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ABSTRACT
Given a set of agents with approval preferences over each other, we

study the task of finding k matchings fairly representing everyone’s

preferences. We model the problem as an approval-based multiwin-

ner election where the set of candidates consists of matchings of the

agents, and agents’ preferences over each other are lifted to prefer-

ences over matchings. Due to the exponential number of candidates

in such elections, standard algorithms for classical sequential vot-

ing rules (such as those proposed by Thiele and Phragmén) are

rendered inefficient. We show that the computational tractability

of these rules can be regained by exploiting the structure of the

approval preferences. Moreover, we establish algorithmic results

and axiomatic guarantees that go beyond those obtainable in the

classical approval-based multiwinner setting: Assuming that ap-

provals are symmetric, we show that Proportional Approval Voting

(PAV), a well-established but computationally intractable voting

rule, becomes polynomial-time computable, and that its sequential

variant, which does not provide any proportionality guarantees in

general, fulfills a rather strong guarantee known as extended justi-

fied representation. Some of our algorithmic results extend to other

types of compactly representable elections with an exponential

candidate space.
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1 INTRODUCTION
Matching problems involving preferences occur in a wide variety

of applications, and the literature has identified a host of criteria

for choosing a single “fair” matching [34]. In contrast to most of

this work, we are interested in situations where multiple match-

ings between agents can be chosen, which allows to consider new

dimensions of “fairness”. Such situations occur naturally in appli-

cations where agents need to be matched multiple times, either

successively or simultaneously. For instance, teachers often divide

students into pairs for partner work, and multiple matchings might
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be required for different learning activities and different subjects.

Several matchings can also be chosen in pair programming, for

example, one pairing per project milestone. Other natural applica-

tions occur in workplaces where shifts are executed in pairs, which

is often the case for security reasons (e.g., police officers or pilots

usually work in shifts as pairs).

We model scenarios of this type as the problem of finding k
matchings between agents based on the agents’ dichotomous (i.e.,

approval/disapproval) preferences over each other. More concretely,

we associate with each agent an approval set, i.e., a subset of other

agents that are approved by the agent. In the student/teacher sce-

nario, approval sets of students could, for example, consist of all

students they like, or of all students that are deemed compatible by

the teacher. Preferences over agents are then lifted to preferences

over matchings in a straightforward way: An agent approves a

matching if and only if she is matched to an agent she approves. If

the task were to find only a single matching, it would be natural to

select a matching maximizing the number of approvers (which, nat-

urally, some agents might not approve). However, when selecting

multiple matchings, it is possible to balance interests of agents and

to strive for proportional representation: A group that makes up a

p-fraction of the agents (p ∈ [0, 1]) should not be "less happy" than

if this group could decide on ⌊p ·k⌋ of the matchings. This objective

leads to considerations that are quite different from the classical

goals of the matching literature such as stability or popularity. We

formalize proportional representation in Section 2.3 and discuss a

concrete example in Section 3.

The type of fairness we strive for is captured by proportionality

axioms from the approval-based multiwinner literature. By inter-

preting matchings as candidates and agents as voters in an election,

our setting can be viewed as a special case of approval-based multi-

winner elections [2]. As a consequence, voting rules and axiomatic

results from this more general framework are applicable to our

setting, to which we refer to as matching elections. We explicitly al-

low that a single candidate (i.e., matching) can be selected multiple

times and we refer to multisets of matchings as committees. This is

in contrast to general approval-based multiwinner elections, where

candidates can be selected at most once.
1
This positions matching

elections within the class of party-approval elections [12], a recently

introduced subclass of approval-based multiwinner elections for

which stronger axiomatic guarantees are obtainable.

Matching elections exhibit two characteristics that make them

an intriguing subdomain of party-approval elections and that give

rise to several interesting theoretical questions: First, the number of

1
As a rationale for our decision, observe that such a constraint would be rather artificial

in our setting: Two matchings which only differ in a few pairs would already be

considered as two distinct candidates in a matching election.
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candidates in a matching election is exponential in the number of

agents (and thus in the size of the description of an instance). As a

consequence, a number of standard algorithms for applying voting

rules or checking axiomatic guarantees no longer run efficiently, as

they iterate over the candidate space. Second, preferences of agents

have a very specific structure. For instance, it is possible to combine

certain parts of two matchings, thereby obtaining a “compromise”

candidate that is approved by some approvers of the first and some

approvers of the second matching. Exploiting this structure has the

potential to not only recover the computational tractability of vot-

ing rules, but also to prove proportional representation guarantees

that go beyond those obtainable in the general multiwinner setting.

We also consider two natural special cases of matching elections:

symmetric matching elections, where agents’ approvals are mu-

tual, and bipartite matching elections, where agents are partitioned

into two groups and agents only approve members of the oppo-

site group. The previously described applications yield symmetric

matching elections if, for example, approvals encode compatibility

constraints. Similarly, bipartite matching elections arise whenever

matched agents are required to have different attributes regarding

professional experience, educational background, gender, etc.

1.1 Related Work
The matching literature has established a variety of optimality cri-

teria for selecting a single matching based on ordinal preferences

of agents. In the following, we mention several of these criteria

and discuss how they relate to the ideal of proportional representa-

tion (see Footnote 5 in Section 3.1 for a concrete example). Most

prominently, stable matchings [21] as well as their fractional relax-

ation [39] are motivated by the underlying “threat” that pairs of

agents can block a matching. In contrast, proportionality prescribes

that a pair of agents has the power to decide on ⌊2 ∗ (k/n)⌋ match-

ings in the committee. An advantage of the latter is that we can

represent the preferences of all agents, even those whowould not be

matched in any stable matching. Another related criterion is popu-

larity [17, 24, 29]: A (fractional) matching is popular if it is preferred

to any other matching by a majority of the agents (in expectation).

While this is well-motivated for selecting a single matching, it leads

to a “dictatorship of the majority” in the multiwinner case (as 51%

of the agents could decide on the entire committee).

Bogomolnaia and Moulin [9] consider a setting that is similar to

ours, except that probability distributions over matchings are cho-

sen (rather than multiple matchings). They focus on the egalitarian

solution [9], which chooses probability distributions maximizing

the utility of the worst-off agent (breaking ties according to the

leximin order). It was recently shown that such a probability dis-

tribution can be computed in polynomial time [23]. Bogomolnaia

and Moulin [9] only consider bipartite and symmetric
2
instances

and show that, under these restrictions, the egalitarian solution

satisfies strong fairness and incentive properties. However, for non-

symmetric instances, the fairness ideal behind the egalitarian solu-

tion is not completely satisfactory, as it ignores how hard it is to

satisfy agents. Our axioms, in contrast, implicitly reward groups

that can be matched easily to agents they approve.

2
Bogomolnaia and Moulin [9] allow asymmetric preferences but assume that agents

can only be matched if they approve each other, hence rendering the setting symmetric.

Proportional representation is traditionally studied in the context

of multiwinner elections [14, 20, 35]. Recent years have witnessed

a considerable amount of interest in multiwinner elections based

on dichotomous preferences (see [32] for a survey). Within this

setting, a particular focus has been on defining axiomatic proper-

ties capturing proportional representation [2, 13, 36, 40] and on

algorithms for guaranteeing (approximately) representative out-

comes [11, 15, 28, 37]. Matching elections constitute a subdomain

of party-approval elections [12].

The elections we consider in this paper have an exponential

number of candidates, and thus require a way to represent agents’

preferences succinctly. Similar approaches involving compactly

represented preferences of agents have been used, for example,

in the study of hedonic games [1, 7, 8], fair division [5, 10], and

single-winner voting in combinatorial domains [16, 33]. To the best

of our knowledge, multiwinner elections with exponentially many

candidates have not yet been considered.

1.2 Our Contributions
We establish matching elections as a novel subdomain of approval-

based multiwinner elections with an exponential candidate space

and initiate their computational and axiomatic study. By doing so,

we are able to focus on a dimension of fairness which, to the best of

our knowledge, has not been studied within the matching literature

before. We consider several established (classes of) approval-based

multiwinner rules (Thiele rules, Phragmén’s sequential rule, and

Rule X; see Section 2.2 for definitions) and proportionality axioms

(PJR, EJR, and core stability; see Section 2.3 for definitions). Ex-

ploiting the structure of matching elections, we prove a number of

positive results. In particular, we show that all considered sequential

rules can be computed in polynomial time despite the exponential

candidate space. In fact, we show the slightly more general result

that those rules are tractable in all elections where a candidate

maximizing a weighted approval score can be found efficiently. We

furthermore show that non-sequential Thiele rules such as PAV

can be computed efficiently in symmetric matching elections and

in bipartite matching elections, whereas they are computationally

intractable in general matching elections (with a “general” match-

ing election we mean a matching election that is neither bipartite

nor symmetric). We present these results in Section 4, which we

start with Table 1 summarizing our computational results.

The additional structure of symmetric matching elections has

axiomatic ramifications as well: We show that a large class of se-

quential Thiele rules satisfies EJR in this setting. This is particularly

surprising as these rules are known to violate even significantly

weaker axioms in general approval-based multiwinner elections.

On the other hand, Phragmén’s sequential rule and Rule X do not

satisfy stronger proportionality axioms compared to the general

setting.

Lastly, in Section 6, we show that in matching elections it can

be checked efficiently whether a committee satisfies EJR, whereas

checking core stability or PJR is intractable. The problem of check-

ing PJR is our only example for a computational problem that is

polynomial-time solvable in the party-approval setting and NP-

complete in the setting of matching elections.
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The proofs (or their completions) for results marked by (⋆) can

be found in the full version [6].

2 PRELIMINARIES
We define party-approval elections and recap some approval-based

multiwinner voting rules and proportionality axioms. Let N =
{1, 2, . . .}, N0 = N ∪ {0}, and for all n ∈ N let [n] = {1, . . . ,n}.

2.1 Party-Approval Elections
A party-approval election [12] is a tuple (N ,C,A,k), where N is

a set of agents, C a set of candidates, A = (Aa )a∈N a preference

profile with Aa ⊆ C denoting the approval set of agent a ∈ N , and

k ∈ N the committee size.
3
A committeeW : C → N0 is a multiset of

candidates, with the interpretation thatW (c) is the number of copies

of candidate c contained in committeeW . The size of a committee

W is given by

∑
c ∈CW (c). For an agent a ∈ N and a committeeW ,

we let the happiness score ha (W ) of a denote the number of (copies

of) candidates fromW approved by a, i.e., ha (W ) =
∑
c ∈Aa W (c).

Moreover, Nc = {a ∈ N | c ∈ Aa } denotes the set of approvers
(also called supporters) of c , and |Nc | is called the approval score

of c . A voting rule maps a party-approval election (N ,C,A,k) to
a nonempty set of committees of size k . All committees output

by a voting rule are considered tied for winning. Party-approval

elections differ from the more general approval-based multiwinner

elections [2] in that candidates can appear in a committee multiple

times.

It is usually assumed that instances of an election are described

by listing all candidates and approval sets explicitly. Since we will

deal with elections with an exponential candidate space, we relax

this assumption and only require that a representation of an election

is given from which the full election can be reconstructed (as we

will argue later, for matching elections its representation consists

of listing for each agent the agents it approves of). We will show

that several computational problems we consider in the following

can be reduced to solving the following problem:

Weighted Approval Winner

Input: A representation of a party-approval election

(N ,C,A,k) and a weight function ω : N 7→ Q≥0.

Output: A candidate maximizing the total weight of its ap-

provers, i.e., an element of argmaxc ∈C
∑
a∈Nc ω(a).

We let rwaw denote the running time of solving this problem.

2.2 Voting Rules from Multiwinner Voting
We describe four methods for computing committees. For each

method the output of the corresponding voting rule consists of all

committees that can result for some way of breaking ties.

Thiele Rules [27, 41]. The class ofw-Thiele rules is parameterized

by a weight sequence w , i.e., an infinite sequence of non-negative

numbersw = (w1,w2, . . . ) such thatw1 = 1 andwi ≥ wi+1 for all i .
Given a weight sequencew , the score of a committeeW is defined

as scw (W ) =
∑
a∈N

∑ha (W )

i=1 wi . The rulew-Thiele selects commit-

tees maximizing this score. Setting wi = 1/i for all i ∈ N yields

3
To avoid trivial instances, we always assume that there exists at least one agent

a ∈ N with Aa , ∅.

the arguably most popular w-Thiele rule known as Proportional

Approval Voting (PAV).

Sequentialw-Thiele Rules (seq-w-Thiele rules) [27, 41]. These vari-

ants of w-Thiele rules start with the empty committee and add

candidates iteratively. Given a multisetW of already selected can-

didates, the marginal contribution of a candidate c is defined as

scw (W ∪{c})− scw (W ). In each step, seq-w-Thiele adds a candidate

with a maximum marginal contribution. Setting wi = 1/i for all
i ∈ N, yields seq-PAV.

Phragmén’s Sequential Rule (seq-Phragmén) [27, 38]. In seq-

Phragmén, all agents start without money and continuously earn

money (i.e., budget) at an equal and constant speed. As soon as there

is a candidate c such that the group Nc of supporters of c jointly
owns one dollar, such a candidate is added to the committeeW and

the budget of the group Nc is reduced to zero. All remaining agents

keep their budget. This is repeated until the committee has size k .

Rule X [37]. Initially, every agent a has a budget ba of k/n dollars.

Each candidate costs one dollar and a candidate c is said to be

q-affordable if

∑
a∈Nc min{ba,q} ≥ 1. In each round, we add a

candidate c which is q-affordable for minimum q and reduce the

budget of each agent a ∈ Nc by min{ba,q}. The rule stops when
there exists no q-affordable candidate for any q > 0. Note that

Rule X might create a committee of size smaller than k ; in this

case, the committee can be completed by choosing the remaining

candidates arbitrarily [37].

Since seq-w-Thiele rules, seq-Phragmén, and Rule X add can-

didates to the committee one by one, we refer to these rules as

sequential rules.

2.3 Axioms from Multiwinner Voting
Consider a party-approval election (N ,C,A,k). For ℓ ∈ [k], a set
S ⊆ N of agents is ℓ-cohesive if |S | ≥ ℓ nk and

⋂
a∈S Aa , ∅. We

consider three different axioms capturing the ideal of proportional

representation to varying degrees [2, 40]:

Proportional Justified Representation. A committeeW provides

proportional justified representation (PJR) if there does not exist an

ℓ ∈ [k] and an ℓ-cohesive group S such thatW contains strictly

less than ℓ (copies of) candidates that are approved by at least one

agent in S , i.e.,
∑
c ∈

⋃
a∈S Aa W (c) < ℓ.

Extended Justified Representation. A committeeW provides ex-

tended justified representation (EJR) if there does not exist an ℓ ∈ [k]
and an ℓ-cohesive group S such that ha (W ) < ℓ for all a ∈ S .

Core Stability. Given a committeeW , we say that a group of

agents S ⊆ N blocks W if |S | ≥ ℓ nk for some ℓ ∈ [k] and there

exists a committeeW ′
of size ℓ such that ha (W

′) > ha (W ) for all

a ∈ S . A committeeW is core stable if it is not blocked by any group

of agents.

Core stability implies EJR [2], and EJR implies PJR [40]. As it

is standard in the literature on approval-based multiwinner elec-

tions [32], we say that a voting rule satisfies PJR/EJR/core stability if

all committees in its output always satisfy the respective condition.
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3 MATCHING ELECTIONS
We now formally introduce matching elections and establish them

as a special case of party-approval elections by giving a formal

embedding. We familiarize ourselves with the newly introduced

setting by proving some first observations on the special structure of

the candidate space as well as showing that the weighted approval

winner problem can be solved efficiently.

Amatching election is a tuple (N ,A,k), where N is a set of agents,

A = (Aa )a∈N a preference profile with Aa ⊆ N \ {a} denoting the

set of agents that are approved by agent a, and k ∈ N the number of

matchings to be chosen. We let n denote the number of agents |N |.

For notational convenience, we also call (N ,A) a matching election.

A matching M is a subset of (unordered) pairs of agents, i.e.,

M ⊆ {{a,b} | a,b ∈ N ,a , b}, such that no agent is included in

more than one pair. If {a,b} ∈ M , we say that a is b’s partner or a
is matched to b in M . A matching M is perfect if every agent has

a partner. An agent a approves a matching M if a is matched to

some agent b inM and a approves b, i.e., b ∈ Aa , and disapproves

a matching if a is unmatched or matched to an agent it does not

approve of (agents are indifferent between being unmatched and

matched to an agent they do not approve of). We let NM denote

the set of agents approving matching M . We call a matching M
Pareto optimal if there does not exist another matching M ′

such

that NM ⊊ NM ′ . We call a matching minimal if there does not

exist another matchingM ′
such thatM ′ ⊊ M and NM = NM ′ . An

outcome of a matching election is a multiset (or committee) M of

k Pareto optimal and minimal matchings.
4

Approval Graph. The approval graph of a matching election

(N ,A) is a mixed graph defined as follows. The nodes of the ap-

proval graph are the agents in N and the edges depict the approval

preferences: For two agents a,b ∈ N , there is an undirected edge

{a,b} if a approves b and b approves a; and there is a directed edge
(a,b) if a approves b but b does not approve a. For an example, see

the illustration on the left side of Figure 1. Observe that a matching

is minimal if and only if it contains only pairs which are connected

by an (undirected or directed) edge in the approval graph. Every

minimal and Pareto optimal matching is in particular a maximal

matching in the approval graph when all edges are interpreted as

undirected. Observe that the reverse direction is not true, i.e., not

every maximal matching in the approval graph is Pareto optimal.

Bipartite and Symmetric Matching Elections. We consider two

natural domain restrictions for matching elections. A matching

election (N ,A) is called bipartite if there exists a partition of the

agents N = N1
Û∪N2 such that each agent approves only agents

from the other set, i.e., if a ∈ Ni for i ∈ {1, 2}, then Aa ⊆ N \

Ni . Furthermore, we call a matching election (N ,A) symmetric if

agents’ approvals are mutual, i.e., for two agents a,b ∈ N , b ∈ Aa
implies a ∈ Ab .

4
Minimality is only a formal restriction introduced for the sake of consistency, as any

minimal matching can be extended to a (nearly) perfect matching by adding pairs

of unmatched agents. On the other hand, Pareto optimality enforces that no clearly

suboptimal matchings are part of the committee. We can convert any matching M
into a Pareto optimal matching M ′

with NM ⊆ NM′ by solving one instance of

Weighted Approval Winner. For details, we refer to the proof of Lemma 3.1.

a1

a2

a3

a4

a5

a6

a1

a2

a3

a4

a5

a6

c1

c2

c3

Figure 1: The figure on the left depicts the approval graph
of the matching election (N ,A) with N = {a1, . . . ,a6} and ap-
proval sets Aa1 = {a2}, Aa2 = {a3}, Aa3 = {a4}, Aa4 = {a3},
Aa5 = {a3}, and Aa6 = {a4}. The figure on the right depicts
the three candidates c1, c2, and c3 in the corresponding party-
approval election.

3.1 Embedding into Party-Approval Elections
A matching election (N ,A,k) can be transformed into a party-

approval election (N ′,C ′,A′,k ′) with N ′ = N and k ′ = k , and
C ′

being the set of all Pareto optimal and minimal matchings in

(N ,A) and A′
being the preference profile where each agent ap-

proves all candidates corresponding to matchings she approves.

As we thereby establish matching elections as a subclass of party-

approval elections, voting rules and axioms for party-approval

elections directly translate to matching elections.

To illustrate the described transformation, we convert the match-

ing election with six agents, whose approval graph is depicted on

the left side of Figure 1, into a party-approval election. The candi-

dates of the corresponding party-approval election are the three

Pareto optimal and minimal matchings c1 = {{a1,a2}, {a3,a4}},
c2 = {{a1,a2}, {a3,a5}, {a4,a6}}, and c3 = {{a2,a3}, {a4,a6}},
which are marked on the right side of Figure 1. The approval sets

of the agents in the party-approval election are Aa1 = {c1, c2},
Aa2 = {c3}, Aa3 = Aa4 = {c1}, Aa5 = {c2}, and Aa6 = {c2, c3}.

To get a feeling for proportionality in this election, let us set

k = 3. Observe that the groups {a3,a4} and {a5,a6} make up one

third of the electorate each while at the same time, each of the

groups can agree on a matching they commonly approve. In other

words, both groups are 1-cohesive. Since a3 and a4 only approve

c1, this is a strong argument in favor of choosing c1 at least once.
Given that c1 is chosen at least once, adding c2 seems preferable over

adding c3, since c2 is approved by three agents, two of which are

completely unhappy so far, whereas c3 is approved by only two (so

far completely unhappy) agents. Lastly, there is the choice between

selecting c3, which would lead to every agent being satisfied at

least once, and selecting one of the more popular matchings c1
or c2 again. In fact, all three resulting committees are core stable.

PAV and seq-PAV both select {c1, c2, c3} in this example, whereas

seq-Phragmén returns {c1, c2, c3} and {c1, c1, c2} as tied winners.

Rule X terminates after adding c1 and c2 to the committee, which

can be interpreted as a three-way tie between {c1, c1, c2}, {c1, c2, c2},
and {c1, c2, c3}.

5

5
Amodified version of this example shows that stability, popularity and the egalitarian

ideal (see Section 1.1) are incompatible with the ideal of proportional representation:

Restrict the matching election from Figure 1 to the agents {a1, a2, a3, a4 }. This
election has two candidates c = {{a1, a2 }, {a3, a4 }} and c ′ = {{a2, a3 }}. If the
committee size is k = 4, the proportional representation ideal implies that c is selected

three times and c ′ is selected once. In contrast to this, both the only fractional stable

and the only mixed popular solution would select c with probability 1. The egalitarian
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Table 1: Summary of results on the complexity of computing a winning committee for several multiwinner voting rules. We
remark that previously known resultswithin the setting of party-approval elections donot have any implications formatching
elections. Our hardness result (Theorem 4.3) is restricted tow-Thiele rules satisfyingw1 > w2 > 0.

Rules Party-Approval Elections Matching Elections Symmetric Matching Elections Bipartite Matching Elections

w-Thiele NP-hard [12] NP-hard (Theorem 4.3) P (Theorem 4.4, Corollary 4.5) P (Theorem 4.4)

seq-w-Thiele P [4] P (Observation 4) P P

seq-Phragmén P [11] P (Theorem 4.1) P P

Rule X P [37] P (Theorem 4.2) P P

While the focus of this paper is on matching elections, we note

that some of our results apply to general party-approval elections.

In particular, we establish our algorithmic results in Section 4.1 by

reducing the computational problem at hand to solving instances of

Weighted Approval Winner (which is polynomial-time solvable

for matching elections as shown in Section 3.2).

3.2 First Observations on the Candidate Space
In this subsection, we make some general first observations about

features of our candidate space and the agents’ approval sets. We

start with an observation about the richness of the candidate space.

Given a candidate (i.e., a matching) M and an agent a disapprov-

ingM , it is possible to obtain a new candidateM ′
that is approved

by a and by all agents approving M except at most three: Assum-

ing that a approves at least one agent, say b, to construct M ′
, we

remove the pair fromM containing b, say {b, c} (if it exists), as well
as the pair containing a, say {a,d} (if it exists). Finally, we insert
the pair {a,b}. Observe that, for the approval of a, we lost at most

three approvals fromM , namely the ones of b, c , and d .

Observation 1. Given a matching election (N ,A) with n ≥ 4, let

M be a matching and a ∈ N \ NM an agent with Aa , ∅. There

exists a matchingM ′
which is approved by a and all but at most three

agents from NM .

Using this exchange argument, we can show that the number of

approvals of each Pareto optimal matching M is at least
1

3
of the

number of approvals of any other matchingM ′
.

Observation 2 (⋆). Let (N ,A) be a matching election andM be

a Pareto optimal matching. For any other matchingM ′
, it holds that

|NM | ≥ 1

3
|NM ′ |.

Thus, we know that all candidates in a matching election are

approved by the same number of agents up to a factor of three. For

symmetric matching elections, it is even possible to tighten this

bound: Here, all candidates are approved by the same number of

agents and it is possible to perform one-to-one exchanges. This is

also the key observation that helps proving that many seq-w-Thiele

rules satisfy EJR.

Observation 3 (⋆). In symmetric matching elections, all can-

didates have the same approval score and correspond to maximum

matchings in the approval graph.

The first part of Observation 3 implies that symmetric match-

ing elections have a strong structure. The second part has even

solution would select each of c and c ′ with probability 1/2, therefore forcing an

overrepresentation of a2 .

further implications on the distribution of approvals of agents.

These follow from the Gallai-Edmonds Structure Theorem [18, 22],

which describes the structure of maximummatchings in undirected

graphs. For our setting, the theorem implies that we can partition

the agents into three setsW ,X , and Y such that all agents from X
andW approve every Pareto optimal matching. Moreover, in every

Pareto optimal matching, all agents from X are matched to agents

from Y and agents fromW are matched among themselves. Using

this theorem, we can convert every symmetric matching election

into an essentially equivalent bipartite matching election. Here, the

agents Y form one part of the bipartition and agents from X (plus

some dummy agents) form the other part. See the full version [6]

for details.

Weighted Approval Winner Problem. For matching elections, we

can solve Weighted Approval Winner by solving two Maximum

Weighted Matching instances: Given a matching election (N ,A)
and a weight function ω on the agents, we define a weight function

w on the edges of the approval graph G of (N ,A) such that for

every matching M in G it holds that

∑
e ∈M w(e) =

∑
a∈NM ω(a).

Clearly, if M is a maximum weight matching with respect to w ,

then it also maximizes

∑
a∈NM ω(a). However, M might not be a

candidate in the matching election, as it is not guaranteed to be

Pareto optimal. We introduce a second weight function ω ′
on the

agents giving all agents in NM a weight of n + 1, and all agents

in N \ NM a weight of 1. Again, we derive a weight function on

the edges of G,w ′
, guaranteeing

∑
e ∈M w ′(e) =

∑
a∈NM ω ′(a). We

show: If M ′
is a maximum weight matching with respect to w ′

,

thenM ′
is a solution to theWeighted Approval Winner problem

for the matching election (N ,A) and weight function ω.

Lemma 3.1 (⋆). Given a matching election (N ,A) and a weight
function ω, Weighted Approval Winner is solvable in O(n3)-time.

Note that there exist other elections with an exponential

candidate space for which Weighted Approval Winner is

polynomial-time solvable. For instance, for all party-approval elec-

tions (N ,C,A,k) where the independent set system (N , {S | S ⊆

Nc for some c ∈ C}) forms a matroid,Weighted Approval Win-

ner reduces to finding a maximum weight independent set. This

problem is polynomial-time solvable if the independence of a set

S ⊆ N can be checked efficiently [30].

4 COMPUTATIONAL COMPLEXITY OF
WINNER DETERMINATION

In this section, we analyze the computational complexity of com-

puting winning committees for different voting rules. We give an
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overview of our results from this section in Table 1. While some

of our results are tailored to matching elections, our algorithmic

results in Section 4.1 are applicable to a wider class of elections

with an exponential number of candidates. We start by consider-

ing sequential rules before we turn tow-Thiele rules. Forw-Thiele

rules, we first consider the general then the bipartite and lastly the

symmetric setting.

4.1 Sequential Rules
For all considered sequential voting rules, we show that finding

the next candidate to be added to the committee reduces to solv-

ing Weighted Approval Winner. Recall that rwaw denotes the

running time of solving the latter problem.

For sequentialw-Thiele rules, this reduction is straightforward:

Given a multisetW of already selected candidates, we set the weight

of an agent a to its marginal contribution to the score in case that a

candidate inAa is added toW , i.e.,ω(a) = wha (W )+1. The candidate

returned by Weighted Approval Winner is then added to the

committee.

Observation 4. Given a party-approval election (N ,C,A,k) and
a weight sequencew , a committee that is winning under seq-w-Thiele

can be computed in O(k · rwaw)-time.

We show in the full version [6] that a similar reduction also

works for a local search variant of PAV [3]. As this variant satisfies

core stability in party-approval elections [12], a core-stable outcome

in a matching election can be computed efficiently.

Observation 5 (⋆). Given a party-approval election (N ,C,A,k),
a committee satisfying core stability can be computed in O(nk4 ln(k) ·
rwaw )-time.

Our algorithm for Phragmén’s sequential rule employs

Weighted Approval Winner in a more involved way.

Theorem 4.1 (⋆). Given a party-approval election (N ,C,A,k), a
committee that is winning under seq-Phragmén can be computed in

O(kn · rwaw )-time.

Proof sketch. In each iteration, the problem of finding a can-

didate to be added to the committee can be described as follows.

Every agent has a budget of βa ≥ 0 and constantly earns additional

money. Thus, at time t ∈ [0, 1], agent a owns βa + t dollars. The
total budget of the approvers of a candidate c can be expressed as

an affine linear function fc (t) = |Nc | · t +
∑
a∈Nc βa . Moreover,

f (t) = maxc ∈C fc (t) is the optimal value curve, taking the value of

the maximum budget of any supporter group for a candidate at time

t . Define t∗ as the minimum value t ∈ [0, 1] such that f (t∗) = 1.

A candidate c∗ with fc∗ (t
∗) = f (t∗) = 1 is a feasible choice under

seq-Phragmén in this iteration. See Figure 2 for an illustration.

The crux of finding t∗ is that f (t) is the maximum of expo-

nentially many functions. However, f (t) is a convex piecewise

linear function with at most n breaking points, as the slope of

f (t) can take at most n + 1 different values: for each candidate c ,
|Nc | ∈ {0, . . . ,n}. If we knew all of the breaking points, we could

iterate over all linear subintervals of f (t) in order to find t∗. As
described in our full version [6], the Eisner-Severance method [19]

can be employed to find all breaking points, using O(n) calls to
Weighted Approval Winner. □

t

f (t)

1

t∗

fc1 (t)

fc2 (t)

fc3 (t)

Figure 2: Illustration of the situation in the proof of The-
orem 4.1. The example depicts the budget curves for three
different candidates c1, c2, and c3. The functions fc1 (t), fc2 (t),
and fc3 (t) are depicted by a solid, dotted, and dashed line, re-
spectively. The optimal value curve f (t) is marked in blue.

By slightly modifying the above approach, we obtain a similar

algorithm for Rule X. Here, for some fixed budgets of the agents,

we need to find the minimum q ∈ R such that the supporters

of some candidate jointly have one dollar, assuming that each of

them pays at most q. We again define the optimal value curve

as the maximum budget of all supporter groups dependent on q.
Unfortunately, in this case, the optimal value curve may neither be

concave nor convex. However, by observing that we can partition

the domain into n intervals such that the optimal value curve is a

convex function in each interval, we can solve the problem using

again the Eisner-Severance method as in the previous proof.

Theorem 4.2 (⋆). Given a party-approval election (N ,C,A,k), a
committee that is winning under Rule X can be computed in O(kn ·

rwaw )-time.

4.2 Non-Sequential Thiele Rules
In this section, we show that finding a winning committee in a

general matching election is NP-hard for mostw-Thiele rules. By

contrast, as shown subsequently, this task becomes polynomial-

time solvable for bipartite or symmetric matching elections.

In the party-approval setting, computing a winning committee

of non-constant size under PAV is NP-hard [12]. However, if k is

constant, the task can be solved in polynomial-time by iterating

over all size-k committees. This is in contrast to our setting, where

we prove NP-hardness of computing a winning committee under

a large class of w-Thiele rules including PAV, even for k = 2. We

reduce from the problem of deciding whether a 3-regular graph

admits two edge-disjoint perfect matchings [26].

Theorem 4.3 (⋆). Letw be a weight sequence withw1 > w2 > 0.

Given a matching election (N ,A,k) and some number α ∈ R, deciding
whether there exists a committee M of size k with scw (M) ≥ α is

NP-complete for k = 2 and even if each agent approves at most three

agents.

In contrast to this, all w-Thiele rules are tractable in bipartite

matching elections.

Theorem 4.4 (⋆). Let w be a weight sequence. In a bipartite

matching election (N ,A,k), a winning committee underw-Thiele can

be computed in O
(
(kn)3

)
-time.
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Proof sketch. The general idea of the algorithm is to use a

meta-election to construct all k matchings simultaneously. In the

meta-election, each agent a is replaced by k copies a(1), . . . ,a(k )

and for all agents a , b and all i, j ∈ [k], copy a(i) approves

copy b(j) if and only if agent a approves agent b. We construct

a Weighted Approval Winner instance for the meta-election by

setting ω(a(i)) = wi for all agents a ∈ N and i ∈ [k]. We then solve

theWeighted Approval Winner problem for the meta-election to

obtain a single matching which matches all k copies of each agent.

From this, using Hall’s theorem [25], we construct k matchings

in the original instance whose w-Thiele score is the same as the

weight of the selected matching from the meta-election, and show

that such a committee is winning underw-Thiele. □

Unfortunately, the algorithm from the proof of Theorem 4.4 does

not directly work for symmetric matching elections, as not every

(non-bipartite) k-regular graph can be partitioned into k perfect

matchings. Nevertheless, it is still possible to extend the algorithm

by reducing each symmetric matching election to an essentially

equivalent bipartite matching election.

Recall from Observation 3 that Pareto optimal matchings in

symmetric matching elections have a strong structure, as they are,

in particular, maximum matchings in the (undirected) approval

graph. Using this, we can apply the Gallai-Edmonds Structure The-

orem [18, 22] to obtain a partition of the agents into three setsW ,X ,
and Y such that all agents from X andW approve every Pareto

optimal matching. Moreover, in every Pareto optimal matching, all

agents from X are matched to agents from Y and agents fromW
are matched among themselves. Using this, it is possible to trans-

form every symmetric matching election into a bipartite one by

putting agents from Y on the one side and agents from X and some

dummy agents on the other side. It is then possible to construct

from each winning committee underw-Thiele in the constructed

bipartite election, a winning committee underw-Thiele in the orig-

inal symmetric election. Using this, we can extend the algorithm

from Theorem 4.4 to symmetric instances:

Corollary 4.5 (⋆). Letw be a weight sequence. In a symmetric

matching election (N ,A,k), a winning committee underw-Thiele can

be computed in O((kn)3)-time.

5 AXIOMATIC RESULTS
As matching elections are also party-approval elections, axiomatic

guarantees from the latter setting still apply, i.e., PAV satisfies core

stability, Rule X satisfies EJR, and seq-Phragmén satisfies PJR. Below,

we study whether stronger axiomatic guarantees are obtainable

for our subdomain (see the full version [6] for a table giving an

overview of our results). We focus on symmetric matching elections,

as they exhibit a particularly strong structure. We start with a

surprising positive result: A large class of sequentialw-Thiele rules

(including seq-PAV, which fails all considered axioms in general

party-approval elections) satisfy EJR.

Theorem 5.1. Letw be a weight sequence withwi > wi+1 for all

i ∈ N. Seq-w-Thiele satisfies EJR in all symmetric matching elections.

Proof. Let (N ,A,k) be a symmetric matching election. In Sec-

tion 3.2 we have observed that the setN of agents can be partitioned

into three setsW , X , and Y , such that in any Pareto optimal match-

ing, all agents inW ∪ X are matched, agents in X are matched to

agents in Y , and agents inW are matched among themselves. Thus,

a group of agents violating EJR can only contain agents from Y .
LetM = {M1, . . . ,Mk } be some output of seq-w-Thiele (where

seq-w-Thiele selected matching Mi in iteration i) and let M<i =

{M1, . . . ,Mi−1} be the set of matchings selected in the first i − 1

rounds. Assume for contradiction that there exists an EJR violation,

i.e., for some ℓ ∈ [k], there is a set S ⊆ N with |S | ≥ ℓn/k , a Pareto
optimal matching M̃ with S ⊆ NM̃ and ha (M) < ℓ for all a ∈ S .

We claim that the existence of S implies that in every iteration i ,
at least |S | agents in Y which are matched in this iteration approve

at most ℓ − 1 matchings from M<i :

Claim. For every i ∈ [k], there exists a group Si ⊆ Y ∩ NMi with

|Si | = |S | and ha (M<i ) ≤ ℓ − 1 for all a ∈ Si .

Proof. Fix i ∈ [k]. If all agents in S are matched inMi , setting

Si = S , the claim holds. Thus, consider some a ∈ S which is not

matched inMi . SinceMi and M̃ are maximum matchings in the ap-

proval graph of the instance, their symmetric difference consists of

alternating cycles and even-length paths. In particular, there exists

an even-length path starting in a and ending in some b ∈ Y which

is matched inMi but not in M̃ . If hb (M<i ) > ha (M<i ), we could

strictly increase the marginal contribution of Mi by augmenting

along this path, as this would lead to a approving Mi at the cost

of b disapproving it. Hence, hb (M<i ) ≤ ha (M<i ). Since all even-

length paths in the symmetric difference ofMi and M̃ are disjoint,

we can construct Si as follows: For every a ∈ S choose a itself if

a ∈ NMi and else the agent at the other end of the corresponding

even-length alternating path. □

Let S be the multiset of groups of agents Si from the claim, i.e.,

S := {S1, . . . , Sk }. We define дa (S) := |{i ∈ [k] | a ∈ Si }| as the
number of sets in S that include agent a. By construction, we know
that дa (S) ≤ ℓ for all a ∈ Y : No group Si contains an agent that

is already included in ℓ of the groups S1, . . . , Si−1, as this would
imply that a approves at least ℓ of the matchings in M<i . Since

Si ⊆ NMi for all i ∈ [k], we have дa (S) ≤ ha (M) ≤ ℓ − 1 for all

a ∈ S . Moreover,

∑
a∈Y дa (S) = k |S |, since every group Si contains

exactly |S | agents fromY . We get the following contradiction (where

the last step holds as |Y | ≤ n):∑
a∈Y

дa (S) =
∑
a∈S

дa (S) +
∑

a∈Y \S

дa (S) ≤ (ℓ − 1)|S | + ℓ(|Y | − |S |)

= ℓ |Y | − |S | ≤
k |S | |Y |

n
− |S | < k |S |.

This concludes the proof. □

However, sequentialw-Thiele rules do not satisfy core stability

in symmetric instances:

Proposition 5.2 (⋆). Let w be a weight sequence. Committees

returned by seq-w-Thiele are not guaranteed to be core stable, even if

the given matching election is symmetric and bipartite .

Furthermore, Rule X and seq-Phragmén do not satisfy stronger

guarantees in (symmetric) matching elections, compared to general

party-approval elections.
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Proposition 5.3 (⋆). In symmetric matching elections, commit-

tees returned by seq-Phragmén are not guaranteed to provide EJR. In

symmetric and bipartite matching elections, committees returned by

Rule X are not guaranteed to be core stable.

Proof (seq-Phragmén). Consider a symmetric matching elec-

tion consisting of three agents a1, a2, and a3 all approving each

other. We set k = 6 and claim that the committee M consist-

ing of three times matching {{a1,a2}} and three times matching

{{a2,a3}} is a winning committee under seq-Phragmén. In the

first step, all possible non-empty matchings become affordable at

t = 0.5. Breaking ties, we select {{a1,a2}}. Now, a3 has 0.5 dollars
left and thus needs to be included in the next matching. Again

breaking ties, we select {{a2,a3}}. Continuing this way of breaking
ties, we alternate between adding {{a1,a2}} and {{a2,a3}} until
M is constructed. However, M violates EJR, as the group {a1,a3}
is 4-cohesive but ha1 (M) = ha3 (M) = 3. □

In the counterexamples for seq-w-Thiele, seq-Phragmén, and

Rule X, there also exist other winning committees under these rules

that satisfy the respective notion. Presumably, this is due to the

richness of the candidate space, combined with a high number of

ties in the execution of all three rules. It remains an open question

whether the rules always return at least one winning committee

satisfying the respective property.

6 COMPLEXITY OF CHECKING AXIOMS
In this section, we settle the computational complexity of checking

whether a given committee provides any of our three proportional-

ity guarantees. We first consider EJR.

Deciding whether a committeeW in a party-approval election

provides EJR can be reduced to solving Weighted Approval Win-

ner: For each ℓ ∈ [k], we check whether there exists an ℓ-cohesive

group violating EJR by marking all agents that approve less than ℓ

matchings fromW and checking whether there exists a candidate

that is approved by at least ℓ nk of the marked agents. The latter

step can be solved by a single call toWeighted Approval Winner

by assigning to all marked agents a weight of one and to all other

agents a weight of zero.

Observation 6. Given a party-approval election (N ,C,A,k) and
a committeeW , it is possible to check whetherW provides EJR in

O(k · rwaw)-time.

This approach does not extend to PJR. In fact, it turns out that

checking whether a committee of matchings provides PJR is coNP-

complete. This is in contrast to general party-approval elections,

for which this problem can be solved in polynomial time [12].

Proposition 6.1 (⋆). Given a matching election (N ,A,k) and a
committeeM, checking whetherM provides PJR is coNP-complete,

even if the given matching election is symmetric and bipartite.

In our hardness reduction, the given committee has a non-

constant size. In fact, given a party-approval election, the problem

whether a committeeW provides PJR is solvable in O(2 |W | · rwaw)-
time: For all ℓ ∈ [k], we iterate over all (ℓ− 1)-subsets of candidates

W ′ ⊆W and mark all agents whose approval set is a subset ofW ′
.

Subsequently, we check whether there exists a candidate approved

by at least ℓ nk of the marked agents. In this case, the group of ℓ nk
agents is ℓ-cohesive and by construction all of them approve only

candidates from the set of ℓ − 1 candidatesW ′
.

Observation 7. Given a party-approval election (N ,C,A,k) and
a committeeW , checking whetherW provides PJR can be done in

O(2 |W | · rwaw)-time.

Finally, we show that checking core stability is computationally

intractable, even for a constant committee size.

Proposition 6.2 (⋆). Given a matching election (N ,A,k) and a
committee M, checking whether M is core stable is coNP-hard, even

if k = 6 and the given matching election is bipartite.

7 CONCLUSION
We initiated the study of a multiagent problem at the intersection of

social choice andmatching theory: Given preferences of agents over

each other, we model the problem of finding a representative mul-

tiset of matchings as a multiwinner election. Notwithstanding the

difficulty presented by an exponential candidate space, we exploit

the structure of the election domain to recover the computational

tractability of some sequential rules, and also establish computa-

tional and axiomatic results that do not hold in the general setting.

There are several intriguing directions for future work on match-

ing elections. First, while we have focused on symmetric matching

elections in our axiomatic study in section 5, it would be inter-

esting to extend this study to bipartite or general matching elec-

tions. In particular, it is open whether seq-w-Thiele satisfies any

axiom in general (or bipartite) matching elections and whether

seq-Phragmén satisfies EJR in bipartite (and symmetric) match-

ing elections. Second, one could consider axioms tailored to the

specific structure of the setting. For example, a natural relaxation

of core stability could only allow groups of agents to be matched

among themselves in a deviation. Third, it would be natural to allow

agents to rank-order potential matching partners and apply ordinal

multiwinner voting procedures. Fourth, it would be interesting to

identify other multiwinner voting domains involving compactly

representable preferences over an exponential candidate space.

Finally, in some applications, one is interested in finding multiple

matchings of the same agents to be implemented one after the other.

It is therefore natural to try to find a sequence of matchings, rather

than simply a multiset (as done in this paper). While an arbitrary

ordering of a proportional committee still provides proportionality

if assessed as a whole, in such temporal settings, it might also be

desirable to satisfy proportionality constraints for every sliding

window of the sequence. One potential way to achieve this is to

introduce depreciation weights to sequential rules, capturing the

amount and recency of representation that agents have observed

so far. Similar ideas have been recently explored within the context

of approval-based multiwinner elections [31].
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