






Table 1: Overview of our results. The FPT results with respect to 𝑛 are trivial, so we omit it. The FPT result marked by (*) is trivial,
since both parameters are greater than 𝑛. “Para-NP-hard” stands for NP-hardness even with the corresponding parameter being
a constant. M stands for LSum-R or LMax-R and R ∈ {Reg,Pair,Balc,Egal}. Here, ¯𝑘 = 𝑛 − 𝑘 , 𝑡 = 𝛽 − 𝑡 , and ¯𝑑 = 𝑑 ′ − 𝑑 , where 𝑑 ′ is
the minimum R-score, which can be achieved for the LSum(LMax)-R instance (𝑈 ,𝑊 , 𝐿, 𝑑 ′).

Regret Pair Balanced Egalitarian

LSum-R P (Thm. 4.2) ? P (Thm. 4.2)

LMax-R P (Thm. 4.3) NP-hard (Thm. 4.5) NP-hard (Thm. 4.4)

LPareto-R P (Thm. 4.6) co-NP-hard (Thm. 4.7)

(𝑛,𝑡 )-M-R

𝑡 W[1]-hard (Thm. 4.11)

𝑡 W[2]-hard (Thm. 4.12)

𝑑
para-NP-hard (Thm. 4.11) FPT(*)

¯𝑑

(𝑘 ,𝛽)-M-R

𝑘 W[1]-hard (Thm. 4.8)

𝑑 para-NP-hard (Thm. 4.8) W[1]-hard (Thm. 4.8)

¯𝑘 W[2]-hard (Thm. 4.9)

W[1]-hard (Thm. 4.10)

¯𝑑 para-NP-hard (Thm. 4.9)

LSum-R Matching Problem (LSum-R)
Input: Two sets of agents𝑈 and𝑊 of 𝑛 agents each,

a set of preference profiles 𝐿, and a positive integer 𝑑 .

Output: A perfect LSum-R matching, if exists; other-

wise, “No”.

We also investigate a generalization of LSum-R and LMax-R. Given

two subsets𝑈 ′ ⊆ 𝑈 and𝑊 ′ ⊆𝑊 , we define the preference profiles

collection 𝐿𝑈 ′∪𝑊 ′ as the preference lists resulting by removing all

𝑥 ∈ {{𝑈 \𝑈 ′} ∪ {𝑊 \𝑊 ′}} from the lists in 𝐿.

Similarly, we only define the problem of finding a (𝑘, 𝑡)-LSum-R
matching. (𝑘, 𝑡)-LMax-R is defined analogously.

(𝑘, 𝑡)-LSum-R Matching Problem ((𝑘, 𝑡)-LSum-R)
Input: Two sets of agents𝑈 and𝑊 of 𝑛 agents each,

a set of preference profiles 𝐿 with |𝐿 | = 𝛽 , and three

integers 𝑑, 𝑘, 𝑡 with 𝑘 ≤ 𝑛 and 𝑡 ≤ 𝛽 .

Output: Two subsets 𝑈 ′ ⊆ 𝑈 and 𝑊 ′ ⊆ 𝑊 with

|𝑈 ′ | = |𝑊 ′ | = 𝑘 , and a subset 𝐿′ ⊆ 𝐿𝑈 ′∪𝑊 ′ with

|𝐿′ | = 𝑡 , such that LSum-R on (𝑈 ′,𝑊 ′, 𝐿′, 𝑑) does not
return “No”; otherwise, “No”.

2.2 Parameterized Complexity
Parameterized complexity provides a refined exploration of the con-

nection between problem complexity and various problem-specific

parameters. A parameterized problem is fixed-parameter tractable
(FPT) with respect to a parameter 𝑘 , if there is an 𝑂 (𝑓 (𝑘) · |𝐼 |𝑂 (1) )-
time algorithm solving the problem, where 𝐼 denotes the whole

input instance and 𝑓 can be any computable function. Parameter-

ized problems can be classified into many classes with W[1] and

W[2] being the basic fixed-parameter intractability classes. For

more details on parameterized complexity, we refer to [16, 18, 31].

We study the parameterized complexity of (𝑘, 𝑡)-LSum(LMax)-R,

and consider the following parameters: 𝑛 = |𝑈 | = |𝑊 |, 𝑘 , ¯𝑘 = 𝑛 − 𝑘 ,

𝑡 , 𝑡 = 𝛽 − 𝑡 , 𝑑 , and ¯𝑑 = 𝑑 ′ − 𝑑 , where 𝑑 ′ is the minimum R-score,
which can be achieved for the LSum(LMax)-R instance (𝑈 ,𝑊 , 𝐿, 𝑑 ′).

3 STRUCTURAL PROPERTIES
We first prove some useful structural properties, which are useful

for the following complexity study. This section is divided into two

parts. We first show a property of instances with only one layer,

and then we show that every LSum(LMax)-R instance with R being

Reg or Pair has an equivalent LSum(LMax)-R instance with only

one layer.

3.1 Special Case 𝛽 = 1

The following observation follows from the definitions of LSum-R
and LMax-R.

Observation 3.1. If there is only one layer, then LSum-R is equiv-
alent to LMax-R.

Then we explore the relation between LSum-Egal and LSum-Balc

when there is only one layer.

Lemma 3.1. Given an LSum-Egal instance (𝑈 ,𝑊 , 𝐿, 𝑑) with |𝐿 | =
1, we can construct in polynomial time an equivalent LSum-Balc
instance (𝑈 ∪ 𝑃,𝑊 ∪𝑄, 𝐿′, 𝑑 ′) with |𝐿′ | = 1.

3.2 From Multiple Layers to Single Layer
Next, we prove that with R being Reg, Pair, Balc or Egal, every

LSum-R instance can be reduced to a one-layer instance.

Lemma 3.2. Every LSum-R instance (𝑈 ,𝑊 , 𝐿, 𝑑) can be reduced
in polynomial time to a new equivalent LSum-R instance with only
one layer and R ∈ {Reg, Pair, Balc, Egal}.
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Finally, we prove that with R being Reg or Pair, every LMax-R
instance can be reduced to a one-layer instance.

Lemma 3.3. Every LMax-Reg(Pair) instance (𝑈 ,𝑊 , 𝐿, 𝑑) can be
reduced in polynomial time to a new equivalent LMax-Reg(Pair) in-
stance with only one layer.

4 COMPLEXITY RESULTS
We first present classical complexity results of LSum-R, LMax-R
and LPareto-R. Next, we consider the parameterized complexity of

the more general (𝑘, 𝑡)-M-R with M= {LSum, LMax}.

4.1 LSum-R
We first prove that when there is only one layer, LSum-R with

R being Reg, Pair or Egal can be solved in polynomial time by

reducing them to the Minimum weighted perfect matching

problem (MWPM). Given a bipartite graph 𝐺 = (𝑉𝐹 ∪𝑉𝑅, 𝐸) with
𝑉𝐹 and𝑉𝑅 being two disjoint vertex sets, each edge 𝑒 ∈ 𝐸 having an

integer weight ℎ(𝑒) ≥ 0, and a positive integer 𝑑 , MWPM tries to

find a perfect matching𝑀 with

∑
𝑒∈𝑀 ℎ(𝑒) ≤ 𝑑 . A perfect matching

in a graph is a set of disjoint edges saturating all vertices. MWPM

can be solved in polynomial time with Hungarian method (also

known as the Kuhn–Munkres algorithm) [26, 30].

Theorem 4.1. LSum-R withR being Reg, Pair or Egal is polynomial-
time solvable when there is only one layer.

Proof. Given an LSum-Egal instance (𝑈 ,𝑊 , 𝐿, 𝑑), we can reduce
it to an equivalent MWPM instance (𝑉𝐹 ∪ 𝑉𝑅, 𝐸). First, for each
man 𝑢 ∈ 𝑈 , we construct a vertex 𝑣 𝑓 ∈ 𝑉𝐹 , and for each woman a

vertex 𝑣𝑟 ∈ 𝑉𝑅 . We add all possible edges between 𝑉𝐹 and 𝑉𝑅 . The

only difference concerning the constructions of the three LSum-

R instances lies in the weights of the edges. Given a pair {𝑢,𝑤}
and their corresponding vertices 𝑣 𝑓 , 𝑣𝑟 , we set the weight ℎ(𝑒) of
𝑒 = {𝑣 𝑓 , 𝑣𝑟 } as follows:

• [For Egal] ℎ(𝑒) = 𝑃𝑙𝑢 (𝑤) + 𝑃𝑙𝑤 (𝑢).
• [For Pair] ℎ(𝑒) = 0, if 𝑃𝑙𝑢 (𝑤) + 𝑃𝑙𝑤 (𝑢) ≤ 𝑑 ;

otherwise, ℎ(𝑒) = ∞.

• [For Reg] ℎ(𝑒) = 0, if 𝑃𝑙𝑢 (𝑤) ≤ 𝑑 and 𝑃𝑙𝑤 (𝑢) ≤ 𝑑 ;

otherwise, ℎ(𝑒) = ∞.

Then the construction is complete. The equivalence between the

instances of LSum-R and MWPM is obvious. The construction can

be done within O(2𝑛 + 𝑛2) = O(𝑛2) time. Since the Hungarian

method needs polynomial time, we can conclude that, when there

is only one layer, that is, 𝛽 = 1, LSum-R with R being Reg, Pair, or

Egal is solvable in polynomial-time. □

By Lemmas 3.2 and Theorem 4.1, we can get the following theo-

rem.

Theorem 4.2. LSum-Reg, LSum-Pair, and LSum-Egal are in P.

4.2 LMax-R
In analog to Theorem 4.2, Lemma 3.3 and Theorem 4.1 imply the

following result.

Theorem 4.3. LMax-Reg and LMax-Pair are in P.

Next we show LMax-Egal is NP-hard by reducing the 3sat prob-

lem to LMax-Egal. Given a variable set 𝑉 and a clause set 𝐶 with

each clause containing exactly three literals, 3sat asks whether

there exists a satisfying truth assignment that sets at least one literal

in each clause to be true.

Theorem 4.4. LMax-Egal is NP-hard.

Proof. Given a 3sat instance (𝑉 = {𝑣1, · · · , 𝑣𝑛},𝐶 = {𝑐1, · · · ,
𝑐𝑚}), we create for each variable 𝑣𝑖 ∈ 𝑉 , two pairs of agents, namely,

𝑢𝑖 , 𝑢𝑖 ∈ 𝑈 and𝑤𝑖 ,𝑤𝑖 ∈𝑊 . Then, create two sets 𝑃 and𝑄 of auxillary

agents, 𝑃 = {𝑝1, · · · , 𝑝6𝑛+2} and 𝑄 = {𝑞1, · · · , 𝑞6𝑛+2}. Then, the
LMax-Egal instance has 4𝑛 + 12𝑛 + 4 = 16𝑛 + 4 agents, where 𝑃 ∪𝑈

forms the man side and 𝑄 ∪𝑊 the woman side.

Next, we create 𝑚 layers, one for each clause 𝑐 ∈ 𝐶 , where

the preference lists of each 𝑥 ∈ 𝑃 ∪ 𝑄 are the same in all layers.

The preference list of each 𝑝𝑖 ∈ 𝑃 has the following form: 𝑞𝑖 ≻
−−−−−−→
𝑄 \ {𝑞𝑖 } ≻

−→
𝑊 , with

−→
𝑆 denoting an arbitrary but fixed ordering of

a set 𝑆 . The preference lists of 𝑞𝑖 ∈ 𝑄 are set accordingly. For two

agents 𝑢𝑖 , 𝑢𝑖 ∈ 𝑈 which are created for the same variable 𝑣𝑖 , we

create 2𝑚 preference lists of the same form, two lists for each layer

𝑙 , ≻𝑙𝑢𝑖 and ≻𝑙𝑢𝑖 :𝑤𝑖 ≻ 𝑞1 ≻ 𝑤𝑖 ≻
−−−−−−−→
𝑄 \ {𝑞1} ≻

−−−−−−−−−−−→
𝑊 \ {𝑤𝑖 ,𝑤𝑖 }, where𝑤𝑖

and 𝑤𝑖 are also created for 𝑣𝑖 ∈ 𝑉 . The preference lists of 𝑤𝑖 and

𝑤𝑖 then have the form: 𝑢𝑖 ≻ 𝑢𝑖 ≻
−→
𝑃 ≻

−−−−−−−−−→
𝑈 \ {𝑢𝑖 , 𝑢𝑖 } and each layer

has also exactly one such list for each of𝑤𝑖 and𝑤𝑖 . Next, we make

the following modifications to the lists ≻𝑙𝑢𝑖 and ≻𝑙𝑢𝑖 according to

the occurrence of variables in clauses. In each layer 𝑙 𝑗 , which is

according to a clause 𝑐 𝑗 , we exchange the positions of 𝑤𝑖 and 𝑞1

in ≻𝑙 𝑗𝑢𝑖 for each variable 𝑣𝑖 occurring in 𝑐 𝑗 positively; if 𝑣𝑖 occurs

negatively in 𝑐 𝑗 then we exchange the positions of 𝑞1 and𝑤𝑖 in ≻𝑙 𝑗𝑢𝑖 ;
if 𝑣𝑖 does not occur in 𝑐 𝑗 , then no change is done to the lists. □

By using a similar technique as in the proof of Lemma 3.1, we

can reduce LMax-Egal to LMax-Balc and get the following result.

Theorem 4.5. LMax-Balc is NP-hard.

4.3 LPareto-R
In this part we show the computational complexity of LPareto-R.
First, we show a basic observation that an LPareto-R matching

exists for every instance.

Observation 4.1. Given an instance of LPareto-R, an LPareto-R
matching always exists for R being Reg/Pair/Balc/Egal.

Note that, by Observation 4.1, the decision version of LPareto-R
is easy to solve for R ∈ {Reg, Pair, Balc, Egal }; it returns “Yes” for

all instances. However, the constructive version admits different

complexity behaviors for Reg, Pair, Balc, and Egal. The constructive

version requires to output a Layer Pareto-optimal matching, as

defined in this paper. Now, we show LPareto-Reg and LPareto-Pair

admit polynomial-time solving strategies.

Theorem 4.6. LPareto-Reg and LPareto-Pair are in P.

Proof. The basic idea is that, given an arbitrary𝑀 , we search

for a matching dominating𝑀 . If there is no such matching, then𝑀

is returned as an LPareto-Reg(Pair) matching; otherwise, we repeat
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this process for the dominating matching. If the search for a domi-

nating matching for a given matching is polynomial-time doable,

this problem can be solved in polynomial time. The algorithm of

finding a dominating matching for 𝑀 is shown in Algorithm 1.

Recall that the R-score of a layer, denoted as R(𝑀, 𝑙) with respect

to a matching𝑀 and a layer 𝑙 , equals to the maximum R-score of
all agents in this layer, that is, R(𝑀, 𝑙) = max𝑎∈𝑈∪𝑊 {R(𝑎,𝑀, 𝑙)}.
Given a triple (𝑛, 𝐿, {𝑑1, · · · , 𝑑𝛽 }) with 𝑛 and 𝑑𝑖 being integers, we

construct a bipartite graph 𝐺=(𝑈 ∪𝑊, 𝐸) with 𝑛 pairs of vertices,

i.e., |𝑈 | = |𝑊 | = 𝑛, and there is an edge between 𝑢𝑖 ∈ 𝑈 and

𝑤 𝑗 ∈ 𝑊 , if both 𝑃
𝑙𝑞
𝑢𝑖 (𝑤 𝑗 ) ≤ 𝑑𝑞 and 𝑃

𝑙𝑞
𝑤𝑗

(𝑢𝑖 ) ≤ 𝑑𝑞 for all 𝑙𝑞 ∈ 𝐿

under Reg, or 𝑃
𝑙𝑞
𝑢𝑖 (𝑤 𝑗 ) + 𝑃

𝑙𝑞
𝑤𝑗

(𝑢𝑖 ) ≤ 𝑑𝑞 for all 𝑙𝑞 ∈ 𝐿 under Pair.

Algorithm 1 Finding a dominating matching for𝑀

Input: Set of preference profiles 𝐿, a perfect matching𝑀

Output: 𝑀 ′
which dominates𝑀

1: Let 𝑑𝑖 = R(𝑀, 𝑙𝑖 ) with 1 ≤ 𝑖 ≤ 𝛽 and R being Reg or Pair

2: for 𝑗 = 1 to 𝛽 do
3: For 1 ≤ 𝑖 ≤ 𝛽 , let 𝑑 ′

𝑖
= 𝑑𝑖

4: 𝑑 ′
𝑗
= 𝑑 ′

𝑗
− 1

5: Construct a bipartite graph 𝐺 with (𝑛, 𝐿, {𝑑 ′
1
, · · · , 𝑑 ′

𝛽
})

6: Find a perfect matching𝑀𝑃 of 𝐺

7: if 𝑀𝑃 ≠ ∅ then
8: return𝑀𝑃

9: end if
10: end for

We can use the Hungarian Method to compute a maximum

matching of a bipartite graph in polynomial time. Then Algorithm 1

runs in polynomial time. Thus, we can solve LPareto-Reg(Pair) by

first finding an arbitrary perfect matching 𝑀 and then applying

Algorithm 1 to improve it. Since each application of Algorithm 1

decreases the Reg(Pair)-score of at least one layer by at least one,

and the maximum Reg(Pair)-score of one layer is 𝑛(2𝑛). Therefore,
the whole progress is in polynomial time, and LPareto-Reg(Pair) is

in P. □

Now we investigate the computational complexity of LPareto-

Egal and LPareto-Balc. Unfortunately, these problems seem to be

at least co-NP-hard, since the LPareto-Egal-Determine problem is

co-NP-hard, which given an instance of LPareto-Egal and a match-

ing𝑀0, decides whether𝑀0 is a solution of LPareto-Egal, that is,

whether there is no other matching𝑀 dominating𝑀0. We define

the LPareto-Balc-Determine problem in the similar way.

Theorem 4.7. LPareto-Egal-Determine and LPareto-Balc-Determine
are co-NP-hard.

Proof. To prove this theorem, we need to prove its complemen-

tary problem is NP-hard, that is, given an instance (𝑈 ,𝑊 , 𝐿, 𝑀0),

deciding whether there is a matching𝑀 dominating𝑀0. We call it

LPareto-Egal/Balc-Dominating. We establish the NP-hardness by

reducing 3-partition to this problem. Given a set of 3𝑚 integers

{𝑎1, · · · , 𝑎3𝑚} with the total sum of the integers being𝑚𝐵 and each

𝑎𝑖 satisfying 𝐵/4 < 𝑎𝑖 < 𝐵/2, 3-partition decides whether this set

of integers can be partitioned into𝑚 subsets such that the sum of

the numbers in each subset is equal to 𝐵 and each subset contains

exactly three integers. 3-partition is strongly NP-hard, that is, it

remains NP-hard even if 𝐵 can be bounded by a polynomial of𝑚.

We first prove this theorem for the Egalitarian score. Given a

3-partition instance (𝐴 = {𝑎1, · · · , 𝑎3𝑚}, 𝐵), we create for each
integer 𝑎𝑖 ∈ 𝐴, 𝑚 + 1 pairs of agents, namely, 𝑢

𝑗
𝑖
∈ 𝑈 and 𝑤

𝑗
𝑖
∈

𝑊 with 0 ≤ 𝑗 ≤ 𝑚. Then, create two sets 𝑃 and 𝑄 of auxillary

agents 𝑃 = {𝑝1, · · · , 𝑝3𝑚𝐷−𝐵} and 𝑄 = {𝑞1, · · · , 𝑞3𝑚𝐷−𝐵} with

𝐷 = (3𝑚𝐵 +𝑚 + 2) (𝑚 + 1). Then the LPareto-Egal-Dominating

instance has 3𝑚(𝑚 + 1) + 3𝑚𝐷 − 𝐵 agents per side, where 𝑃 ∪𝑈

forms the man side and 𝑄 ∪𝑊 the woman side.

Next, we create𝑚 + 1 layers, 𝑙1, · · · , 𝑙𝑚+1, among which the first

𝑚 layers are created for the𝑚 subsets. The preference lists of each

𝑥 ∈ 𝑃 ∪𝑄 are firstly set the same in all layers. For each 𝑝𝑖 ∈ 𝑃 , the

preference list has the following form: 𝑞𝑖 ≻
−−−−−−→
𝑄 \ {𝑞𝑖 } ≻

−→
𝑊 , with

−→
𝑆

denoting an arbitrary but fixed ordering of a set 𝑆 . The preference

lists of 𝑞𝑖 ∈ 𝑄 are set accordingly. Then, we switch in ≻𝑙𝑚+1

𝑞𝑖 , 𝑝𝑖 with

the agent at the last position for 1 ≤ 𝑖 ≤ 3𝑚𝐷 − 𝐵. For the agents

𝑢
𝑗
𝑖
∈ 𝑈 with 0 ≤ 𝑗 ≤ 𝑚 which are created for the same integer 𝑎𝑖 ,

we create (𝑚 + 1) (𝑚 + 1) preference lists of the same form and add

𝑚 + 1 lists to each layer. The preference list of 𝑢
𝑗
𝑖
has the following

form, where {𝑤0

𝑖
, · · · ,𝑤𝑚

𝑖
} are also created for 𝑎𝑖 ∈ 𝐴:

≻𝑙𝑠
𝑢
𝑗

𝑖

: 𝑤0

𝑖 ≻ · · · ≻ 𝑤𝑚
𝑖 ≻ −→

𝑄 ≻
−−−−−−−−−−−−−−−−−→
𝑊 \ {𝑤0

𝑖 , · · · ,𝑤
𝑚
𝑖 }, ∀0 ≤ 𝑠 ≤ 𝑚

The preference lists of 𝑤
𝑗
𝑖
∈ 𝑊 with 0 ≤ 𝑗 ≤ 𝑚 then have the

following form and each layer has also exactly𝑚 + 1 such lists:

≻𝑙𝑠
𝑤

𝑗

𝑖

:𝑝1 ≻ · · · ≻ 𝑝3𝑚𝐵 ≻ 𝑢0

𝑖 ≻ · · · ≻ 𝑢𝑚𝑖 ≻ 𝑝3𝑚𝐵+1 ≻ · · · ≻ 𝑝3𝑚𝐷−𝐵

≻
−−−−−−−−−−−−−−−→
𝑈 \ {𝑢0

𝑖 , · · · , 𝑢
𝑚
𝑖 }, ∀0 ≤ 𝑠 ≤ 𝑚

Next, we make some modifications in the above preference lists.

In each layer 𝑙 𝑗 with 1 ≤ 𝑗 ≤ 𝑚, which is according to a subset, we

do the following modifications for ≻𝑙 𝑗𝑤 with𝑤 ∈𝑊 .

• In ≻𝑙 𝑗
𝑤0

𝑗

, exchange the positions of 𝑢0

𝑗
and 𝑝1, where 𝑝1 is at

the first position in ≻𝑙 𝑗
𝑤0

𝑗

.

• In ≻𝑙 𝑗
𝑤0

𝑖

with 1 ≤ 𝑖 ≤ 3𝑚 and 𝑖 ≠ 𝑗 , exchange the positions of

𝑢0

𝑖
and 𝑝3𝑚𝐵+𝐵−𝑚 , where 𝑝3𝑚𝐵+𝐵−𝑚 is the auxillary agent

at the (3𝑚𝐵 + 1 + 𝐵)-th position in ≻𝑙 𝑗
𝑤0

𝑖

.

• In ≻𝑙 𝑗
𝑤

𝑗

𝑖

with 1 ≤ 𝑖 ≤ 3𝑚, exchange the positions of 𝑢0

𝑖
and

𝑝3𝑚𝐵+1−𝑎𝑖 , where 𝑝3𝑚𝐵+1−𝑎𝑖 is the auxillary agent at the

(3𝑚𝐵 + 1 − 𝑎𝑖 )-th position in ≻𝑙 𝑗
𝑤

𝑗

𝑖

.

Next, we make modifications for the last layer 𝑙𝑚+1. For each

1 ≤ 𝑖 ≤ 3𝑚 and 0 ≤ 𝑗 ≤ 𝑚, we switch 𝑢
𝑗
𝑖
with the agent at the

last position in ≻𝑙𝑚+1

𝑤
𝑗

𝑖

, that is, 𝑢
𝑗
𝑖
is the worst agent that 𝑤

𝑗
𝑖
can

be matched to in layer 𝑙𝑚+1. Finally, we set 𝑀0 = {{𝑢 𝑗
𝑖
,𝑤

𝑗
𝑖
}|𝑢 𝑗

𝑖
∈

𝑈 ,𝑤
𝑗
𝑖
∈𝑊 } ∪ {{𝑝𝑖 , 𝑞𝑖 }|𝑝𝑖 ∈ 𝑃, 𝑞𝑖 ∈ 𝑄}. □
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4.4 (𝑘 ,𝑡 )-LSum-R and (𝑘 ,𝑡 )-LMax-R
For a given bound𝑑 , there can be instances of LSum-R and LMax-R,

which admit no satisfying matching.
3
In this case, it is desirable to

seek for a “maximum” matching, that is, a matching satisfying the

score bound with subsets of agents and/or a subset of layers. It turns

out that even in the case of taking subsets of agents and keeping the

layers unchanged or of taking a subset of layers and keeping the sets

of agents unchanged, LSum-R and LMax-R become NP-hard for all

scoring rules. Thus, we investigate their parameterized complexity

and achieve both fixed-parameter tractable and intractable results.

The FPT result for (𝑘 ,𝛽)-M-R with respect to 𝑛 is trivial, so we

omit it.

Theorem 4.8. Even with 𝛽 = 1, (𝑘 ,𝛽)-M-R with M= {LSum,
LMax} is W[1]-hard with respect to 𝑘 under all scoring rules, and
para-NP-hard with respect to 𝑑 under Reg and Pair, and W[1]-hard
with respect to 𝑑 under Balc and Egal.

Proof. We establish this theorem by a reduction from Cliqe.

Given a graph 𝐺=(𝑉 , 𝐸), Cliqe asks whether there exists in 𝐺

a complete subgraph with 𝑘 ′ vertices. Cliqe is W[1]-hard with

respect to 𝑘 ′ [18]. Given an instance (𝐺,𝑘 ′) of Cliqe with 𝐺 =

(𝑉 , 𝐸) and 𝑘 ′ > 1, we construct a (𝑘 ,1)-M-R instance (𝑈 ,𝑊 , {𝑙}, 𝑑)
as follows. We create, for each vertex 𝑣𝑖 ∈ 𝑉 , one agent 𝑢𝑖 in𝑈 and

one agent𝑤𝑖 in𝑊 . In the only layer 𝑙 , we construct the following

preference lists for 𝑢𝑖 and𝑤𝑖 .

≻𝑙𝑢𝑖 :
−−−−−−−−−−−−→
𝑊 (𝑉 \ 𝑁 (𝑣𝑖 )) ≻ 𝑤𝑖 ≻

−−−−−−−−→
𝑊 (𝑁 (𝑣𝑖 ))

≻𝑙𝑤𝑖
:𝑢𝑖 ≻

−−−−−−−→
𝑈 \ {𝑢𝑖 }

Here, 𝑁 (𝑣𝑖 ) denotes the neighbors of 𝑣𝑖 in 𝐺 , and for a subset

𝑉 ′ ⊆ 𝑉 ,𝑊 (𝑉 ′) and 𝑈 (𝑉 ′) denote the sets of𝑊 -agents and 𝑈 -

agents, respectively, which are created according to the vertices

in 𝑉 ′
.

−−−−−−−→
𝑈 \ {𝑢𝑖 } denotes the ordering where the agents in𝑈 \ {𝑢𝑖 }

are sorted according to the increasing order of their indices. Set

𝑑 = 1, 2, 𝑘 ′ and 2𝑘 ′ under Reg, Pair, Balc, and Egal, respectively,

and 𝑘 = 𝑘 ′. □

Theorem 4.9. Even with 𝛽 = 1, (𝑘 ,𝛽)-M-R with M= {LSum,
LMax} is W[2]-hard with respect to ¯𝑘 , and para-NP-hard with respect
to ¯𝑑 under Reg and Pair.

Proof. We establish this theorem by a reduction from Dominat-

ing set. Given a graph 𝐺 = (𝑉 , 𝐸), Dominating set asks whether

there is a size-𝑘 ′ subset of 𝑉 , denoted as 𝐷 , such that every 𝑣 ∈ 𝑉

is in 𝐷 or a neighbor of at least one member of 𝐷 . Dominating

set is W[2]-hard with respect to parameter 𝑘 ′ [18]. Denote the

degree of a vertex 𝑣 as 𝑑𝑒𝑔(𝑣), and we may assume that ∀𝑣 ∈ 𝑉 ,

𝑑𝑒𝑔(𝑣) = 𝑟 ≥ 1. Let 𝑛 = |𝑉 |.
Given a Dominating set instance (𝐺 ,𝑘 ′) with 𝐺 = (𝑉 , 𝐸), we

construct a (𝑘 ,1)-M-R instance (𝑈 ∪ 𝑃,𝑊 ∪𝑄, {𝑙}, 𝑑) as follows.
Let 𝑑 = 𝑟 + 1 for Reg, or 𝑑 = 2(𝑟 + 1) for Pair. For each 𝑣𝑖 ∈ 𝑉 ,

we create 𝑟 + 1 man agents 𝑢
𝑗
𝑖
in 𝑈 and 𝑟 + 1 woman agents 𝑤

𝑗
𝑖

in𝑊 with 0 ≤ 𝑗 ≤ 𝑟 . Then create two sets of auxillary agents

𝑃 = {𝑝1, · · · , 𝑝𝑛×(𝑘′+𝑑) } and 𝑄 = {𝑞1, · · · , 𝑞𝑛×(𝑘′+𝑑) }. This means

that there are 𝑘 ′ + 𝑑 agents in 𝑃 and 𝑘 ′ + 𝑑 agents in 𝑄 for each

3
Note that each instance of LPareto-R has a Layer Pareto-optimal matching with

respect to the respective scoring rules.

1 ≤ 𝑖 ≤ 𝑛. Then, let 𝑃𝑖 = {𝑝 (𝑖−1) (𝑘′+𝑑)+1
, · · · , 𝑝𝑖 (𝑘′+𝑑) } and 𝑄𝑖 =

{𝑞 (𝑖−1) (𝑘′+𝑑)+1
, · · · , 𝑞𝑖 (𝑘′+𝑑) }.

Next, we create the preference lists of the agents. Add for each

𝑝𝑖 ∈ 𝑃 , the preference list ≻𝑙𝑝𝑖 : 𝑞𝑖 ≻
−−−−−−→
𝑄 \ {𝑞𝑖 } ≻ −→

𝑊 , and for each

𝑞𝑖 ∈ 𝑄 , the preference list ≻𝑙𝑞𝑖 : 𝑝𝑖 ≻
−−−−−−→
𝑃 \ {𝑝𝑖 } ≻

−→
𝑈 to the preference

profile 𝑙 , where
−→
𝑆 denotes an arbitrary but fixed ordering of a set

𝑆 . For each 1 ≤ 𝑖 ≤ 𝑛, we add the following preference lists to 𝑙 ,

where 𝑛𝑖 ( 𝑗) is the index of the vertex which is the 𝑗-th neighbor of

𝑣𝑖 for 1 ≤ 𝑗 ≤ 𝑟 :

≻𝑙
𝑢0

𝑖

:𝑤0

𝑖 ≻ −→
𝑄𝑖 ≻

−−−−−→
𝑄 \𝑄𝑖 ≻

−−−−−−−−→
𝑊 \ {𝑤0

𝑖 }

≻𝑙
𝑢
𝑗

𝑖

:𝑤0

𝑖 ≻ 𝑤1

𝑖 ≻ · · · ≻ 𝑤𝑟−1

𝑖 ≻ 𝑤0

𝑛𝑖 ( 𝑗) ≻ 𝑤𝑟
𝑖 ≻ −→

𝑄 ≻
−−−−−−−−−−−−−−−−−−−−−−−−−−→
𝑊 \ {𝑤0

𝑖 , · · · ,𝑤
𝑟
𝑖 } ∪ {𝑤0

𝑛𝑖 ( 𝑗) }

≻𝑙
𝑤0

𝑖

:𝑢0

𝑖 ≻ −→
𝑃𝑖 ≻

−−−−→
𝑃 \ 𝑃𝑖 ≻

−−−−−−−→
𝑈 \ {𝑢0

𝑖 }

≻𝑙
𝑤

𝑗

𝑖

:𝑢0

𝑖 ≻ 𝑢1

𝑖 ≻ · · · ≻ 𝑢𝑟−1

𝑖 ≻ 𝑢0

𝑛𝑖 ( 𝑗) ≻ 𝑢𝑟𝑖 ≻ −→
𝑃 ≻

−−−−−−−−−−−−−−−−−−−−−−−−→
𝑈 \ {𝑢0

𝑖 , · · · , 𝑢
𝑟
𝑖 } ∪ {𝑢0

𝑛𝑖 ( 𝑗) }

There are totally 𝑛 × (𝑘 ′ + 𝑑) + 𝑛 × (𝑟 + 1) pairs of agents, and
2𝑛 × (𝑘 ′ +𝑑) + 2𝑛 × (𝑟 + 1) preference lists in the layer 𝑙 . Finally, we

set 𝑘 = |𝑈 | + |𝑃 | − 𝑘 ′, then ¯𝑘 = 𝑘 ′ and ¯𝑑 = (𝑟 + 2) − (𝑟 + 1) = 1 for

Reg or
¯𝑑 = 2(𝑟 + 2) − 2(𝑟 + 1) = 2 for Pair, with 𝑟 + 2 (or 2(𝑟 + 2))

being the minimum Reg(or Pair)-score before deleting the agents.

Clearly, the construction is doable in polynomial time. □

Theorem 4.10. Even with 𝛽 = 1, (𝑘 ,𝛽)-M-R with M= {LSum,
LMax} is W[1]-hard with respect to ¯𝑘 and ¯𝑑 under Egal and Balc.

Proof. Here, we only prove this theorem for R being Egal. R
being Balc can be proved in a similar way. We give a reduction from

Cliqe. Given a Cliqe instance (𝐺 = (𝑉 , 𝐸), 𝑘 ′) with |𝑉 | = 𝑛 and

|𝐸 | =𝑚, we construct an (𝑘 ,1)-M-R instance as follows. We create

one pair of agents for each 𝑣𝑖 ∈ 𝑉 , that is, 𝑢𝑣𝑖 and 𝑤𝑣𝑖
. For each

𝑒𝑖 ∈ 𝐸, we create two pairs of agents, 𝑢
𝑒𝑖
1
,𝑤

𝑒𝑖
1
, 𝑢

𝑒𝑖
2
,𝑤

𝑒𝑖
2
. Create two

sets of auxillary agents 𝑃,𝑄 with |𝑃 | = |𝑄 | = (𝑑∗ + 10𝑘 ′), where
𝑑∗ = 10(𝑛 − 𝑘 ′) + 6

𝑘′ (1+𝑘′)
2

+ 7(𝑚 − 𝑘′ (1+𝑘′)
2

). There are totally

2𝑛 + 4𝑚 + 2(𝑑∗ + 10𝑘 ′) agents.
Now we set the preference lists of the agents. Add for each

𝑝𝑖 ∈ 𝑃 , the preference list ≻𝑙𝑝𝑖 : 𝑞𝑖 ≻
−−−−−−→
𝑄 \ {𝑞𝑖 } ≻ −→

𝑊 , and for each

𝑞𝑖 ∈ 𝑄 , the preference list ≻𝑙𝑞𝑖 : 𝑝𝑖 ≻
−−−−−−→
𝑃 \ {𝑝𝑖 } ≻

−→
𝑈 to the preference

profile 𝑙 , where
−→
𝑆 denotes an arbitrary but fixed ordering of a set 𝑆 .

For each 𝑣𝑖 ∈ 𝑉 , we add the following preference lists to 𝑙 , where

𝑄𝑖 = {𝑞
8(𝑖−1)+1

, · · · , 𝑞8𝑖 }:

≻𝑙𝑢𝑣𝑖 :

−→
𝑄𝑖 ≻ 𝑤𝑣𝑖 ≻

−−−−−→
𝑄 \𝑄𝑖 ≻

−−−−−−−−−→
𝑊 \ {𝑤𝑣𝑖 }

≻𝑙𝑤𝑣𝑖 :𝑢𝑣𝑖 ≻ −→
𝑃 ≻

−−−−−−−−→
𝑈 \ {𝑢𝑣𝑖 }

For each edge 𝑒𝑖 = {𝑣𝑠 , 𝑣𝑡 }, we add the following preference lists to

𝑙 .

≻𝑙
𝑢
𝑒𝑖
1

: 𝑤
𝑒𝑖
1

≻ 𝑤𝑣𝑠 ≻ 𝑤𝑣𝑡 ≻ 𝑤
𝑒𝑖
2

≻ −→
𝑄 ≻

−−−−−−−−−−−−−−−−−−−−−−→
𝑊 \ {𝑤𝑒𝑖

1
,𝑤

𝑒𝑖
2
,𝑤𝑣𝑠 ,𝑤𝑣𝑡 }
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≻𝑙
𝑢
𝑒𝑖
2

: 𝑤
𝑒𝑖
1

≻ 𝑞8𝑛+𝑖 ≻ 𝑤
𝑒𝑖
2

≻
−−−−−−−−−−→
𝑄 \ {𝑞8𝑛+𝑖 } ≻

−−−−−−−−−−−−−→
𝑊 \ {𝑤𝑒𝑖

1
,𝑤

𝑒𝑖
2
}

≻𝑙
𝑤

𝑒𝑖
1

: 𝑢
𝑒𝑖
1

≻ 𝑢
𝑒𝑖
2

≻ −→
𝑃 ≻

−−−−−−−−−−−→
𝑈 \ {𝑢𝑒𝑖

1
, 𝑢

𝑒𝑖
2
}

≻𝑙
𝑤

𝑒𝑖
2

: 𝑢
𝑒𝑖
1

≻ 𝑢
𝑒𝑖
2

≻ −→
𝑃 ≻

−−−−−−−−−−−→
𝑈 \ {𝑢𝑒𝑖

1
, 𝑢

𝑒𝑖
2
}

Finally, let 𝑘 = |𝑈 | + |𝑃 | − 𝑘 ′, then ¯𝑘 = 𝑘 ′, and let 𝑑 = 3𝑑∗ + 10𝑘 ′,
then

¯𝑑 = 10𝑘 ′ + 𝑘 (1+𝑘′)
2

with 𝑑 + ¯𝑑 being the minimum Egal-score

of this instance before removing agents. □

In the following we turn to investigate the parameterized com-

plexity of (𝑛,𝑡 )-M-R, that is, selecting 𝑡 out of 𝛽 layers to form a

new instance of LSum-R or LMax-R and search for a matching

satisfying the R-score. Under such a setting, (𝑛,𝑡 )-LSum-R with R
being Reg/Pair/Egal and (𝑛,𝑡 )-LMax-R with R being Reg/Pair are

FPT with respect to 𝛽 . That is, by enumerating all subsets 𝐿′ ⊆ 𝐿,

we can reduce an (𝑛,𝑡 )-M-R instance to an equivalent LSum-R or

LMax-R instance (𝑈 ,𝑊 , 𝐿′, 𝑑) and apply Theorem 4.2 or 4.3. The

time of enumerating all subsets of 𝐿 is within O(2𝛽 ).

Theorem 4.11. (𝑛,𝑡 )-M-R withM ∈ {LSum, LMax} is W[1]-hard
with respect to 𝑡 under all four scoring rules, and para-NP-hard with
respect to 𝑑 or ¯𝑑 under Reg and Pair.

Proof. We give a reduction from Set packing. Given an uni-

verse 𝑉 and a family 𝐶 of subsets of 𝑉 , and an integer 𝑘 ′, Set
packing seeks for a family 𝐶 ′ ⊆ 𝐶 of 𝑘 ′ pairwise disjoint sets. Set
packing is W[1]-hard with respect to parameter 𝑘 ′ [18].

Given a Set packing instance (𝑉 ,𝐶 ,𝑘 ′) with |𝑉 | = 𝑛′ and |𝐶 | =𝑚,

we construct an (𝑛,𝑡 )-M-R instance (𝑈 ∪ 𝑃,𝑊 ∪𝑄, 𝐿, 𝑑) as follows.
For each 𝑣𝑖 ∈ 𝑉 , we create 2𝑚 pairs of agents, 𝑢

𝑗
𝑖
, 𝑢

𝑗
𝑖
∈ 𝑈 and

𝑤
𝑗
𝑖
, 𝑤̄

𝑗
𝑖
∈𝑊 with 1 ≤ 𝑗 ≤ 𝑚. We create two sets of auxillary agents

𝑃 and 𝑄 with |𝑃 | = |𝑄 | = 𝑑∗, with 𝑑∗ being set as follows:

• [For LMax-R] let 𝑑∗ = 2, 4, 3𝑚𝑛′, 6𝑚𝑛′ under Reg, Pair, Balc,
and Egalitarian, respectively.

• [For LSum-R] let 𝑑∗ = 2𝑛, 4𝑛, 3𝑚𝑛′2, 6𝑚𝑛′2 under Reg, Pair,

Balc, and Egalitarian, respectively.

Next, we create𝑚 layers, one for each subset 𝑐 𝑗 ∈ 𝐶 . The prefer-

ence lists of each 𝑥 ∈ 𝑃∪𝑄 are the same in all layers. For each 𝑝𝑖 ∈ 𝑃 ,

the preference list has the following form: 𝑞𝑖 ≻
−−−−−−→
𝑄 \ {𝑞𝑖 } ≻

−→
𝑊 , with

−→
𝑆 denoting an arbitrary but fixed ordering of a set 𝑆 . The prefer-

ence lists of 𝑞𝑖 ∈ 𝑄 are set accordingly. For agents 𝑢
𝑗
𝑖
, 𝑢

𝑗
𝑖
∈ 𝑈 and

𝑤
𝑗
𝑖
, 𝑤̄

𝑗
𝑖
∈𝑊 with 1 ≤ 𝑖 ≤ 𝑛′ and 1 ≤ 𝑗 ≤ 𝑚, which are created for

the same element 𝑣𝑖 , we create 4𝑚 preference lists of the same form

and add 4 lists to each layer. The preference lists of 𝑢
𝑗
𝑖
and 𝑢

𝑗
𝑖
have

the following form: 𝑤
𝑗
𝑖
≻ 𝑤̄

𝑗
𝑖
≻
−−−−−−−−→
𝑄 \ {𝑞𝑑∗ } ≻ 𝑞𝑑∗ ≻

−−−−−−−−−−−−→
𝑊 \ {𝑤 𝑗

𝑖
, 𝑤̄

𝑗
𝑖
},

where𝑤
𝑗
𝑖
and 𝑤̄

𝑗
𝑖
are also created for 𝑣𝑖 ∈ 𝑉 . The preference lists

of 𝑤
𝑗
𝑖
and 𝑤̄

𝑗
𝑖
are set analogously. Next, we make modifications

according to the occurrence of elements in subsets. In each layer 𝑙 𝑗 ,

which is according to a subset 𝑐 𝑗 , we do the following modifications

if 𝑣𝑖 occurs in 𝑐 𝑗 .

• For 𝑗 = 𝑖 , exchange 𝑢
𝑗
𝑖
with 𝑝𝑑∗ in ≻𝑙 𝑗

𝑤
𝑗

𝑖

.

• For 𝑗 ≠ 𝑖 , exchange 𝑢
𝑗
𝑖
with 𝑝𝑑∗ in ≻𝑙 𝑗

𝑤
𝑗

𝑖

.

Finally, set 𝑑 = 𝑑∗ under Reg, Pair, and 𝑑 = 2𝑑∗ under Balc, Egali-
tarian. Set 𝑡 = 𝑘 ′ under all four scoring rules. □

Theorem 4.12. (𝑛,𝑡 )-M-R withM ∈ {LSum, LMax} is W[2]-hard
with respect to 𝑡 under all four scoring rules.

5 CONCLUDING REMARKS
We introduce three models for position-based matching with multi-

modal preferences under four scoring rules. A collection of polynomial-

time tractable and intractable results have been achieved: Under

rules of Reg and Pair, all three models admit polynomial-time al-

gorithms. Under rules of Balc and Egal, LSum-Egal is known to

be polynomial-time solvable, while there is no polynomial-time

algorithm for LMax-R and LPareto-R unless P=NP.

The classical complexity of one problem remains open, that is,

LSum-Balc. We want to mention that this problem is not equiva-

lent to Two-weighted maximum weighted matching (TMWM),

which is the Maximum weighted matching problem with exactly

two weights assigned to each edge. The target of TMWM is to find

a matching, such that the sum of the first weights of all matching

edges and the sum of the second weights of all matching edges are

both at most 𝑑 . The only difference between LSum-Balc and TNWM

is that the weights of TMWM are allowed to be exponential in 𝑛,

the number of vertices. Thus, we can prove TMWM is NP-hard by

reducing the Partition problem to it, while the same method does

not apply to LSum-Balc.

It might be interesting to examine the parameterized complex-

ity of LMax-R and LPareto-R under Balc and Egal with respect

to 𝛽 , where 𝛽 is the number of layers. Since we only focus on

parameterized complexity, it might be interesting to examine the

approximation complexity of our models.

We only investigate the position-based models. Actually, more

models can be adapted to the corresponding version with multi-

modal preferences. Besides stable matching which has been studied

in [13], other models such as popular matching [5, 15, 25] and

Pareto-optimal matching [3, 4, 12] might be suitable candidates.
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