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ABSTRACT
This paper presents an extension to the Jason BDI language to
allow qualitative reasoning under uncertainty. We demonstrate
the need for such an extension using a challenge from the 2019
Multi-Agent Programming Contest (MAPC), namely localization
for navigation. Given the ability to qualitatively reason about what
the agent knows and what it considers possible (or impossible),
these challenges become easier to express, reason about, and act
upon in a Jason program.

Through the use of epistemic logic and the epistemic reasoner in
Hintikka’s World, our extension allows agents to express epistemic
queries; specifically, utilizing the class of single-agent S5 epistemic
models to model-check queries about the agent’s uncertainty. This
paper also provides an evaluation of the overall performance and
scalability of the extension’s implementation to show how it im-
pacts the agent’s reasoning time; from the evaluation results, we
use the official 2019 MAPC time constraints to examine the per-
formance tradeoffs of using the presented extension to model and
reason about uncertainty.
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1 INTRODUCTION
The belief-desire-intention (BDI) agent paradigm [12], and BDI-
based languages such as Jason [5], provide practical approaches to
defining autonomous agent behaviour by providing a reasoning
cycle designed around the mental attitudes of an agent.

Agents must be developed such that they are resilient to un-
certainty – one source of uncertainty, for example, occurs when
the environment is partially-observable. Jason provides the ability
to define contingency plans, which allow the agent to handle (or
recover from) unexpected states or failures that result from uncer-
tainty. However, the agent may prefer to avoid these unexpected
states altogether; this is where the ability to reason about current
uncertainty comes in handy. An agent’s belief base allows it to rea-
son about what it is explicitly certain (or uncertain) of, but does not
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natively infer other possible (or impossible) beliefs (which provides
the ability to proactively handle uncertainty).

In this paper, we present a Jason extension that allows an agent
to natively express knowledge and possibility (belief) queries by
integrating the Jason architecture with a reasoner for epistemic
logic1. We motivate the extension by showing how it could be used
to reason about uncertainty in the 2019 Multi-Agent Programming
Contest, however, in general, our proposed extension can be used to
develop a Jason program for any agent in knowledge-based domains
where knowledge is modelled and reasoned about using epistemic
logic and public announcement events – see [7].

1.1 The 2019 Multi-Agent Programming
Contest

The Multi-Agent Programming Contest (MAPC) 2 is a yearly con-
test that brings together teams of agents to compete in a simulated
environment. In the 2019 MAPC, agents must gather blocks, which
can be requested via dispensers, to assemble various shapes speci-
fied by the simulation; communication and collaboration among
agents of the same team are a necessity.

The agents are not given their absolute coordinates in the grid
world but only their relative perception of their immediate envi-
ronment. From this, various challenges arise that require reasoning
about uncertainty such as navigation and agent identification; we
have chosen to focus solely on navigation in this paper.

For demonstration purposes, we simplify the navigation chal-
lenge by assuming our agent starts with a complete definition of
the map3, as shown in Figure 1a – dark grey cells denote obstacles
and the red square denotes a block dispenser. Locations on the map
are referenced using (X, Y) coordinates, where (0, 0) is the top-left
location and (4, 4) is the bottom-right. Figure 1b shows the agent’s
immediate perceptions, denoted by the green cells.

In this example, the agent wants to navigate to the red dispenser.
We define the following Jason literals:
• percept(Dir, Object): the agent knows it perceives Object (one
of obstacle or none) in the direction Dir (one of up, down, left,
right).
• location(X, Y): the agent knows its current location on the
map is (X, Y).
• direction(Dir): the agent knows it must move in direction Dir
to get to the red dispenser; this direction is computed using
the shortest path.

We would like to reason about which location(X, Y) and direc-
tion(Dir) values are possible given our perceptions. To do this, we

1We attempt to generalize our extension as much as possible, so that it could easily be
adapted to other AgentSpeak or BDI languages.
2https://multiagentcontest.org/
3In the original MAPC, map definitions are randomly generated per simulation; as
such, the agent must obtain the map definition via exploration.
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(a) The MAPC map defini-
tion. The dark grey cells are
obstacles, and the red square
denotes a block dispenser.

(b) The agent’s perceived
cells marked in green, given
it’s actual location of (1, 1).

Figure 1: The MAPC map definition and agent perceptions.

want to express literal queries such as possible(location(X, Y)) and
possible(direction(Dir)), where X, Y, andDir are unified with possible
values. In Figure 2a and 2b, we have the following possibilities as a
result of the agent’s current perceptions, most notably because of
percept(down, obstacle):
• possible(location(1, 1)), possible(location(2, 1))
• possible(direction(left)), possible(direction(right))

(a) The agent’s possible loca-
tions (red circles), given its
perceptions.

(b) The shortest paths,
marked with dashed lines,
from each possible location
to the red dispenser.

Figure 2: The MAPC map definition and agent perceptions.

Further, the agent would then like to express these possible
queries in its plans; for example a navigate plan (Listing 1) that
navigates the agent to its desired destination when it is not certain
about its location or movement direction:

1 +! navigate

2 : not direction(_) & possible(direction(Dir))

3 <- move(Dir);

4 ...

Listing 1: A Jason plan that moves the agent in a possible
direction.

This plan ensures that the agent moves in a direction that may
possibly bring it to the red dispenser; although the direction may
not guarantee a dispenser, the agent can be certain that it does not
move in a direction that is known not to have a dispenser.

In essence, we want the agent to be able to query its possibilities,
given what it becomes certain of. A naive approach would rely on

the agent program itself, rather than the language, to derive and
revise its possible beliefs based on the certain beliefs the agent holds.
For example, when the agent’s perceptions (i.e., what it is certain
of) change, we revise all beliefs of the form possible(direction(Dir)).

Enter epistemic logic; epistemic logic is a multi-agent modal
logic that can be used to query an agent’s knowledge (certainty)
or possibilities, via the model-checking of formulae. We propose
an extension to Jason that allows us to reason about certainty and
uncertainty of a single Jason agent, through the use of an epistemic
logic reasoner. Despite the MAPC being a multi-agent contest, we
only want to model and reason about the knowledge of a single
agent.

2 SINGLE-AGENT EPISTEMIC LOGIC
Given a finite non-empty set of atomic propositions 𝑃 , the syntax
for a single-agent epistemic formula 𝜑 is defined as [1, 15]:

𝜑 F 𝑝 | 𝜑 ∧ 𝜑 | ¬𝜑 | 𝐾𝜑
𝑝 ∈ 𝑃

From this, we also have disjunctions, i.e., 𝜑1 ∨ 𝜑2 ≡ ¬(¬𝜑1 ∧
¬𝜑2), and the possibility modality 𝐾Poss𝜑 ≡ ¬𝐾¬𝜑 . 𝐾𝜑 and 𝐾Poss𝜑
are read as “the agent knows 𝜑" and “the agent considers 𝜑 to be
possible", respectively.

Entailment semantics are provided using a pointed epistemic
model: (𝑀,𝑤 ), where𝑀 is a single-agent S5 epistemic model and𝑤
is a pointed world chosen to provide correct entailment of formulae.
𝑀 = (𝑊,𝑅,𝑉 ) [1, 15], where:
𝑊 is a finite set of worlds,
𝑅 =𝑊 ×𝑊 is an indistinguishability relation for the agent,

𝑉 : 𝑊 → 2𝑃 is a valuation function

Given two worlds (𝑤1,𝑤2) ∈ 𝑅, we say that the agent is unable
to distinguish world𝑤1 from𝑤2. 𝑅 is modelled as an equivalence
relation (𝑊 ×𝑊 ) since all worlds are indistinguishable from each
other, a consequence of being an S5 model. The valuation function
𝑉 maps each world 𝑤𝑣 ∈ 𝑊 , to a subset of atomic propositions,
such that 𝑉 (𝑤𝑣) ⊆ 𝑃 ; this represents the subset of 𝑃 that hold true
in the world𝑤𝑣 .

Given a pointed epistemic model (𝑀,𝑤) and an epistemic for-
mula 𝜑 , entailment (|=) is defined as follows [1, 15]:

(𝑀,𝑤) |= 𝑝 iff 𝑝 ∈ 𝑉 (𝑤)
(𝑀,𝑤) |= ¬𝜑 iff (𝑀,𝑤) ̸|= 𝜑
(𝑀,𝑤) |= (𝜑1 ∧ 𝜑2) iff (𝑀,𝑤) |= 𝜑1 ∧ (𝑀,𝑤) |= 𝜑2
(𝑀,𝑤) |= 𝐾𝜑 iff for all (𝑤,𝑤 ′) ∈ 𝑅, (𝑀,𝑤 ′) |= 𝜑

Once a pointed model has been created, public announcement
events can be used to update the model given new knowledge.

Public Announcement Events. Public announcements allow us to
model updates to the agent’s knowledge. Public announcements
belong to the field of dynamic epistemic logic (DEL) [8], an exten-
sion of epistemic logic that provides the ability to model the impact
of actions and events on agent knowledge.

Given a pointed epistemic model (𝑀,𝑤) and the public an-
nouncement [𝜙!] containing the agent’s new knowledge repre-
sented by the epistemic formula𝜙 , [𝜙 !]must be executable ((𝑀,𝑤) |=
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𝜙) in order to be applied. We apply [𝜙!] to (𝑀,𝑤), denoted by the
⊗ operator, which gives us a resultant pointed model (𝑀𝑅,𝑤):

(𝑀𝑅,𝑤) ← (𝑀,𝑤) ⊗ [𝜙!]
In the resultant model, only the worlds, indistinguishability rela-
tions, and proposition valuations from the original model, where
the announced formula 𝜙 is true, are kept. The original pointed
world,𝑤 , is kept as the pointed world for the resultant model. More
formally, the resultant model 𝑀𝑅 = (𝑊𝑅, 𝑅𝑅,𝑉𝑅) is defined as fol-
lows [1]:

𝑊𝑅 = {𝑤 | 𝑤 ∈𝑊 , where (𝑀,𝑤) |= 𝜙}
𝑅𝑅 = 𝑅 ∩ (𝑊𝑅 ×𝑊𝑅)

𝑉𝑅 (𝑤) = 𝑉 (𝑤) for all𝑤 ∈𝑊𝑅

3 EXTENDING JASON
Our extension provides a Jason agent with the ability to reason
about its uncertainty through the use of epistemic logic and its
corresponding 𝐾 and 𝐾Poss modalities. In order to allow the agent
to query using these modalities, the extension must first create an
epistemic model that describes the agent’s domain of uncertainty.
Also, as the agent executes its reasoning cycle, the knowledge it
holds in its belief base is constantly being revised and updated;
as such, the extension must update the epistemic model to ensure
consistency with the belief base.

The extension aims to create, update, and query the epistemic
model on behalf of the agent by assigning additional semantics to
standard Jason syntax, this allows the extension to infer necessary
information about the agent’s domain of uncertainty while also
minimizing the burden put on the developer to model and express
queries about the agent’s uncertainty.

We introduce the extension in the following sub-sections accord-
ing to how it creates, updates, and queries the epistemic model;
model creation occurs when a Jason agent is initialized (before its
reasoning cycle starts), model updates are triggered whenever Ja-
son’s belief revision (BRF) or update (BUF) functions are executed4,
and model queries are triggered when the agent performs a belief
query (e.g., in a plan context). Although we present the extension
as one that integrates with Jason, it could easily be adapted to other
AgentSpeak-based languages.

3.1 Model Creation
In order to infer an initial epistemic model from the agent’s domain
of uncertainty the agent can define its range of possibilities for a
given literal using the extension’s range rules, and model the rela-
tions between each range of possible values through positive and
negative valuation rules. From the range and valuation rules defined
by the agent, the extension performs various transformations that
allow it to create an initial epistemic model.

Range Rules. The extension relies on the extended semantics it
provides to range rules to define the “range" of possibilities that
exist for a given literal. Let 𝐿+ be a positive literal for which the
agent wants to reason about its possibilities and let 𝐵𝑜𝑑𝑦 be a
4To clarify, the extension uses the BRF/BUF to update the epistemic model such that
it reflects the corresponding revision or update. The proposed extension does not
perform automatic belief revision, the Jason program is still responsible for maintaining
the consistency of the agent’s current beliefs.

logical expression that grounds 𝐿+ with all of its possible values:
{𝑙+1 , . . . , 𝑙

+
n }. Range rules are Jason rules that have the form:

⟨Range Rule⟩ ::= range(𝐿+) :- 𝐵𝑜𝑑𝑦.

Given the agent’s set of range rules, 𝑅Range, the function 𝐹Range
maps the range rule literal 𝐿+𝑟 for all 𝑟 ∈ 𝑅Range to its set of possible
positive ground literals, e.g., 𝐹Range (𝐿+𝑟 ) → {𝑙+𝑟1 , . . . , 𝑙

+
𝑟𝑛
}.

In Listing 2, we show two range rules that define the set of
possible locations and perceptions using Jason’s built-in internal
action .member5, the range literals are mapped to its ground val-
ues as: 𝐹Range (location(X, Y)) → {location(0, 0), location(0, 1)} and
𝐹Range (percept(Dir,Obj)) → {percept(up,none), percept(up,obstacle)}.

1 range(location(X,Y))

2 :- .member ([X,Y], [[0,0], [0 ,1]]).

3 range(percept(Dir ,Obj))

4 :- .member ([Dir ,Obj], [[up,none], [up,obstacle ]]).

Listing 2: Two example range rules.

From these range rules, the extension can infer an initial set of
positive ground literal valuations called 𝑉𝐿 — this is a set of literal
valuations that will be transformed into an initial epistemic model;
in the interim, we use literals so that we can apply the necessary
transformations for valuation rules. The function that creates the
initial 𝑉𝐿 from the agent’s range rules is shown in Algorithm 1;
given any function 𝐹 , we obtain 𝐹 ’s range as ran(𝐹 ).

Function 𝑉𝐿 (𝐹Range, 𝑅Range)
𝐿+1 , . . . , 𝐿

+
|𝑅Range | ← 𝑟𝑎𝑛(𝐹Range);

return 𝐿+1 × · · · × 𝐿
+
|𝑅Range | ;

end
Algorithm 1: Infer the initial valuations 𝑉𝐿 using the agent’s
𝑅Range and 𝐹Range.

The initial𝑉𝐿 set inferred from the range rules allows us to create
a generic epistemic model where a world is created containing
one possible value from each range rule. This inferred set may
not appropriately reflect the agent’s domain of uncertainty (for
example, the range rules in Listing 2 generate extra worlds where
locations do not match their appropriate perceptions). As such,
the extension assigns additional semantics to Jason rule syntax to
append to (or restrict) these worlds, these are known as positive
and negative valuation rules.

Positive and negative valuation rules are Jason rules that define
the knowledge relationships between the possible values defined by
each of the range rules; the valuation rules are interpreted by the
extension and are reflected by the literals held by each valuation in
𝑉𝐿 . Let 𝐿+ be a positive literal that unifies with one (or more) of the
agent’s defined range literals, and let 𝐵𝑜𝑑𝑦 be a logical expression
containing literals defined by any of the range rules:

⟨Positive Valuation Rule⟩ ::= 𝐿+ :- 𝐵𝑜𝑑𝑦.

⟨Negative Valuation Rule⟩ ::= ∼𝐿+ :- 𝐵𝑜𝑑𝑦.
Listing 3 shows an example of a positive and negative valuation

rule, respectively.
5E.g., .member(X, List) unifies ‘X’ with an element in the list ‘List’. See http://jason.
sourceforge.net/api/jason/stdlib/member.html.
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1 percept(up,none) :- location (0,0).

2 ∼percept(up,obstacle) :- location (0,1).

Listing 3: An example of two valuation rules.

Positive Valuation Rules. Positive valuation rules are used to
denote which literals belong in a given valuation. For each literal
valuation in 𝑉𝐿 generated using the range rules, we modify its
literals based on the positive valuation rules defined by the agent.

Given a valuation 𝑣 ∈ 𝑉𝐿 containing positive ground literals and
a positive valuation rule 𝑅PVR, the function 𝐹PVR (𝑣, 𝑅PVR) returns
a transformed valuation 𝑣 ′ which replaces 𝑣 in 𝑉𝐿 . The ground
literals defined by 𝑅PVR will remove any existing literals in 𝑣 that
were inferred from the same range rule. Additionally, the function
consequences(𝑣 , 𝑅PVR) returns 𝑅PVR’s ground head literals, obtained
by evaluating the logical consequences of 𝑅PVR with 𝑣 .

The positive valuation rule shown in Listing 3 denotes that val-
uations with location(0,0) should always hold percept(up,none), re-
placing any other values from the same range rule: percept(Dir,
Object).

Negative Valuation Rules. Once the positive valuation rules have
processed the valuations in 𝑉𝐿 , we apply any negative valuation
rules. For each literal valuation in 𝑉𝐿 , we modify its literals based
on the negative valuation rules defined by the agent. Given a val-
uation 𝑣 ∈ 𝑉𝐿 and a negative valuation rule 𝑅NVR, the function
𝐹NVR (𝑣, 𝑅NVR) returns a transformed valuation 𝑣 ′ which replaces 𝑣
in 𝑉𝐿 ; if 𝑣 ′ == ∅, then the valuation is removed from 𝑉𝐿 altogether.
This removal occurs when the valuation does not contain at least
one element from each of the range rule’s possible values.

The negative valuation rule shown in Listing 3 denotes that
valuations with location(0,1) should not hold percept(up,obstacle),
removing the world if it does not hold any other values from the
same range rule: percept(Dir, Object). The functions 𝐹PVR and 𝐹NVR
are shown in Algorithm 2.

Given the transformed set of literal valuations 𝑉𝐿 , Algorithm
3 creates an initial epistemic model (𝑀𝐼 ,𝑤𝐼 ) using the process of
propositionalization.

Propositionalization. We use a propositional epistemic logic for
complexity purposes; as the reader will see in a later section, we
use the epistemic reasoner in Hintikka’s World [14] which provides
P-Complete model-checking for epistemic formulae and public
announcements [15]. Jason, on the other hand, uses ground literals
for its beliefs. Since wewant tomodel and reason about beliefs using
epistemic logic, the extension must provide a way to transform
ground literals into propositions [13].

Given a ground literal 𝑙 , 𝑝𝑟𝑜𝑝 (𝑙) creates a propositional symbol
for the non-negated form of the literal (𝑙+), e.g., 𝑝𝑟𝑜𝑝 (𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛(0, 1))
→ location[0, 1] (we replace parentheses with square brackets to
denote the propositionalized form of a literal).

After processing the transformations made by the range and
valuation rules shown in Listings 2 and 3, the set𝑉𝐿 will contain two
valuations; these are transformed into the epistemic model shown
in Figure 3 where the worlds (locations) and their corresponding
proposition valuation are shown. The indistinguishability relation is
not shown in the figure as it is implicit (i.e., an equivalence relation
among the worlds).

Function 𝐹PVR(𝑣 , 𝑅PVR)
𝑣 ′ ← 𝑣 ;
𝐿 ← consequences(𝑣, 𝑅PVR);
for 𝑙 ∈ 𝐿 do

for 𝐿𝑅 ∈ 𝑟𝑎𝑛(𝐹Range) where 𝑙 ∈ 𝐿𝑅 do
𝑣 ′ ← 𝑣 ′ \ 𝐿𝑅 ;

end
end
return 𝑣 ′ ∪ 𝐿;

end
Function 𝐹NVR(𝑣 , 𝑅NVR)

𝑣 ′ ← 𝑣 ;
𝐿 ← consequences(𝑣, 𝑅NVR);
for 𝑙 ∈ 𝐿 do

𝑣 ′ ← 𝑣 ′ \ {𝑙}
for 𝐿𝑅 ∈ 𝑟𝑎𝑛(𝐹Range) where 𝑙 ∈ 𝐿𝑅 do

if 𝑣 ′ ∩ 𝐿𝑅 = ∅ then
return ∅

end
end

end
return 𝑣 ′

end
Algorithm 2: The functions 𝐹PVR and 𝐹NVR for applying a pos-
itive (𝑅PVR) or negative (𝑅NVR) valuation rule, respectively, to a
given literal valuation 𝑣 ∈ 𝑉𝐿 .

Function createModel(𝑉𝐿)
𝑊 ← ∅
for 𝑣𝐿 ∈ 𝑉𝐿 do

𝑤 ← New World
𝑊 ←𝑊 ∪ {𝑤}
𝑉 (𝑤) ← {prop(𝑙+) | 𝑙+ ∈ 𝑣𝐿}

end
𝑅 ←𝑊 ×𝑊
𝑀𝐼 ← (𝑊,𝑅,𝑉 )
𝑤𝐼 ← choose any𝑤 ∈𝑊

end
Algorithm 3: Create the initial model (𝑀𝐼 ,𝑤𝐼 ) from the set
𝑉𝐿 .

Figure 3: The created initial epistemic model.

3.2 Model Updates
When the agent updates the knowledge it holds in its belief base,
whether from a belief revision or update, the extension must syn-
chronize the epistemic model by applying a public announcement
that reflects the corresponding update.
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When an update occurs, we use the sets 𝐵𝐵Prev and 𝐵𝐵Cur to
represent the set of beliefs held by the belief base before the update
and after the update, respectively.

Public announcements are monotonic knowledge updates, as
they append to the knowledge held by the epistemic model they are
applied to. That is, public announcementsmodel an update in knowl-
edge that maintains the agent’s previous knowledge (𝐵𝐵Prev ⊆
𝐵𝐵Cur), since they are typically applied to the current epistemic
model (𝑀𝐶 ,𝑤𝑐 ). However, when a non-monotonic update occurs
(𝐵𝐵Prev ⊈ 𝐵𝐵Cur), we can apply it in a pseudo-monotonic man-
ner by executing the announcement on the initial epistemic model
(𝑀𝐼 ,𝑤𝐼 ), which, unlike the current model, does not model previous
knowledge or announcements. Algorithm 4 selects the appropriate
model (𝑀𝐴) based on the type of knowledge update.

if 𝐵𝐵Prev ⊆ 𝐵𝐵Cur then
𝑀𝐴 ← 𝑀𝐶

else
𝑀𝐴 ← 𝑀𝐼

end
Algorithm 4: Choose the correct model for the public an-
nouncement.

We then create a conjunction of propositions representing the
agent’s certainty in 𝐵𝐵Cur, choose a new pointed world𝑤𝐴 where
the knowledge holds true, and apply this formula as a public an-
nouncement to the model; this is shown in Algorithm 5.

Function createFormula(𝐵𝐵Cur)
𝐵𝐵Prop ← ∅
for 𝑏 ∈ 𝐵𝐵Cur do

if 𝑏 is negated then
𝐵𝐵Prop ← 𝐵𝐵Prop ∪ ¬𝑝𝑟𝑜𝑝 (𝑏)

else
𝐵𝐵Prop ← 𝐵𝐵Prop ∪ 𝑝𝑟𝑜𝑝 (𝑏)

end
end
return

∧
𝑏∈𝐵𝐵Prop

end
Function updateModel(𝐵𝐵Cur,𝑀𝐴)

𝜙 ← 𝑐𝑟𝑒𝑎𝑡𝑒𝐹𝑜𝑟𝑚𝑢𝑙𝑎(𝐵𝐵Cur)
𝑊𝐴 ← set of worlds in𝑀𝐴

𝑤𝐴 ← 𝑤 ∈𝑊𝐴 where (𝑀𝐴,𝑤) |= 𝜙
(𝑀𝐶 ,𝑤𝐶 ) ← (𝑀𝐴,𝑤𝐴) ⊗ [𝜙!]

end
Algorithm 5: The functions createFormula and updateModel,
which create an update formula and update the epistemic model,
given the agent’s set of beliefs 𝐵𝐵Cur.

3.3 Model Queries
Given a positive Jason literal 𝐿+ that unifies with one or more
ground range literals, we define epistemic query literals using the

following BNF:

⟨Query⟩ ::= ∼𝐿+ | 𝐿+

⟨KnowQuery⟩ ::= ⟨Query⟩
⟨PossQuery⟩ ::= 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 ( ⟨Query⟩ )

⟨EpistemicQuery⟩ ::= ⟨KnowQuery⟩ | ⟨PossQuery⟩
All epistemic queries are transformed so that they can be eval-

uated as epistemic formulae; non-epistemic belief queries are for-
warded to Jason’s default belief base. Given an epistemic belief
query 𝑄 (and its underlying literal 𝐿+), the set 𝑄𝐺 contains all
groundings of𝑄 , where its 𝐿+ is unified using ground range literals.
For each ground literal 𝑞𝐺 ∈ 𝑄𝐺 , where 𝑙 is the value that grounded
𝐿+, we transform 𝑞𝐺 into a corresponding epistemic formula 𝜙 ac-
cording to the transformations shown in Table 1.

Table 1: Transforming a ground epistemic query 𝑞𝐺 , and its
ground range literal 𝑙 into an epistemic formula 𝜙 .

𝑞𝐺 𝜙

𝑙 𝐾 𝑝𝑟𝑜𝑝 (𝑙)
∼𝑙 𝐾 ¬𝑝𝑟𝑜𝑝 (𝑙)

possible(𝑙) 𝐾Poss 𝑝𝑟𝑜𝑝 (𝑙)
possible(∼𝑙) 𝐾Poss ¬𝑝𝑟𝑜𝑝 (𝑙)

4 CONNECTING TO HINTIKKA’S WORLD
Hintikka’s World [14, 15] was developed by François Schwarzen-
truber as a pedagogical tool for DEL. We use Hintikka’s World with
our extension as it provides an open-source, easy-to-use implemen-
tation for modelling and reasoning about DEL. In this section, we
show how we can create, update, and query the epistemic model
using Hintikka’s World.

4.1 Model Creation
Given the initial pointed epistemicmodel’s components (𝑊,𝑅,𝑉 ,𝑤𝐼 )
inferred by the extension, we can create the initial model (𝑀𝐼 ,𝑤𝐼 )
in Hintikka’s World. We use the ExplicitEpistemicModel type pro-
vided by Hintikka’s World to represent the agent’s epistemic model.
Algorithm 6 shows the creation of a model instance 𝐸Initial, which
represents (𝑀𝐼 ,𝑤𝐼 ). In Hintikka’s World, we also use the instance
𝐸Current to refer to the current model (𝑀𝐶 ,𝑤𝐶 ), and we use the
constant 𝐴𝐺 to refer to our agent.

4.2 Model Updates
When the agent updates the knowledge it holds in its belief base,
we construct and apply a public announcement [𝜙!] to a chosen
epistemic model (𝑀𝐴,𝑤𝐴), i.e., (𝑀𝐴,𝑤𝐴) ⊗ [𝜙!].

Hintikka’s World provides a Formula type and various sub-types
(AndFormula, KFormula, etc.) to represent an epistemic formula
𝜙 . We define a function toHWFormula : 𝜙 → Formula, which con-
structs an instance of Formula that represents the epistemic formula
𝜙 .

Algorithm 7 demonstrates how the extension performs themodel
update (𝑀𝐴,𝑤𝐴) ⊗ [𝜙!] in Hintikka’s World. We use 𝐸𝐴 as the
Hintikka’s World representation for (𝑀𝐴,𝑤𝐴).
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Function createModel(𝑊,𝑅,𝑉 ,𝑤𝐼 )
𝐸Initial ← new ExplicitEpistemicModel();
for𝑤 ∈𝑊 do

𝐸Initial.addNode(𝑤 , new ValuationWorld(𝑉 (𝑤)));
end
for (𝑤1,𝑤2) ∈ 𝑅 do

𝐸Initial.addEdge(𝐴𝐺 ,𝑤1,𝑤2);
end
𝐸Initial.setPointedNode(𝑤𝐼 );
𝐸Current ← 𝐸Initial;

end
Algorithm 6: Create the initial epistemic model in Hintikka’s
World, using the generated components (𝑊,𝑅,𝑉 ) and𝑤𝐼 .

Function updateModel(𝐸A, 𝜙)
𝜙Ann ← toHWFormula(𝜙)
[𝜙Ann!] ← ExplicitEventModel.
getEventModelPublicAnnouncement(𝜙Ann, [AG])
𝐸Current ← [𝜙Ann!].apply(𝐸A)

end
Algorithm 7: Apply an announcement [𝜙Ann!] to the chosen
model (𝐸𝐴).

4.3 Model Querying
When a Jason agent sends a knowledge query to the epistemic
reasoner via an API request, we use the current epistemic model to
evaluate the query (using model checking provided by Hintikka’s
World) and send the evaluation results back to the agent. Model-
checking a formula 𝜙𝑞 given the current model 𝐸Current is shown
in Algorithm 8.

Function queryModel(𝐸Current, 𝜙𝑞)
𝜙 ← toHWFormula(𝜙𝑞)
return 𝐸Current.modelCheck(𝜙)

end
Algorithm 8: Model-check a formula 𝜙𝑞 using the current
epistemic model 𝐸Current.

In the next section we apply the framework to the MAPC navi-
gation challenge we introduced earlier.

5 APPLICATION: MAPC NAVIGATION
We aim to use our proposed Jason extension to reason about the
locations that the agent currently considers possible, based on its
current knowledge (perceptions). We assume that the agent is given
the map definition beforehand. Figure 4 shows the map definition
given to the agent; since the agent has not received any perceptions,
all locations are currently possible and are denoted on the figure
with red circles.

Model Creation. Given the MAPC map, we can use standard
Jason rules with our extended semantics to define the agent’s initial
domain of uncertainty; Listing 4 shows the range rules that define
all possible locations and perceptions, and the valuation rules that
link perceptions and directions to their appropriate locations.

Figure 4: The agent’s initial possible locations.

1 // Range Rules

2 range(location(X, Y))

3 :- .member ([X,Y], [[0,0], ..., [4 ,4]]).

4 range(percept(Dir , Obj))

5 :- .member ([Dir ,Obj], [[up,none], ...]).

6 range(direction(Dir))

7 :- .member(Dir , [up, down , left , right]).

8
9 // Valuation Rules

10 percept(Dir ,Obj) :- location(1, 1) & .member ([Dir ,Obj],

[[up,none], [down ,obstacle], [left ,none],

[right ,none ]]).

11 ...

12
13 direction(left) :- location(1, 1).

14 ...

Listing 4: MAPC range and valuation rules.

The extension then uses these range and valuation rules to infer
the initial epistemic model shown in Figure 5; due to the rules
specified by this agent, each world corresponds to a location on
the map. The figure shows the worlds that are generated, and the
valuation for the world with location (1,1) is shown in blue; the
relation 𝑅 is implicit and is thus not shown.

Figure 5: Generated initial model.

Belief Update. Now assuming the MAPC simulation starts and
the agent is placed at location (1, 1) on the map, it receives its
appropriate perceptions via Jason’s perceive function: percept(up,
none), percept(down, obstacle), percept(right, none), percept(left, none).
This situation was shown previously in Figure 2a. These new per-
ceptions are propositionalized and are used to create the public
announcement: [percept[up, none] ∧ percept[down, object] ∧ . . .!]
This eliminates any worlds where these perceptions do not hold
true; as such, the resulting worlds are shown in Figure 6.
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Figure 6: The updated model.

Belief Queries. We will now demonstrate the evaluation of the
query possible(direction(Dir)) from the plan context shown in Listing
1. This query is ground using the agent’s ground range literals,
which are transformed into their corresponding epistemic formulae:
• possible(direction(left))→ 𝐾Possdirection[left]
• possible(direction(right))→ 𝐾Possdirection[right]
• possible(direction(down))→ 𝐾Possdirection[down]
• possible(direction(up))→ 𝐾Possdirection[up]

Assuming the agent’s current model (𝑀𝐶 ,𝑤𝐶 ) is the one shown in
Figure 6, only the following are true: (𝑀𝐶 ,𝑤𝐶 ) |= 𝐾Possdirection[left]
and (𝑀𝐶 ,𝑤𝐶 ) |= 𝐾Possdirection[right]. The reader may refer to Fig-
ure 2b to see why this is the case. As such, the ground literals
possible(direction(left)) and possible(direction(right)) will be used to
ground the agent’s original query possible(direction(Dir)); note that
the process for a knowledge query, e.g., direction(_), is the exact
same, but creates formulae with the modality 𝐾 .

6 EVALUATION
In this section, we evaluate the performance and scalability of the
extension to measure its impact on the agent’s reasoning cycle6.

6.1 Model Creation
During model creation, the extension creates an initial model using
the transformations defined by our assigned range and valuation
rule. We measure the impact the size of the created epistemic model
has on model creation time, represented by the model parameters
|𝑊 | (the number of worlds) and |𝑉𝑊 | (the number of propositions
in each world).

We expect the major time-complexity factors to be driven by the
program-dependent evaluation of logical consequences for range
and valuation rules (𝐹Range in Algorithm 1 and the consequences()
function used in Algorithm 2) and the quadratic complexity asso-
ciated with creating the indistinguishability relation (Algorithm
3).

In our MAPC application, |𝑊 | depends on the size of the map;
we therefore create models using various map sizes ranging from
5x5 (|𝑊 | = 25) to 100x100 (|𝑊 | = 10, 000). The value of |𝑉𝑊 |
represents the number of perceptions per location, which we vary
using extreme values of 4 and 100. Figure 7 shows the impact these
parameters have on the model creation time.

6.2 Model Updates
Given the agent’s current belief base 𝐵𝐵, the extension performs
model updates by creating a public announcement formula from
𝐵𝐵 and applying it to either the initial or current model (repre-
sented by𝑀𝐴). To apply the update, the reasoner must evaluate the
announcement containing |𝐵𝐵 | propositions on the worlds in the
model:𝑊𝐴 .
6The results reported in this section were obtained with an Intel i7-8700K CPU and
48GB DDR4 RAM, running Windows 10.

Figure 7: |𝑊 | and |𝑉𝑊 | vs. Model Creation Time (s). The or-
ange and blue lines show models with |𝑉𝑊 | = 4 and |𝑉𝑊 | =
100, respectively.

We vary the parameter |𝑊𝐴 | using the same values as the model
creation evaluation (i.e., values of 25 to 100) and vary the belief
base size using arbitrary values of |𝐵𝐵 | = 4 and 4000. We expect
model updates to have a quadratic time complexity, due to the need
to iterate over the quadratic indistinguishability relation in the
model 𝑀𝐴 . Fortunately, we can improve this complexity with an
optimized epistemic model implementation for the class of models
we are using.

6.2.1 Optimized Epistemic Models. Creating and updating the epis-
temic model using Hintikka’s World currently operates in quadratic
time with the number of worlds in the model (|𝑊 |2); this is due to
having to iterate over the equivalence indistinguishability relation
𝑅 = 𝑊 ×𝑊 . However, we can modify Hintikka’s World to infer
this relation rather than create and store it explicitly.

In Hintikka’s World, we use the ExplicitEpistemicModel type to
represent the epistemic model using a graph structure (nodes are
worlds/valuations and the edges are the indistinguishability rela-
tion); this is because multi-agent DEL allows for different classes
of epistemic models and events. However, by modifying the imple-
mentation of ExplicitEpistemicModel to only support single-agent
S5 models, we are able to obtain linear model update times [16].
Unfortunately, we do not receive any improvement in model cre-
ation times as it is primarily driven by the transformations made
by the range and valuation rules rather than the initialization of
the model. The original (quadratic) and optimized (linear) model
update times are shown in Figure 8.

6.3 Model Queries
Lastly, the extension performs model queries by transforming a
literal query into one or more propositional epistemic formulae
and evaluating each of them using the current model (𝑀𝐶 ,𝑤𝐶 ). We
measure the impact of a single query literal on the agent’s reasoning
cycle time, where |𝑊 | is the number of worlds in the current model
𝑀𝐶 (varied from 25 to 10,000), and |𝐹 | is the number of formulae
that get evaluated (where we use arbitrary values of |𝐹 | = 5 or 50).
We define |𝐸 | = |𝑊 | × |𝐹 | as the number of evaluations that get
made on the model to return the query results back to the agent.
Figure 9 shows the impact of the model size and number of formulae
on the total model querying time.
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Figure 8: |𝑊𝐴 | vs. Model Update Time (s), where the solid
and dashed lines represent the original and optimized imple-
mentation, and the yellow and blue lines represent updates
where |𝐵𝐵 | = 4 and |𝐵𝐵 | = 4000, respectively.

Figure 9: |𝐸 | vs. Model Query Time (ms).

In the official MAPC simulation, the agents operate on a 50x50
map (|𝑊 | = 2500), and have 61 perceptions per location (|𝑉𝑊 | = 61).
This gives them a model creation, update, and query time of 14s,
75ms, and 16 ms (|𝐹 | = 4), respectively. Each simulation step has a
4 second deadline to choose an action. Since model creation takes
14s, the agent may miss the first 3 simulation steps; however, since
this is a one-time process and model updates and queries execute
well within the deadline, the agent will make up for lost simulation
steps since it gains the ability to proactively reason about (and act
on) its uncertainty.

7 RELATEDWORK
In the literature, there have been attempts to integrate epistemic
logic with other AI approaches, e.g., the epistemic rule-based ap-
proach presented in [9], and epistemic planning for multi-agent
systems [4], however, to our knowledge, there have been no at-
tempts to extend an agent-oriented programming language such as
AgentSpeak with an epistemic reasoner.

In [6], a theoretical BDI extension named g-BDI is proposed. The
agent’s belief, desire, and intention modalities are graded, and can
be used to qualitatively model and reason about its uncertainty.
Inspired by g-BDI, a practical (i.e., implemented) Jason extension
named G-JASON [3] was developed, however, G-JASON takes a
different approach to modelling uncertainty by associating beliefs,
desires, and intentions with a numerical value of uncertainty rather
than g-BDI’s graded modalities.

Another practical approach to uncertainty in the literature, named
TEAgentSpeak [2], is an extension of AgentSpeak that provides
the ability to model and reason about belief uncertainty through
plausibility models. Reasoning about certainty or possibility of a
belief is expressed via numerical values, rather than the modalities
we presented here.

Although numerical methods (such as those used by G-JASON
and TEAgentSpeak) may be more precise than a modal approach
(e.g., via epistemic logic) to uncertainty, numerical approaches may
not always be suitable for a given application – such as when the
agent wants to qualitatively reason about the domain, or when the
numerical values required to model the domain’s uncertainty are
simply not obtainable.

8 CONCLUSION: LIMITATIONS AND FUTURE
WORK

This paper presented an extension to the Jason language, which
enabled the ability to epistemically reason about an agent’s current
beliefs using the 𝐾 and 𝐾Poss modalities. The extension’s assigned
semantics allow it to infer the agent’s domain of uncertainty via
range and valuation rules, and from them, create an initial epistemic
model. As the agent executes its reasoning cycle, the extension will
update and query the epistemic model based on the belief updates
and queries performed by the agent. Using the MAPC navigation
challenge, we demonstrated how such an extension could be used
to proactively reason about uncertainty.

When using our extension, the agent may find itself in situations
where it wishes it could express other domain-specific epistemic
model transformations. For example, in the official MAPC simu-
lation, the agent is not given a map definition ahead of time and
is expected to explore the map; however, our extension does not
provide any way to append new worlds and valuations to the model
to accommodate discovered locations and perceptions. This means
that the developer must anticipate and model all possible situations
before the initial model is created.

Additionally, when a non-monotonic update occurs (e.g., receiv-
ing new perceptions as a result of moving locations), the model
may contain less certainty about the new situation as a result of
how non-monotonic updates are applied. Currently, the agent must
use an ad hoc approach after the update is applied to transition its
previous level of certainty to a new situation, however, as future
work, we would like the extension to infer these transitions via
additional extended syntax and/or semantics.

To address the aforementioned limitations, our extension needs
to support additional epistemic model transformations that allow
the agent to express other types of model updates; luckily, this is
why we have chosen to integrate with Hintikka’s World, a reasoner
that supports the full DEL language. DEL has the ability to model
the impact of various types of actions and events on the agent’s
knowledge, however, supporting these additional transformations
will come at the cost of additional computational complexity [15].
Future work thus includes addressing these limitations while mea-
suring the impact that each type of transformation has on the
agent’s reasoning cycle.

Lastly, as future work, our epistemic extension could be enriched
with the ability to perform automated belief revision, for example,
using the approaches presented in [10, 11].
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