probability distribution over a fi-

nite set 𝑆 is a function 𝑑 : 𝑆 → [0, 1] such that

∑
𝑠∈𝑆 𝑑 (𝑠) = 1. Let

𝐷 (𝑆) denote the set of all discrete distributions over 𝑆 . A Labeled

Markov Decision Process (LMDP)M is a tuple (𝑆, 𝛽,𝐴,𝑇 , 𝑅,𝐴𝑃, 𝐿),
where 𝑆 is a finite set of states, 𝛽 ∈ 𝐷 (𝑆) is the initial state distribu-
tion, 𝐴 is a finite set of actions, 𝑇 : 𝑆 ×𝐴→ 𝐷 (𝑆) is the transition
function, 𝑅 : 𝑆 × 𝐴 × 𝑆 → R is the reward signal, 𝐴𝑃 is the set of

atomic propositions, and 𝐿 : 𝑆 → 2
𝐴𝑃

is the labeling function.
For any state 𝑠 ∈ 𝑆 , we let𝐴(𝑠) denote the set of actions that can

be selected in state 𝑠 . For states 𝑠, 𝑠 ′ ∈ 𝑆 and 𝑎 ∈ 𝐴(𝑠), 𝑇 (𝑠, 𝑎) (𝑠 ′)
equals 𝑝 (𝑠 ′ |𝑠, 𝑎). A run ofM is a sequence ⟨𝑠0, 𝑎1, 𝑠1, . . .⟩ ∈ 𝑆 ×
(𝐴 × 𝑆)∗ such that 𝑝 (𝑠𝑖+1 |𝑠𝑖 , 𝑎𝑖+1) > 0 for all 𝑖 ≥ 0. A finite run

is a finite such sequence. When convenient, runs are sometimes

defined as sequences of states, without including actions. For a

run 𝑟 = ⟨𝑠0, 𝑎1, 𝑠1, . . .⟩, we define the corresponding labeled run

as 𝐿(𝑟 ) = ⟨𝐿(𝑠0), 𝐿(𝑠1), . . .⟩ ∈
(
2
𝐴𝑃

)+
. A policy (or a strategy) is

a recipe for a decision-maker to resolve the non-determinism of

the LMDP. A policy inM is a function 𝜋 : 𝑆+ → 𝐷 (𝐴) mapping

finite runs to actions. A policy is finite-memory if it remembers a

finite amount of information about the past and a finite-memory

policy can be represented using a finite-state machine. In this pa-

per, we are interested in finite-memory deterministic policies of

the form 𝜋 : 𝑆 × 𝑄 → 𝐴, where 𝑄 is a set of memory modes.

This memory is obtained from the finite-state machine representa-

tion of the given linear-time specification to be satisfied. We write

𝜋 (𝑎 |𝑠, 𝑞) ∈ {0, 1} for the probability of choosing action 𝑎 in the

state 𝑠 when the memory mode is 𝑞. For the remainder of this paper,

we assume finite-memory deterministic policies 𝜋 . For an LMDP

M = (𝑆, 𝛽,𝐴,𝑇 , 𝑅,𝐴𝑃, 𝐿), a finite-memory deterministic policy 𝜋

resolves its non-determinism and gives rise to a Labeled Markov

Chain (LMC)M𝜋 = (𝑆𝜋 , 𝛽𝜋 ,𝑇𝜋 , 𝑅𝜋 , 𝐴𝑃𝜋 , 𝐿𝜋 ). Note that an LMC

is an LMDP whose set of actions is a singleton and hence can be

omitted. It is customary to represent the probabilistic transition

function𝑇 of the LMC as a matrix such that𝑇𝑖, 𝑗 = 𝑇 (𝑠𝑖 ) (𝑠 𝑗 ). When

other information is not pertinent, we write an LMC as (𝑆,𝑇 ).
Given an LMDPM = (𝑆, 𝛽,𝐴,𝑇 , 𝑅,𝐴𝑃, 𝐿), we define its underly-

ing directed graph𝐺M = (𝑉 , 𝐸), where𝑉 = 𝑆 and 𝐸 ⊆ 𝑆 ×𝑆 is such
that (𝑠, 𝑠 ′) ∈ 𝐸 if 𝑇 (𝑠, 𝑎) (𝑠 ′) > 0 for some 𝑎 ∈ 𝐴(𝑠). A sub-MDP

ofM is an LMDPM ′ = (𝑆 ′, 𝛽 ′, 𝐴′,𝑇 ′, 𝑅′, 𝐴𝑃 ′, 𝐿′), where 𝑆 ′ ⊆ 𝑆 ,
𝐴′ ⊆ 𝐴 is such that 𝐴′(𝑠) ⊆ 𝐴(𝑠) for every 𝑠 ∈ 𝑆 ′, and 𝛽 ′, 𝑇 ′, 𝑅′
and 𝐿′ are analogous to 𝛽 , 𝑇 , 𝑅, and 𝐿 when restricted to 𝑆 ′ and
𝐴′. An end component [3] of an LMDPM is a sub-MDPM ′ ofM
such that 𝐺M′ is strongly connected. A bottom strongly connected
component (BSCC) of an LMC is any of its maximal end components

(MECs), where a MEC is an end component that is maximal under

set inclusion.

Linear-Time Specifications. Given the set of atomic propositions

𝐴𝑃 of an LMDPM, a linear-time property ofM is characterized

by an 𝜔-language, i.e., a set of infinite sequences over the alphabet

Σ = 2
𝐴𝑃

. Formally, an 𝜔-word 𝑤 on an alphabet Σ is a function

𝑤 : N→ Σ. We abbreviate𝑤 (𝑖) by𝑤𝑖 . The set of 𝜔-words on Σ is

written Σ𝜔 and a subset of Σ𝜔 is an 𝜔-language. We are interested

in expressing properties using 𝜔-regular languages given as a type

of finite-state machine. In this context, we choose deterministic

Rabin automata (DRA) as defined in the sequel.

A deterministic Rabin automaton (DRA)A is a tuple (Σ, 𝑄, 𝑞0, 𝛿, 𝐹 ),
where Σ is a finite alphabet, 𝑄 is a finite set of states, 𝑞0 ∈ 𝑄 is

the initial state, 𝛿 : 𝑄 × Σ → 𝑄 is the transition function, and
𝐹 =

{
(𝐵𝑖 ,𝐺𝑖 ) ∈ 2𝑄 × 2𝑄

}
𝑖∈[𝑚] is the Rabin acceptance condition.

A run 𝑟 of a DRA A on 𝑤 ∈ Σ𝜔 is an 𝜔-word 𝑟0,𝑤0, 𝑟1,𝑤1, . . . in

(𝑄 ∪ Σ)𝜔 such that 𝑟0 = 𝑞0 and, for 𝑖 > 0, 𝑟𝑖 = 𝛿 (𝑟𝑖−1,𝑤𝑖−1). We

write inf (𝑟 ) ⊆ 𝑄 for the set of states that appear infinitely often in

the run 𝑟 . A run 𝑟 of a DRAA is accepting if there is some (𝐵,𝐺) ∈ 𝐹
such that inf (𝑟 ) ∩𝐵 = ∅ and inf (𝑟 ) ∩𝐺 ≠ ∅. The language ofA (or,

accepted by A) is the subset of words in Σ𝜔 that have accepting

runs in A. A language is 𝜔-regular iff it is accepted by a DRA [4].

Given an LMDP M and an 𝜔-regular objective 𝜑 given as a

DRA A = (Σ, 𝑄, 𝑞0, 𝛿, 𝐹 ), the controller synthesis problem is to

compute a policy that maximizes the probability of satisfaction

of the 𝜔-regular objective. This problem is typically reduced to

solving a product LMDP as shown in Figure 1. Given an LMDP

M = (𝑆, 𝛽,𝐴,𝑇 , 𝑅,𝐴𝑃, 𝐿) and a DRA A = (2𝐴𝑃 , 𝑄, 𝑞0, 𝛿, 𝐹 ), their
product LMDPM×A is the tuple (𝑆×, 𝛽×, 𝐴×,𝑇×, 𝑅×, 𝑄, 𝐿×), where
𝑆× = 𝑆 × 𝑄 ; 𝛽× ∈ 𝐷 (𝑆×) is such that for all (𝑠, 𝑎) ∈ 𝑆×, we have
that 𝛽× (𝑠, 𝑞) equals 𝛽 (𝑠) if 𝑞 = 𝛿 (𝑞0, 𝐿(𝑠)) and is 0 otherwise; 𝐴× =

𝐴 and 𝐴× (𝑠, 𝑞) = 𝐴(𝑠) for all (𝑠, 𝑞) ∈ 𝑆×; 𝑇× : 𝑆××𝐴× ↦→ 𝑆×

is such that for all (𝑠, 𝑞), (𝑠 ′, 𝑞′) ∈ 𝑆× and 𝑎 ∈ 𝐴(𝑠, 𝑞) we have

𝑇× ((𝑠, 𝑞), 𝑎) (𝑠 ′, 𝑞′) equals 𝑇 (𝑠, 𝑎) (𝑠 ′) if 𝑞′ = 𝛿 (𝑞, 𝐿(𝑠 ′)) and is 0

otherwise; 𝑅× ((𝑠, 𝑞), 𝑎) = 𝑅(𝑠, 𝑎) for all (𝑠, 𝑞) ∈ 𝑆× and 𝑎 ∈ 𝐴(𝑠, 𝑞);
and 𝐿× ((𝑠, 𝑞)) = {𝑞} for all (𝑠, 𝑞) ∈ 𝑆× [4].

End components and runs are defined for products just like for

LMDPs. The acceptance condition for the product LMDP can be

lifted from the DRA and is used to define accepting MECs (AMECs).

An AMEC of a product LMDPM ×A is a MEC such that every

run of the product LMDP that eventually dwells in it is accepting.

Formally, aMEC 𝐸 = (𝑆𝐸 , 𝐴𝐸 ) ofM×A is accepting if 𝑆𝐸∩(𝑆×𝐵) =
∅ and 𝑆𝐸 ∩ (𝑆 × 𝐺) ≠ ∅ for some (𝐵,𝐺) ∈ 𝐹 . The satisfaction of

an 𝜔-regular objective 𝜑 by an LMDP M can be formulated in

terms of AMECs of the product M × A𝜑 , where A𝜑 is a DRA

accepting 𝜑 . The maximum probability of satisfaction of 𝜑 byM is

the maximum probability, over all policies, that a run of the product

LMDP M × A𝜑 eventually dwells in one of its AMECs [3, 11].

Once an AMEC is reached, one must simply choose actions in the

AMEC infinitely often in order to ensure that all states within it are

visited infinitely often. It is worth noting that there always exists a

stationary and deterministic policy over the product LMDPM×A
to maximize the probability of visiting AMECs. This policy defines

the optimal finite-memory policy over the original LMDPM to

satisfy the𝜔-regular objective given by the DRAA. The DRA states

𝑞 ∈ 𝑄 in 𝜋 : 𝑆 ×𝑄 → 𝐴 in the product LMDP naturally define the

memory mode of the finite-memory policy in the original LMDP

[12].
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(a)

(c)

(b)

Figure 1: (a) LMDP M = (𝑆, 𝛽,𝐴,𝑇 , 𝑅 = ∅, 𝐴𝑃, 𝐿), where
𝑆 = {𝑠0, . . . , 𝑠6}, 𝛽 (𝑠4) = 1, 𝐴 = {𝑎0, . . . , 𝑎3}, 𝐴𝑃 = {𝑎, 𝑐},
and 𝐿(𝑠0) = 𝐿(𝑠1) = 𝐿(𝑠2) = {𝑎}, 𝐿(𝑠3) = {𝑐}. The tran-
sition function is deterministic and shown in the figure
by the transitions 𝑎𝑖 : 1 between states 𝑠, 𝑠 ′ denoting that
𝑇 (𝑠, 𝑎𝑖 ) (𝑠 ′) = 1. The blue transitions define a policy 𝜋 which
induces a unichain LMCM𝜋 (The isolated component con-
sisting of states 𝑠5 and 𝑠6 is ignored since it is unreachable).
(b) The DRA A = (𝑄,𝑞0, Σ, 𝛿, 𝐹 = {(𝐵𝑖 ,𝐺𝑖 )}𝑖 ) is shown, where
𝑄 = {𝑞0, 𝑞1, 𝑞2}, Σ = 2

𝐴𝑃 , 𝐹 = {(∅, {𝑞2})} and !,& denote logical
negation and conjunction. (c) Product LMDPM ×A, where
red nodes represent states in the accepting MEC ofM ×A.
The blue transitions define the product LMC (M × A)𝜋 in-
duced by the policy 𝜋 . Note that this policy induces an LMC
that has probability 1 of being trapped in the accepting MEC.
Therefore, the probability of satisfying the 𝜔-regular prop-
erty represented by A given that we start in state 𝑠0 is 1.

Steady-State Constraints. LetM = (𝑆, 𝛽,𝑇 , 𝑅,𝐴𝑃, 𝐿) be an LMC.

A state 𝑠 ′ ∈ 𝑆 inM is reachable from a state 𝑠 ∈ 𝑆 , denoted by 𝑠 ↩→
𝑠 ′, if there exists a run ⟨𝑠𝑖 , 𝑠 𝑗 , . . . , 𝑠𝑘 ⟩ ∈ 𝑆+ such that 𝑠𝑖 = 𝑠 , 𝑠𝑘 = 𝑠 ′,
and for all 0 ≤ 𝑖 < 𝑘 we have that 𝑇 (𝑠𝑖 ) (𝑠𝑖+1) > 0. We say that two

states 𝑠, 𝑠 ′ ∈ 𝑆 communicate if 𝑠 ↩→ 𝑠 ′ and 𝑠 ′ ↩→ 𝑠 . A Markov chain

is irreducible if every pair of states 𝑠, 𝑠 ′ ∈ 𝑆 communicates. A state

𝑠 ∈ 𝑆 is recurrent if for all states 𝑠 ′ ∈ 𝑆 such that 𝑠 ↩→ 𝑠 ′, we have
that 𝑠 ′ ↩→ 𝑠 . A transient state is a state that is not recurrent.

A recurrent component 𝐶 ⊆ 𝑆 of states is a nonempty set of

states such that every state in 𝐶 communicates with every other

state in 𝐶 , and does not communicate with the states not in 𝐶 . A

unichain is an LMC that contains a single recurrent component and

possibly some transient states. Otherwise, it is called a multichain.
Our proposed approach finds a unichain LMCM𝜋 in the original

LMDPM that satisfies a given set of linear-time and steady-state

constraints, though its corresponding product LMC (M × A)𝜋 in

the product LMDPM ×A may be a multichain.

The steady-state distribution Pr
∞ ∈ 𝐷 (𝑆) of an LMC M =

(𝑆, 𝛽,𝑇 , 𝑅,𝐴𝑃, 𝐿) denotes the proportion of time spent in each state

as the number of transitions withinM approaches ∞. This dis-
tribution is characterized by the following system of steady-state

equations:

(Pr∞ (𝑠1), ..., Pr∞ (𝑠 |𝑆 |)) ·𝑇 = (Pr∞ (𝑠1), ..., Pr∞ (𝑠 |𝑆 |))∑︁
𝑠∈𝑆

Pr
∞ (𝑠) = 1

(1)

The unichain condition is sufficient for LMCs to yield solutions to

the steady-state equations in system (1). In particular, solutions in

such settings yield the unique stationary distribution corresponding

to the true steady-state behavior of the agent. For multichain LMCs,

however, solutions to these equations may not be unique and may

not correspond to the true steady-state behavior of the agent [13].

Indeed, consider the following simple example. Let𝑀 be a Markov

chain defined over states 𝑆 = {𝑠0, 𝑠1, 𝑠2} such that 𝑇 (𝑠0) (𝑠1) =

0.6,𝑇 (𝑠0) (𝑠2) = 0.4,𝑇 (𝑠1) (𝑠1) = 𝑇 (𝑠2) (𝑠2) = 1. That is, state 𝑠0
connects to 𝑠1 and 𝑠2 whereas these states self-loop with probability

1. Solving the steady-state equations for this Markov chain yields

the trivial identities Pr
∞ (𝑠0) = 0, Pr∞ (𝑠1) = Pr

∞ (𝑠1), Pr∞ (𝑠2) =
Pr
∞ (𝑠2), and the equation Pr∞ (𝑠1)+Pr∞ (𝑠2) = 1. Note that there are

an infinite number of solutions to this equation. This elucidates the

challenge of reasoning about steady-state constraints in multichain

settings. We circumvent these challenges by focusing our attention

on multichain product LMCs whose BSCCs share some state of

the original LMC. We show that this is a necessary and sufficient

condition for the original LMC to be a unichain. Furthermore, this

restricts the BSCCs of the product LMC to be identical to one

another in that their transition matrices are the same (up to row

ordering). This yields a one-to-one correspondence between the

solutions to the steady-state equations in the product LMC and the

solutions to the steady-state equations in the original LMC. Since

the original LMC is a unichain, this implies that these solutions

will reflect the true steady-state behavior of the agent.

Given an LMDP M = (𝑆, 𝛽,𝐴,𝑇 , 𝑅,𝐴𝑃, 𝐿), the inverse of the

labeling function 𝐿−1 : 2𝐴𝑃 → 2
𝑆
returns the states where a given

set of atomic propositions holds. More generally, given a Boolean

formula over atomic propositions𝜓 ≜ true | 𝑝 ∈ 𝐴𝑃 | 𝜓1∧𝜓2 | ¬𝜓 ,
the function 𝐿−1 (𝜓 ) ⊆ 𝑆 returns the set of states where 𝜓 holds.

We now formalize what a steady-state specification is.

Definition 2.1 (Steady-State Specification). Given an LMCM =

(𝑆, 𝛽,𝑇 , 𝑅,𝐴𝑃, 𝐿) and a Boolean formula𝜓 over 𝐴𝑃 , a steady-state

specification is a constraint of the form 𝑙 ≤ ∑
𝑠∈𝐿−1 (𝜓 ) Pr

∞ (𝑠) ≤ 𝑢,
where 𝑙 and 𝑢 are user-defined bounds. We let SS[𝑙,𝑢 ]𝜓 denote such

specifications.

3 RELATEDWORK
The controller synthesis problem given 𝜔-regular objectives has

been studied at length in the literature, particularly under the name
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of LTL controller synthesis [14–16]. Traditionally, such problems

are solved by efficiently computing the set of AMECs [17] and

finding a policy that reaches these and visits an accepting state

therein infinitely often. The problem of deriving a control policy

which satisfies constraints on the steady-state distribution of the

resulting agent has been studied more recently [5–7]. However, the

literature on solving expected-reward constrained MDPs has often

studied similar problems given that the expected-reward objective

leverages the steady-state distribution or occupation measures,

which are analogous to the steady-state distribution over state-

action pairs, in order to determine expected policy values [18–

21]. However, the common assumption that all policies yield an

irreducible Markov chain is adopted for these methods. Indeed,

the stronger ergodic assumption is often made in average-reward

reinforcement learning problems ([22], Sections 10.3, 13.6).

While various extensions to LTL have introduced average [23],

discounted [24], mean-payoff [25], and frequency [26] modalities

to the logic, to the best of the authors’ knowledge, the two facets of

asymptotic behavior given by the steady-state (SS) distribution and

linear-time (LTL) behavior of the agent have not yet been incorpo-

rated for the deterministic controller synthesis problem. To reiterate

one of the challenges in this SS+LTL controller synthesis, the choice

of actions within AMECs is critical since it is the states within said

AMECs that will contribute to the steady-state distribution of the

Markov chain induced by the solution policy. All other states would

be transient or not visited, yielding a steady-state probability mea-

sure of 0. While this challenge is not present in traditional controller

synthesis problems, a restricted form of it is addressed in the prob-

lem of LTL controller synthesis subject to persistent surveillance

costs [27]. The goal in these problems is to satisfy a given LTL for-

mula, or some restricted logic fragment thereof, while minimizing

the cost incurred between satisfactions of a given surveillance goal

specified as the repeated observance of a goal state. Perhaps the

work most relevant to the results established in this paper stems

from [5] and [6]. In [5], the Steady-State Control (SSC) problem is

introduced. This is then generalized as Steady-State Policy Synthe-

sis (SSPS) in [6]. In particular, the SSC problem entails finding a

policy whose induced Markov chain satisfies a given steady-state

distribution. This problem assumes that the underlying MDP is

ergodic in that every policy yields irreducible Markov chains. This

ensures that steady-state distributions reflect the true asymptotic

behavior of the Markov chain. This is a fairly common assumption

as observed recently by Altman in [28] for average-reward or -cost

problems in constrained MDPs. In [6], the SSPS problem is posed

as a generalization of SSC by allowing steady-state constraints to

contain inequalities as well as probability intervals. The solution

proposed therein does not assume ergodic MDPs and instead finds

an irreducible Markov chain within an arbitrary MDP, if one exists,

such that steady-state constraints are satisfied. However, that ap-

proach cannot handle transient states nor multichain MDPs. These

issues were addressed recently in [7] and [8], wherein a solution to

the steady-state planning problem is proposed for multichain MDPs

by focusing on a restricted class of policies, such as imposing that

all actions be taken with some probability by the solution policy

or that the long-term play is restricted to the bottom strongly con-

nected (BSCCs) of the MDP. Indeed, the general problem of finding

policies that satisfy arbitrary steady-state constraints in multichain

MDPs remains open. This warrants an important distinction in

our setting. Even though the product MDP over which we define

our solution may be multichain, our setting is restricted in that

we search for a policy that induces a product Markov chain whose

BSCCs are isomorphic to one another in that their graph structures

are identical. As we demonstrate, this is a necessary and sufficient

condition for the original Markov chain (in the original MDP) to be

a unichain, thereby ensuring that the steady-state equations admit

a solution corresponding to the steady-state behavior of the agent.

Our solution to what we call the SS+LTL controller synthesis

problem unifies much of the foregoing by reasoning about both

linear-time𝜔-regular properties as well as steady-state distributions

simultaneously. The proposed approach finds an optimal expected-

reward control policy that is deterministic and satisfies the given

steady-state (SS) and LTL specifications. We do not assume that

the underlying MDP is ergodic nor communicating. Instead, our

solution finds a unichain Markov chain satisfying the given speci-

fications, if one exists. This complements the recent results in [9],

where a stochastic history-dependent (possibly with unbounded

memory) policy as in [29] is computed for the LTL-constrained

steady-state policy synthesis problem. It is worth noting that, from

a complexity perspective, these are fundamentally different prob-

lems due to the distinction between stochastic and deterministic

policies. Indeed, finding a stochastic policy for this problem is in

the complexity class P as demonstrated by the polynomial-time

solution proposed in [9]. On the other hand, the problem of com-

puting a deterministic policy in this setting is an NP-complete
problem [6]. Therefore, a polynomial-time solution is not likely to

exist.

4 SS+LTL CONTROLLER SYNTHESIS
We combine the linear-time and steady-state specifications and

solve the corresponding controller synthesis problem. Given an

LMCM and a steady-state specification SS[𝑙,𝑢 ] (𝜓 ), we sayM satis-

fies SS[𝑙,𝑢 ] (𝜓 ), denoted byM |= SS[𝑙,𝑢 ] (𝜓 ), iff Σ𝑠∈𝐿−1 (𝜓 )Pr
∞ (𝑠) ∈

[𝑙, 𝑢] per Definition 2.1. Given an LTL formula 𝜙 defined induc-

tively over a set of atomic propositions 𝐴𝑃 , Boolean connectives,

and temporal modalities next, until, eventually, always (X, U, F, G),
the satisfaction semanticsM |= 𝜙 are defined in the standard way

[4]. We are interested in the combination of these LTL and SS spec-

ifications, henceforth referred to as SS+LTL specifications denoted

by 𝜃 = (𝜙LTL, (SS[𝑙𝑖 ,𝑢𝑖 ]𝜓𝑖 )𝑖 ). We say thatM satisfies 𝜃 , denoted by

M |= 𝜃 , ifM |= 𝜙LTL andM |= SS[𝑙𝑖 ,𝑢𝑖 ]𝜓𝑖 for all 𝑖 .

Definition 4.1 (Deterministic SS+LTL Controller Synthesis). Given
an LMDPM and SS+LTL specification 𝜃 , compute a finite-memory

deterministic policy 𝜋 , if one exists, such that M𝜋 |= 𝜃 and 𝜋

maximizes the expected reward among all such policies.

Let us fix an LMDP M = (𝑆, 𝛽,𝐴,𝑇 , 𝑅,𝐴𝑃, 𝐿) and an SS+LTL

specification 𝜃 = (𝜙LTL, (SS[𝑙𝑖 ,𝑢𝑖 ]𝜓𝑖 )𝑖 ) for the rest of the paper.

Recall that the LTL formula 𝜙LTL can be compiled into a DRA

A. In what follows, we work with the product LMDPM × A =

(𝑆×, 𝛽×, 𝐴×,𝑇×, 𝑅×, 𝑄, 𝐿×), sometimes referred to asM× for con-

venience. Our goal is to characterize the existence of a stationary

and deterministic policy 𝜋 : 𝑆 × 𝑄 → 𝐴 over the product LMDP.

This, in turn, is equivalent to a finite-memory deterministic policy

over the original LMDP. See Figure 2 for an example.
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Figure 2: (a) LMDP M = (𝑆, 𝛽,𝐴,𝑇 , 𝑅 = ∅, 𝐴𝑃, 𝐿), where
𝑆 = {𝑠0, . . . , 𝑠8}, 𝛽 (𝑠0) = 1, 𝐴 = {←, ↓,→, ↑}, 𝐴𝑃 =

{ℎ𝑜𝑚𝑒,𝑑𝑎𝑛𝑔𝑒𝑟, 𝑡𝑜𝑜𝑙}, and 𝐿(𝑠0) = {ℎ𝑜𝑚𝑒}, 𝐿(𝑠1) = 𝐿(𝑠7) =

{𝑑𝑎𝑛𝑔𝑒𝑟 }, 𝐿(𝑠8) = {𝑡𝑜𝑜𝑙}. the agent has a chance of slipping
whenever it moves, causing a transition into one of three
possible states. If the agent chooses to go right (left), there is
an 80% chance that it will transition to the right (left), and
the chance of transitioning to either of the states above or
below it is 10% each. Similarly, if the agent chooses to go up
(down), it will end up in the states above (below) it with 80%
chance, and in the states to the right and left of it with proba-
bility 10% each. In the corners of the map, the agent may stay
in place with 90% probability by choosing to move against
the boundary of the map (e.g. 𝑇 (𝑠0,←)(𝑠0) = 0.9). (b) Given
the SS+LTL specification 𝜃 = ((!𝑑𝑎𝑛𝑔𝑒𝑟U𝑡𝑜𝑜𝑙), SS[0.75,1]ℎ𝑜𝑚𝑒),
the corresponding LTL DRA A = (𝑄,𝑞0, Σ, 𝛿, 𝐹 = {(𝐵𝑖 ,𝐺𝑖 )}𝑖 )
is defined, where 𝑄 = {𝑞0, 𝑞1, 𝑞2}, Σ = 2

𝐴𝑃 , 𝐹 = {(∅, {𝑞1})}, and
the transition function is given by 𝛿 (𝑞0, ∅) = 𝑞0, 𝛿 (𝑞0, {𝑡𝑜𝑜𝑙}) =
𝑞1, 𝛿 (𝑞0, {𝑑𝑎𝑛𝑔𝑒𝑟 }) = 𝑞2, 𝛿 (𝑞1, ·) = 𝑞1, 𝛿 (𝑞2, ·) = 𝑞2. The sym-
bols !,& denote logical negation and conjunction. Note that
the steady-state specification in 𝜃 is not used in defining A.
(c) Product LMC (M × A)𝜋 induced by the policy 𝜋 given
by the black arrows in (a) for the product LMDP M × A,
where red nodes represent states in the accepting BSCC of
(M × A)𝜋 . Note that this policy has non-zero probability
of being trapped in the accepting BSCC. Furthermore, note
that

∑
𝑠∈𝐿−1 (ℎ𝑜𝑚𝑒) Pr∞𝜋 (𝑠) = Pr∞𝜋 (𝑠0) = 0.76, thereby satisfying

the steady-state operator SS[0.75,1]ℎ𝑜𝑚𝑒. In this example, the
product LMC is a multichain; however, note that the original
LMC over states 𝑠 ∈ 𝑆 as given by the dashed component
(ignoring the 𝑞 ∈ 𝑄 in each (𝑠, 𝑞) ∈ 𝑆×) is a unichain. Fur-
thermore, the two BSCCs of the multichain product LMC are
identical with respect to their transition matrices due to the
one-to-one correspondence of paths in the original LMC and
the product LMC.

5 INTEGER LINEAR PROGRAM
CHARACTERIZATION

Let us first consider an agent whose goal is to find a stationary sto-

chastic policy 𝜋 : 𝑆 ×𝑄 → 𝐷 (𝐴) to maximize the expected reward

in a product LMDPM × A. IfM × A is a unichain LMDP, the

program in system (2) suffices to compute the optimal policy such

that the solution yields the identity 𝑥𝑠𝑞𝑎 = 𝜋 (𝑎 |𝑠, 𝑞)Pr∞ (𝑠, 𝑞) =
𝜋 (𝑎 |𝑠, 𝑞)∑𝑎 𝑥𝑠𝑞𝑎 for 𝑠 ∈ 𝑆 , 𝑞 ∈ 𝑄 , and 𝑎 ∈ 𝐴 from which a stochas-

tic policy can then be derived, where 𝑥𝑠𝑞𝑎 denotes the occupation

measure of taking action 𝑎 in state (𝑠, 𝑞) ∈ 𝑆× [30].

max

∑︁
(𝑠,𝑞) ∈𝑆×

∑︁
𝑎∈𝐴(𝑠)

𝑥𝑠𝑞𝑎

∑︁
𝑠′∈𝑆

𝑇 (𝑠, 𝑎) (𝑠 ′)𝑅(𝑠, 𝑎, 𝑠 ′) subject to

(𝑖)
∑︁
(𝑠,𝑞) ∈𝑆×

∑︁
𝑎∈𝐴(𝑠)

𝑥𝑠𝑞𝑎𝑇
× ((𝑠, 𝑞), 𝑎) (𝑠 ′, 𝑞′) =

∑︁
𝑎∈𝐴(𝑠′)

𝑥𝑠′𝑞′𝑎

∀(𝑠 ′, 𝑞′) ∈ 𝑆×

(𝑖𝑖)
∑︁
(𝑠,𝑞) ∈𝑆×

∑︁
𝑎∈𝐴(𝑠)

𝑥𝑠𝑞𝑎 = 1

(2)

Now, consider the more general case where the given product

LMDPM×A may be multichain. Two key problems arise. First, the

policy 𝜋 derived from the solution to (2) may not yield a unichain

original LMCM𝜋 (i.e., one with a single BSCC and possibly some

transient states). Second, we note the challenges of deriving the

correct steady-state distributions for an agent using linear program-

ming in the multichain setting. In particular, in his seminal work

[18], Kallenberg demonstrated that there is not a one-to-one cor-

respondence between the steady-state distribution derived from

linear programming solutions to expected-reward MDPs and the

true steady-state distribution of the agent enacting the resulting

policy when the Markov chain is multichain (i.e. contains multiple

BSCCs, and possibly some transient states). On the other hand,

unichains yield a one-to-one correspondence between the solution

of the steady-state equations and the true steady-state behavior

of the agent [19]. Furthermore, the solution to these equations

is unique in said setting. We thus focus on deriving an optimal

solution policy 𝜋 : 𝑆 ×𝑄 → 𝐴 in a (potentially) multichain prod-

uct LMDPM × A such that the induced original LMCM𝜋 is a

unichain and satisfies a given SS+LTL formula. The interplay with

the product LMC (M × A)𝜋 introduces some challenges in deriv-

ing such a policy. In particular, it may be the case that the product

LMC (M × A)𝜋 induced by the solution policy 𝜋 is multichain

and its corresponding original LMCM𝜋 is unichain. We present a

novel solution which accounts for such settings by ensuring that

all BSCCs in the product multichain (M ×A)𝜋 share some state of

the original LMCM𝜋 . This establishes that the original LMCM𝜋

is a unichain. We further prove that the steady-state probabilities

derived over such product LMCs yield a one-to-one correspondence

with the true steady-state behavior of the agent in the original LMC.

First, let us consider the simpler case where the product LMC is

a unichain. Note that the single BSCC may contain the same state

𝑠 ∈ 𝑆 multiple times as 𝑆× ∋ (𝑠, 𝑞), (𝑠, 𝑞′), . . . We will show that

the partition [𝑠] = {(𝑠, 𝑞)}𝑞 naturally defined over the states of the

product LMC to yield the states of the original LMC is such that

Pr
∞ (𝑠) = ∑

(𝑠,𝑞) ∈[𝑠 ] Pr
∞ (𝑠, 𝑞). That is, we can compute the steady-

state probabilities over the product LMC and use these to derive
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those in the original LMC over which the SS+LTL specification is

defined. This is enabled by the lumpability of the product LMC,

defined below.

Definition 5.1 (Lumpability [31], Def. 1). Given an irreducible

Markov chainM = (𝑆,𝑇 ) and a partition⋃𝐾
𝑘=1

𝑆𝑘 (𝑆𝑘 ⊂ 𝑆, 𝑆𝑖∩𝑆 𝑗 =
∅) of 𝑆 , then ⋃

𝑘 𝑆𝑘 is called ordinarily lumpable if and only if

(e𝛼 − e𝛽 )𝑇𝑉 = 0 for all 𝑠𝛼 , 𝑠𝛽 ∈ 𝑆𝑘 , 𝑘 ≤ 𝐾 , where e is the standard
basis vector and 𝑉 is defined so that 𝑣𝑖𝑘 = 1 if 𝑠𝑖 ∈ 𝑆𝑘 and 𝑣𝑖𝑘 = 0

otherwise. The vector e𝑘 is the all-zeroes vector with a value of 1

only for the 𝑘th entry.

A partition over an LMC naturally defines another LMC, known

as the aggregated LMC, where each state of the latter corresponds to

one of the partition sets of the former. As we will show in Corollary

1, the original LMC is the aggregated LMC resulting from a lumpable

partition of the product LMC.

Definition 5.2 (Aggregated Markov Chain). Given a product LMC

M× = (𝑆× = 𝑆 × 𝑄, 𝛽×, 𝑇×, 𝑅×, 𝐴𝑃, 𝐿×) and a partition

⋃
𝑠∈𝑆 [𝑠]

such that [𝑠] = {(𝑠, 𝑞) | (𝑠, 𝑞) ∈ 𝑆×}, the aggregated LMC is given by

M∗ = (𝑆∗, 𝛽∗,𝑇 ∗, 𝑅∗, 𝐴𝑃, 𝐿∗), where 𝑆∗ = {𝑠 | [𝑠] ∈ ⋃𝑠∈𝑆 [𝑠]}, 𝛽∗ (𝑠) =∑
(𝑠,𝑞) ∈[𝑠 ] 𝛽

× (𝑠, 𝑞),𝑇 ∗ (𝑠) (𝑠 ′) = 𝑇× (𝑠, ·) (𝑠 ′, ·), 𝑅∗ (𝑠, 𝑠 ′) =
𝑅× ((𝑠, ·), (𝑠 ′, ·)), and 𝐿∗ (𝑠) = 𝐿× ((𝑠, ·)).

Lemma 5.3. Given an arbitrary BSCC (𝑆,𝑇 ) of a product LMC
M× = (𝑆× = 𝑆 ×𝑄,𝑇×), the partition⋃𝑠∈𝑆 [𝑠] given by equivalence
classes [𝑠] = {(𝑠, 𝑞) | (𝑠, 𝑞) ∈ 𝑆} is ordinarily lumpable. The proof is
in Appendix A of the extended version [32].

We adapt a theorem from [31] and modify it for our product LMC

setting below.

Theorem 5.4 ([33], [31], Theorem 4). Given an irreducible prod-
uct LMC M× = (𝑆× = 𝑆 × 𝑄,𝑇×) and an ordinarily lumpable
partition

⋃
𝑠∈𝑆 [𝑠], where [𝑠] = {(𝑠, 𝑞) | (𝑠, 𝑞) ∈ 𝑆×}, the steady-state

distribution of the aggregated LMCM = (𝑆,𝑇 ) satisfies Pr∞ (𝑠) =∑
(𝑠,𝑞) ∈[𝑠 ] Pr∞ (𝑠, 𝑞) for every 𝑠 ∈ 𝑆 . Furthermore, the transition func-

tion of the aggregated LMC is given by 𝑇 (𝑠) (𝑠 ′) = e𝑖𝑇 ( [𝑠]) ( [𝑠 ′])e𝑇 ,
where 𝑖 is an arbitrary index in the set {𝑖 | (𝑠𝑖 , ·) ∈ [𝑠]}. The proof is
in Appendix B of the extended version [32].

Corollary 5.5. Given an irreducible product LMCM× = (𝑆×,𝑇×),
the original LMCM = (𝑆,𝑇 ) is the aggregated LMC resulting from
the ordinarily lumpable partition

⋃
𝑠∈𝑆 [𝑠], where [𝑠] = {(𝑠, 𝑞) | (𝑠, 𝑞) ∈

𝑆×}. The proof is in Appendix B of the extended version [32].

Lemma 5.3, Theorem 5.4, and Corollary 5.5 establish the one-to-

one correspondence between the steady-state probability derived

for an irreducible product LMC and the steady-state distribution

for the original LMC. Note that this result also holds for unichains

since the steady-state probability measure of transient states therein

would be zero. Now, let us consider the case where the product

LMC is a multichain. We establish sufficient conditions for yielding

the same one-to-one correspondence of steady-state distributions.

Furthermore, we establish necessary and sufficient conditions for

the multichain product LMC (M×A)𝜋 to yield a unichain original

LMCM𝜋 .

Lemma 5.6. Let M× = (𝑆×,𝑇×) denote a multichain product
LMC and let (𝑆𝑘 )𝑘 , 𝑆𝑘 ⊂ 𝑆× denote its BSCCs. Then its corresponding

original LMCM = (𝑆,𝑇 ) is a unichain iff some state (𝑠, ·) ∈ 𝑆×
shows up in every BSCC 𝑆𝑘 ofM×. That is, for some 𝑠 ∈ 𝑆 and all 𝑘 ,
there exists 𝑞 ∈ 𝑄 such that (𝑠, 𝑞) ∈ 𝑆𝑘 .

Proof. This follows from the one-to-one correspondence be-

tween paths inM and paths inM×. Furthermore, the single BSCC

𝑆 ′ ⊆ 𝑆 ofM is given by 𝑆 ′ = {𝑠 | (𝑠, 𝑞) ∈ ⋃𝑘 𝑆
𝑘 }. □

Lemma 5.7. Given a multichain product LMCM× = (𝑆×,𝑇×)
with𝑚 identical BSCCs given by transition probability matrices 𝑇1 =
𝑇2 = · · · = 𝑇𝑚 , and an irreducible LMCM ′ = (𝑆 ′,𝑇 ′), where 𝑆 ′
contains exactly the states in the first BSCC and𝑇 ′ = 𝑇1 (w.l.o.g.), the
steady-state probability of an arbitrary state (𝑠, 𝑞) ∈ 𝑆 ′ is equivalent
to the sum of steady-state probabilities of all states isomorphic to it in
the BSCCs ofM×. The proof is in Appendix C of the extended version
[32].

To illustrate Theorem 5.4 and Lemmas 5.6 and 5.7, consider the

multichain product LMC in Figure 3, where 𝑇1 and 𝑇2 denote the

transition probability matrices for the two BSCCs. We will show

that, because these two BSCCs are identical in terms of their transi-

tion matrices (rows may need to be reordered to reflect this), we

have Pr
∞ (𝑠) = ∑

(𝑠,𝑞) ∈[𝑠 ] Pr
∞ (𝑠, 𝑞) for states 𝑠 in the original LMC

shown in Figure 4. The solution to the steady-state equations for this

product LMC yields Pr
∞ (𝑠0, 𝑞0) = 0, Pr∞ (𝑠1, ·) = 1/6, Pr∞ (𝑠2, ·) =

1/12. The order of states in 𝑇2 differs from that of 𝑇1 in order to

reflect that BSCCs can be identical up to row ordering. Note that

the equivalence classes can be defined in terms of the isomorphic

sets as [𝑠1] = ⟨𝑠1⟩
⋃⟨𝑠 ′

1
⟩ and [𝑠2] = ⟨𝑠2⟩

⋃⟨𝑠 ′
2
⟩.

Figure 3: Product LMC with isomorphic sets given
by ⟨𝑠1⟩ = {(𝑠1, 𝑞0), (𝑠1, 𝑞2)}, ⟨𝑠 ′

1
⟩ = {(𝑠1, 𝑞1), (𝑠1, 𝑞3)},

⟨𝑠2⟩ = {(𝑠2, 𝑞0), (𝑠2, 𝑞3)}, ⟨𝑠 ′
2
⟩ = {(𝑠2, 𝑞1), (𝑠2, 𝑞2)}.
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Figure 4: The unichain original LMC.
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Now, consider the original LMC shown in Figure 4 corresponding

to this product LMC. Solving the steady-state equations (1) for the

original LMC yields Pr
∞ (𝑠0) = 0, Pr∞ (𝑠1) = 2/3, Pr∞ (𝑠2) = 1/3.

Note that Pr
∞ (𝑠1) =

∑
(𝑠,𝑞) ∈[𝑠1 ] Pr

∞ (𝑠, 𝑞) and Pr
∞ (𝑠2) =∑

(𝑠,𝑞) ∈[𝑠2 ] Pr
∞ (𝑠, 𝑞) in accordance with Theorem 5.4 by leveraging

the fact that Pr
∞ (𝑠, 𝑞) = ∑

(𝑠′,𝑞′) ∈ ⟨𝑠 ⟩ Pr
∞ (𝑠 ′, 𝑞′) per Lemma 5.7.

Theorem 5.4 and Lemma 5.7 establish necessary and sufficient

conditions for amultichain product LMC to yield a unichain original

LMC in the original LMDP such that there is a one-to-one correspon-

dence between the sum of steady-state probabilities

∑
𝑞 Pr
∞ (𝑠, 𝑞)

in the former and the steady-state distribution Pr
∞ (𝑠) in the latter.

Indeed, note that

Pr
∞ (𝑠) =

∑︁
(𝑠,𝑞) ∈[𝑠 ]

Pr
∞ (𝑠, 𝑞) =

∑︁
𝑠∈𝑆

∑︁
(𝑠′,𝑞′) ∈ ⟨𝑠 ⟩

Pr
∞ (𝑠 ′, 𝑞′)

holds when the product LMC is unichain or multichain given that

the original LMC is unichain. This is the case when all BSCCs in

the product LMC are identical as mentioned in Lemma 5.7, which

is the case when all BSCCs in the product LMC share some state in

𝑆 per Lemma 5.6.

We can now add constraints to program (2) to ensure that the

solution policy 𝜋 is deterministic and yields a unichain original LMC

M𝜋 in the original LMDPM even though the product LMC (M ×
A)𝜋 induced in the product LMDPM×A may be multichain. We

begin with constraints to enforce a deterministic policy. Constraint

(𝑖𝑖𝑖) ensures that a positive occupation measure implies that the

action corresponding to it is selected as part of the solution policy

and (𝑖𝑣) enforces a valid probability distribution, where 𝜋 (𝑎 |𝑠, 𝑞) ∈
{0, 1}.

(𝑖𝑖𝑖) 𝑥𝑠𝑞𝑎 ≤ 𝜋 (𝑎 |𝑠, 𝑞) ∀(𝑠, 𝑞) ∈ 𝑆×, 𝑎 ∈ 𝐴

(𝑖𝑣)
∑︁

𝑎∈𝐴(𝑠)
𝜋 (𝑎 |𝑠, 𝑞) = 1 ∀(𝑠, 𝑞) ∈ 𝑆×

Lemma 5.8. Let (𝑥, 𝜋) denote a feasible solution to constraints (𝑖)
through (𝑖𝑣) and assume that the product LMC (M × A)𝜋 induced
by 𝜋 is such that all BSCCs share some state 𝑠 ∈ 𝑆 . Then 𝑥𝑠𝑞𝑎 =

𝜋 (𝑎 |𝑠, 𝑞)Pr∞𝜋 (𝑠, 𝑞) = 𝜋 (𝑎 |𝑠, 𝑞)
∑
𝑎 𝑥𝑠𝑞𝑎 for all recurrent states (𝑠, 𝑞) ∈

𝑆×. The proof is in Appendix D of the extended version [32].

We can now add additional constraints that utilize the policy 𝜋 in

constraints (𝑖𝑖𝑖) and (𝑖𝑣) in order to establish that some accepting

state within an AMEC is reached by this policy and visited infinitely

often. This would, in turn, satisfy the LTL specification 𝜙LTL of the

given SS+LTL specification 𝜃 . For simplicity, we assume an initial

state 𝑠0 in the underlying LMDPM (i.e. 𝛽 (𝑠0) = 1). In order to en-

sure that there is a path from the initial state (𝑠0, 𝛿 (𝑞0, 𝐿(𝑠0))) ∈ 𝑆×
in the product LMDP M× to some recurrent component in the

union of AMECs which contains nodes in

⋃
𝑖 𝐺𝑖 (i.e. nodes that are

part of the DRA acceptance pairs), we will use flow transfer con-

straints. This notion of flow reflects the probability of transitioning

between states given a policy. Constraint (𝑣) sets the flow capac-

ities, where 𝑓𝑠𝑞𝑠′𝑞′ denotes flow from (𝑠, 𝑞) ∈ 𝑆× to (𝑠 ′, 𝑞′) ∈ 𝑆×.
Constraint (𝑣𝑖) ensures that, for every state (except the starting

state), if there is incoming flow, then it is strictly greater than the

outgoing flow. This is handled by the product of some small con-

stant 𝜖 and an indicator variable I𝑠𝑞 ∈ {0, 1} denoting whether flow
is being transferred from state (𝑠, 𝑞) to some other state. If there is

no incoming flow, then there is no outgoing flow and I𝑠𝑞 must nec-

essarily be zero. Constraint (𝑣𝑖𝑖) ensures that, if there is incoming

flow into a state (𝑠, 𝑞) ∈ 𝑆×, then I𝑠𝑞 = 1. Constraint (𝑣𝑖𝑖𝑖) ensures
that, whenever there is incoming flow, there must also be some

arbitrary amount of outgoing flow. The choice of denominator 2

here is arbitrary.

(𝑣) 𝑓𝑠𝑞𝑠′𝑞′ ≤
∑︁

𝑎∈𝐴(𝑠)
𝑇 ((𝑠, 𝑞), 𝑎) (𝑠 ′, 𝑞′)𝜋 (𝑎 |𝑠, 𝑞)

∀((𝑠, 𝑞), (𝑠 ′, 𝑞′)) ∈ 𝑇𝐺

(𝑣𝑖)
∑︁

( (𝑠′,𝑞′),(𝑠,𝑞)) ∈𝑇𝐺

𝑓𝑠′𝑞′𝑠𝑞 ≥
∑︁

( (𝑠,𝑞),(𝑠′,𝑞′)) ∈𝑇𝐺

𝑓𝑠𝑞𝑠′𝑞′ + 𝜖I𝑠𝑞

∀(𝑠, 𝑞) ∈ 𝑆× \ {(𝑠0, 𝛿 (𝑞0, 𝐿(𝑠0)))}

(𝑣𝑖𝑖)
∑︁

( (𝑠′,𝑞′),(𝑠,𝑞)) ∈𝑇𝐺

𝑓𝑠′𝑞′𝑠𝑞 ≤ I𝑠𝑞 ∀(𝑠, 𝑞) ∈ 𝑆×

(𝑣𝑖𝑖𝑖)
∑︁

( (𝑠,𝑞),(𝑠′,𝑞′)) ∈𝑇𝐺

𝑓𝑠𝑞𝑠′𝑞′ ≥
∑︁

( (𝑠′,𝑞′),(𝑠,𝑞)) ∈𝑇𝐺

𝑓𝑠′𝑞′𝑠𝑞/2 ∀(𝑠, 𝑞) ∈ 𝑆×

Constraint (𝑖𝑥) ensures that the steady-state probability of states

with no incoming flow (as determined by I𝑠𝑞 in constraint (𝑣𝑖)) is 0.
This makes it so that unreachable BSCCs in the product LMC (M×
A)𝜋 do not contribute to the steady-state distribution. Constraint

(𝑥) encodes the steady-state specifications given by operators SS in
𝜃 and constraint (𝑥𝑖) ensures that some state in the acceptance sets⋃
𝑖 𝐺𝑖 ofA is visited infinitely often to satisfy the LTL specification.

(𝑖𝑥)
∑︁

𝑎∈𝐴(𝑠)
𝑥𝑠𝑞𝑎 ≤ I𝑠𝑞 ∀(𝑠, 𝑞) ∈ 𝑆×

(𝑥) 𝑙 ≤
∑︁

𝑠∈𝐿−1 (𝜓 )

∑︁
𝑞∈𝑄

∑︁
𝑎∈𝐴(𝑠)

𝑥𝑠𝑞𝑎 ≤ 𝑢 ∀SS[𝑙,𝑢 ]𝜓 ∈ 𝜃

(𝑥𝑖)
∑︁
𝑠∈𝑆

∑︁
𝑞∈⋃𝑖 𝐺𝑖

∑︁
𝑎∈𝐴(𝑠)

𝑥𝑠𝑞𝑎 > 0

Recall that constraints (𝑖) and (𝑖𝑖) yield the correct steady-state

distribution if there is a single BSCC (per the unichain condition)

or if all BSCCs in the product LMC (M × A)𝜋 are identical and

the induced original LMCM𝜋 is a unichain (per Lemma 5.7). This

is the case when all BSCCs of (M × A)𝜋 share some state in 𝑠 ∈ 𝑆
per Lemma 5.6. We must therefore ensure that, in the product

LMC, some state in 𝑆 is shared (This is trivially true if there is only

one BSCC). The one-to-one correspondence of paths between the

original LMC and the product LMC will then guarantee that the

former is unichain even if the latter is multichain. To accomplish

this, we define three indicator variables I𝑠 ,I𝑘 ,I𝑘𝑠 ∈ {0, 1} whose
value is 1 iff (𝑠, ·) shows up in some BSCC of the product LMC,

the 𝑘th AMEC of the product LMDP has some state with positive

steady-state probability (meaning that the AMEC, or a subset of it,

will show up as a BSCC in the product LMC), and (𝑠, ·) has positive
steady-state probability in the 𝑘th AMEC, respectively.

Let 𝐴𝑀𝐸𝐶 denote the set of all AMECs in the product LMDP

M × A and let 𝐴𝑀𝐸𝐶𝑘 denote the 𝑘th AMEC. Constraint (𝑥𝑖𝑖)
ensures that I𝑘 is 1 if some state in the 𝑘th AMEC has positive

steady-state probability. Constraints (𝑥𝑖𝑖𝑖) and (𝑥𝑖𝑣) ensure that,
for a given state 𝑠 ∈ 𝑆 and the 𝑘th AMEC, some indicator variable

I𝑠𝑞 is 1 for (𝑠, 𝑞) in the 𝑘th AMEC if and only if I𝑘𝑠 = 1. Constraint

(𝑥𝑣) ensures that, if I𝑠 is 1, then (𝑠, ·) shows up in every BSCC
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of the product LMC (M × A)𝜋 , thereby enforcing that all BSCCs

in (M × A)𝜋 are identical. Per Lemma 5.6, this ensures that the

original LMCM𝜋 is a unichain. Note that the sum

∑
𝑘 (I𝑘𝑠 −I𝑘 ) is

always non-positive and dividing by the number of AMECs bounds

this result to be within [−1, 0]. Finally, constraint (𝑥𝑣𝑖) ensures
that some such shared state exists across all BSCCs of the product

LMC.

(𝑥𝑖𝑖)
∑︁

(𝑠,𝑞) ∈𝐴𝑀𝐸𝐶𝑘

∑︁
𝑎

𝑥𝑠𝑞𝑎 ≤ I𝑘 ∀1 ≤ 𝑘 ≤ |𝐴𝑀𝐸𝐶 |

(𝑥𝑖𝑖𝑖) I𝑘𝑠 ≤
∑︁

(𝑠,𝑞) ∈𝐴𝑀𝐸𝐶𝑘

I𝑠𝑞 ∀𝑠 ∈ 𝑆, 1 ≤ 𝑘 ≤ |𝐴𝑀𝐸𝐶 |

(𝑥𝑖𝑣)
∑︁

(𝑠,𝑞) ∈𝐴𝑀𝐸𝐶𝑘

I𝑠𝑞
|𝑄 | ≤ I

𝑘
𝑠 ∀𝑠 ∈ 𝑆, 1 ≤ 𝑘 ≤ |𝐴𝑀𝐸𝐶 |

(𝑥𝑣) I𝑠 − 1 ≤

∑
𝑘

(
I𝑘𝑠 − I𝑘

)
|𝐴𝑀𝐸𝐶 | ∀𝑠 ∈ 𝑆

(𝑥𝑣𝑖)
∑︁
𝑠

I𝑠 ≥ 1

The program is summarized below.

max

∑︁
(𝑠,𝑞) ∈𝑆×

∑︁
𝑎∈𝐴(𝑠)

𝑥𝑠𝑞𝑎

∑︁
𝑠′∈𝑆

𝑇 (𝑠, 𝑎) (𝑠 ′)𝑅(𝑠, 𝑎, 𝑠 ′) s.t. (𝑖) − (𝑥𝑣𝑖)

𝑥𝑠𝑞𝑎, 𝑓𝑠𝑞𝑠′𝑞′ ∈ [0, 1], ∀((𝑠, 𝑞), 𝑎, (𝑠 ′, 𝑞′)) ∈ 𝑆××𝐴×𝑆×

𝜋 (𝑎 |𝑠, 𝑞),I𝑠𝑞,I𝑠 ,I𝑘 ,I𝑘𝑠 ∈ {0, 1},
∀((𝑠, 𝑞), 𝑎) ∈ 𝑆××𝐴, 1 ≤ 𝑘 ≤ |𝐴𝑀𝐸𝐶 |

(3)

Theorem 5.9. Given an LMDPM = (𝑆, 𝛽,𝐴,𝑇 , 𝑅,𝐴𝑃, 𝐿) and an
SS+LTL objective 𝜃 = (𝜙LTL, (SS[𝑙𝑖 ,𝑢𝑖 ]𝜓𝑖 )𝑖 ), let (𝑥, 𝑓 , 𝜋,I) denote
an assignment to the variables in program (3). Then (𝑥, 𝑓 , 𝜋,I) is a
feasible solution if and only ifM𝜋 = (𝑆𝜋 , 𝛽,𝑇𝜋 , 𝐴𝑃, 𝐿) satisfies 𝜃 and
is a unichain. The proof is in Appendix E of the extended version [32].

6 EXPERIMENTAL RESULTS
Simulations of program (3) were performed using CPLEX version

12.8 [34] on a machine with a 3.6 GHz Intel Core i7-6850K processor

and 128 GB of RAM. We generated random 4 × 4, 8 × 8, and 16 × 16
gridworld environments given by the LMDPM = (𝑆, 𝛽,𝑇 , 𝑅,𝐴𝑃, 𝐿)
subject to various SS+LTL specifications 𝜃 and with the top-left cor-

ner of the grid as the inital state. There are four actions correspond-

ing to the four cardinal directions and a deterministic transition

function 𝑇 (𝑠, 𝑎) (𝑠 ′) ∈ {0, 1} defined in the obvious manner. Each

state-action pair observes a uniformly distributed random reward

in {0, 1}. See the figure in Appendix F for an example. It is worth

noting that the solutions illustrated in Figure 1 and Figure 2 were

also generated using program (3).

In the following experiments, the set of atomic propositions is

given by 𝐴𝑃 = {𝑎, 𝑏, 𝑐, 𝑑}, with each atomic proposition allocated

to one-fourth of the states chosen at random. See Table 1 for results.

These results demonstrate that the proposed program (3) can scale

to state spaces of moderate size on the order of a few minutes.

𝜃1 = ((G¬𝑏) ∧ (GF𝑎), SS[0.01,0.5]𝑑)
𝜃2 = ((GF𝑎) ∨ (FG𝑏), SS[0.01,0.5]𝑑)
𝜃3 = ((FG𝑎)U(𝑏 ∨ X(𝑏 ∨ X(𝑏 ∨ X𝑏))), SS[0.01,0.5]𝑑)
𝜃4 = ((F𝑎)U𝑏, SS[0.01,0.5]𝑑)
𝜃5 = ((F𝑎) ∧ F(𝑎U𝑏), SS[0.01,0.5]𝑑)
𝜃6 = (F(𝑎 ∧ X(𝑎 ∧ X𝑎)), SS[0.01,0.5]𝑑)
𝜃7 = ((F𝑎 ∧ F𝑏) ∧ ((F𝑎 ∧ F𝑏)U(𝑐 ∨ X𝑎)), SS[0.01,0.5]𝑑)
𝜃8 = (F𝑎 ∧ F𝑏 ∧ F𝑐, SS[0.01,0.5]𝑑)

𝜃 4 × 4 8 × 8 16 × 16
𝜃1 0.42 (0.43) 13.09 (83.86) 35.21 (70.09)

𝜃2 0.28 (0.72) 0.15 (0.06) 1.42 (0.74)

𝜃3 1.13 (3.27) 0.72 (0.40) 52.74 (59.42)

𝜃4 0.58 (2.04) 1.19 (0.53) 78.29 (53.94)

𝜃5 0.64 (1.93) 1.56 (0.70) 125.42 (93.79)

𝜃6 0.25 (0.62) 1.03 (0.43) 155.60 (130.84)

𝜃7 1.50 (5.08) 4.95 (2.77) 195.87 (145.07)

𝜃8 2.28 (6.41) 9.50 (6.37) 338.88 (205.29)

Table 1: Average runtimes and standard deviations for 100
random instances of program (3) using CPLEX version 12.8

for the listed SS+LTL specifications 𝜃1, . . . , 𝜃8 and for grids of
sizes 4 × 4, 8 × 8, and 16 × 16.

7 CONCLUSION
In this paper, we proposed and solved the deterministic controller

synthesis problem for labeled Markov Decision Processes (LMDPs)

subject to specifications on both the linear-time and visitation fre-

quency behaviors of an agent. The proposed approach uses a novel

integer programming formulation to find a policy that induces a

unichain labeled Markov chain (LMC). The program reasons about

the product LMDP computed from the original LMDP and the deter-

ministic Rabin automaton (DRA) representation of the linear-time

property. Though the product LMC induced by the solution policy

may be a multichain, we established necessary and sufficient con-

ditions for the one-to-one correspondence between the visitation

frequencies derived from the product LMC and the true steady-

state behavior of the agent captured by the unichain original LMC.

The foregoing is a step toward infinite-horizon formal synthesis

of control policies in general decision processes. For future work,

we will explore how similar correct-by-construction policies can

be computed such that guarantees of behavior hold for general

multichain LMCs induced by said policies in the original LMDP.
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