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ABSTRACT
We study a cooperative game setting where players form a network

and each player only knows the existence of the players to whom

she connects. Initially, only a subset of the players are in the game.

Our goal is to design a reward distributionmechanism to incentivize

the players to use their connections to invitemore players to join the

game.We show that the existing solutions such as the Shapley value

cannot achieve this. Hence, to combat this problem, we propose

a solution called weighted permission Shapley value (inspired by

permission structure and the weighted Shapley value). Under this

solution, for each player, inviting all her neighbors is a dominant

strategy in all monotone games. We further prove that the solution

is unique for tree networks. Our solution offers the very first attempt

to incentivize the players to invite others to form a larger coalition

in cooperative games.
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1 INTRODUCTION
Cooperative game is a classical research topic studied in game

theory [3, 11, 20]. The study focused on games where a fixed set

of players forms coalitions to share rewards. One goal is to design

a reward distribution to incentivize all players to collaborate in

the grand coalition. The literature assumed that all the players

are fixed and there is no connection between players. However, in

reality, the players are connected and they could potentially use

their connections to involve more players or exclude some players.

In this paper, we aim to design a reward distribution mechanism

to incentivize the participants who are already in the game to invite

others to join the collaboration. This kind of mechanism is highly

demanded in practice. For instance, when we collect a large scale

data-set from the crowd, select a set of seed users for a product

trial, or look for a missing person, we could use social networks

to attract participants [6, 15]. Among them, the most successful

example is the well-known network challenge hosted by DARPA

in 2009 where a collaboration formed via social networks played

an essential role [12].

Different from the traditional settings, players in our setting are

connected and a player cannot join the collaboration without the
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invitation from her neighbours (simply because the player is not

aware of the collaboration without the others’ invitation). More
precisely, our challenge is to design a reward distribution mechanism
such that the current players of the coalition are incentivized to invite
their neighbours to join the coalition.

The Shapley value is a classic solution concept in cooperative

games to distribute rewards [14]. It computes the average marginal

contribution of each player to join a group. However, in the calcu-

lation, all the players are treated equally and each of them can join

any group, which is not the case in our setting because if one player

is invited by another, they cannot be treated equally. Therefore, it

is easy to show that the Shapley value cannot be directly applied

here to incentivize the players to invite others.

To tackle this problem, we propose a solution based on the con-

cepts of permission structure and the weighted Shapley value. The

weighted Shapley value is the very first concept that applies asym-

metry to cooperative games [1, 7, 13]. However, the asymmetry

induced by the weights cannot reflect the structure of the invita-

tions among the players because the weight of each player is the

same for all coalitions. Another concept called permission structure

seems a closer solution to our problem, which was first introduced

in [4, 5] and characterized in [17, 18]. In a permission structure,

players need permissions from other players before they are al-

lowed to cooperate, where the permissions are very similar to the

players’ invitations in our model. In our model, a player is not

aware of the game without someone’s invitation, but permission

structure does not offer the flexibility on the reward distribution.

Against this background, our solution is a novel combination of

the weighted Shapley value and the permission structure. We use a

permission structure to represent the priorities between an inviter

and an invitee, and assign different weights to them to control the

importance of their priorities. For the first time, we show that the

well-known winning solution for the DARPA network challenge

is a special case of our solution [12]. Our solution will stimulate

a broad application of collaborations via social networks such as

crowdsourcing and question answering. Our contributions advance

the state of the art in the following ways:

• We formally model the (social) connections between players

in a cooperative game and, for the first time, define the con-

cept of diffusion incentive compatibility (DIC) for players to
utilize their connections to gather more players.

• We define a weighted permission Shapley value as a reward
distribution mechanism to achieve DIC.

• We also formally model the query network as a special case

of our setting and show that our solution is the only solution

to achieve DIC in the query network.

The key contribution of our work is to introduce diffusion in-

centives to cooperative games for the first time, which utilizes the

connections between the players to invite more players to the game.
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Utilizing the power of social network to involve more participants

is a new trend in mechanism design, especially in non-cooperative

games [16, 21]. For instance, in auctions, Li et al. [9, 10] and Zhao

et al. [22] proposed the very first diffusion mechanisms to attract

buyers via social networks. Our model shares a similar motivation,

but it cannot be handled with their techniques because they focused

on the non-cooperative games and the participants’ contribution

also depends on their private valuations.

The remainder of the paper is organized as follows. Section

2 gives a formal description of the model. Section 3 establishes

the family of weighted permission Shapley value to incentivize

diffusion in forests and Section 4 demonstrates its applicability in

query networks. Section 5 extends the result to general graphs.

2 THE MODEL
We study a cooperative game where players are connected to form a

network and each player only knows the players she connects to. In

real-world applications, their connections can represent friendship

or leadership. Initially, only a subset of the players are aware of the

game. A person who is in the game can invite her friends who are

not in the game yet to join. We investigate the reward distribution

mechanism in this setting to incentivize the existing players to

invite new players to join the coalition.

Formally, let 𝑁 = {1, 2, . . . , 𝑛} be the set of all connected players

in the underlying network. We model the network as a directed

acyclic graph (DAG)𝐺 = (𝑁, 𝐸)1. Each edge 𝑒 = (𝑥,𝑦) ∈ 𝐸 indicates

that player 𝑥 can invite 𝑦. There is a special player set I ⊆ 𝑁 who

are in the game/coalition initially without invitation. We call I the
initial set and the invitation has to start from the initial players.

For each player 𝑖 ∈ 𝑁 , let 𝑝𝑖 = { 𝑗 | ( 𝑗, 𝑖) ∈ 𝐸}. We have 𝑝𝑖 = ∅ if

and only if 𝑖 ∈ I. We may assume w.l.o.g. that all players can be

reached from at least one of the initial players in the underlying

network. Let \𝑖 = { 𝑗 | (𝑖, 𝑗) ∈ 𝐸} be private type of player 𝑖 , which
is the set of players who can be invited by 𝑖 . Let \ = (\1, . . . , \𝑛)
be the type profile of all players, and \−𝑖 be the type profile of the
players except for 𝑖 . Let Θ𝑖 , Θ and Θ−𝑖 be the space of \𝑖 , \ and \−𝑖
respectively.

As the network is not public, the reward distribution mech-

anism needs the players’ report about their connections (types)

to involve all players. Let \ ′
𝑖
⊆ \𝑖 is the type report of player 𝑖 ,

i.e., the actual player set invited by 𝑖 . Given any report profile

\ ′ = (\ ′
1
, . . . , \ ′𝑛), there is a directed graph induced by \ ′, denoted

by 𝐺 (\ ′) = (𝑁, 𝐸 (\ ′)), where 𝐸 (\ ′) = {(𝑖, 𝑗) | 𝑖 ∈ 𝑁, 𝑗 ∈ \ ′
𝑖
}. Let

𝐽I (𝐺 (\ ′)) be the set of players who can be reached from at least

one player from I under 𝐺 (\ ′). It is clear that only the players in

𝐽I (𝐺 (\ ′)) can actually join the game, because the others cannot

receive the proper invitation started from the initial players (in

practice, this means that the others will not be informed about the

game at all).

There is a non-negative and monotone characteristic function

𝑣 : 2𝑁 → R, s.t., 𝑣 (∅) = 0 and 𝑣 (𝑆) ≤ 𝑣 (𝑇 ) for all 𝑆 ⊆ 𝑇 ⊆ 𝑁 . The

monotone property is necessary in our setting; otherwise, there is

no need to invite more people to join the coalition if fewer people

can do better. Note that the definition of 𝑣 does not consider the

1
Our results are not restricted to DAGs (see Section 5.3 for the extension to general

graphs).

connections between players, simply because the connections are

their private information, which is what we need to discover. Let

V be the space of all monotone characteristic functions for 𝑁 . We

define the reward distribution mechanism as follows.

Definition 2.1. A reward distribution mechanism M is de-

fined by a reward policy Φ = {𝜙𝑖 }𝑖∈𝑁 , where each 𝜙𝑖 : Θ ×V →
R≥0 assigns the reward to player 𝑖 ∈ 𝑁 . Moreover, for all \ ′ ∈ Θ
and all 𝑣 ∈ V , 𝜙𝑖 (\ ′, 𝑣) = 0 if 𝑖 ∉ 𝐽I (𝐺 (\ ′)).

Themechanism does not distribute reward to players who are not

invited. Except for this, one desirable property of the mechanism is

to distribute exactly what the coalition (of all participated players)

can generate. This is called efficiency.

Definition 2.2. A reward distribution mechanism M is efficient
if for all \ ′ ∈ Θ and all 𝑣 ∈ V , we have∑

𝑖∈𝑁
𝜙𝑖 (\ ′, 𝑣) = 𝑣

(
𝐽I (𝐺 (\ ′))

)
Other than efficiency, the key property we want to achieve here

is to incentivize all players who are already in the coalition to invite

all their neighbours to join the coalition. This requires that inviting

all neighbours is a dominant strategy for all players. We call this

property diffusion incentive compatibility.

Definition 2.3. A reward distribution mechanismM is diffusion
incentive compatible (DIC) if for all 𝑖 ∈ 𝑁 with type \𝑖 ∈ Θ𝑖 , all

\ ′
𝑖
⊆ \𝑖 , all \

′
−𝑖 ∈ Θ−𝑖 and all 𝑣 ∈ V , we have

𝜙𝑖 ((\𝑖 , \ ′−𝑖 ), 𝑣) ≥ 𝜙𝑖 ((\ ′𝑖 , \
′
−𝑖 ), 𝑣)

Finally, we consider a property of structural fairness that guaran-

tees a player can gain a reward at least as much as a fixed proportion

of the reward gained by her invitees.

Definition 2.4. A reward distribution mechanism M has the

property of 𝛾-structural fairness (𝛾-SF) if for all 𝑣 ∈ V , all \ ′ ∈ Θ
and all 𝑖, 𝑗 ∈ 𝐽I (𝐺 (\ ′)) with 𝑗 ∈ \ ′

𝑖
, we have 𝜙𝑖 (\ ′, 𝑣) ≥ 𝛾𝜙 𝑗 (\ ′, 𝑣).

2.1 Shapley Value does not Work
Before proposing our solution, the first question is what if we

directly apply the Shapley value [14, 19], the classical solution for

cooperative games, in our setting.

Let R(𝑆) denote the set of all orders 𝑅 of players in a coalition

𝑆 . For an order 𝑅 in R(𝑁 ), we use 𝐵𝑅,𝑖 to denote the set of players

preceding 𝑖 in the order 𝑅. For a given characteristic function 𝑣 and

an order 𝑅, the marginal contribution of player 𝑖 in 𝑅 is 𝐶𝑖 (𝑣, 𝑅) =
𝑣 (𝐵𝑅,𝑖 ∪ {𝑖}) − 𝑣 (𝐵𝑅,𝑖 ). Then the classical Shapley value of game 𝑣

for 𝑖 is the expectation of 𝑖’s marginal contribution:

𝜑𝑖 (𝑣) = EUR(𝑁 ) (𝐶𝑖 (𝑣, ·))
whereUR(𝑁 ) is a uniform distribution on R(𝑁 ). We show that the

Shapley value (on 𝐽I (𝐺 (\ ′))) does not work in our new setting.

Proposition 2.5. If the Shapley value is applied as a reward distri-
bution mechanism M, then M is not diffusion incentive compatible.

Proof. We prove this by a counterexample. Consider the game

in Example 2.6. When applying the Shapley value as the reward

distribution mechanism, we get

𝜑1 = 𝜑3 = 1/2, 𝜑2 = 0, 𝜑4 = 1.

Main Track AAMAS 2022, May 9–13, 2022, Online

1510



Notice that agents 1 and 3 have the same contribution to other

agents and they will share the reward of that contribution. How-

ever, if agent 1 does not invite agent 3, her Shapley value will be

increased to 1 > 1/2. Hence, directly applying the Shapley value is

not diffusion incentive compatible. □

Example 2.6. Consider the case illustrated in Figure 1, where

𝑁 = {1, 2, 3, 4}. Suppose the initial coalition is I = {1, 2}. To form

a larger coalition, agents 1 and 2 can invite their friends 3 and 4.

Suppose the characteristic function 𝑣 is defined as

𝑣 (𝑆) = I({1, 3} ∩ 𝑆 ≠ ∅) + I(4 ∈ 𝑆)

for all 𝑆 ⊆ 𝑁 , where I(·) is the indicator function.

1 3 2 4

Figure 1: An example of the cooperative game in a forest.

3 DIFFUSION INCENTIVES IN A FOREST
In this section, we first investigate the solution to satisfy efficiency

and DIC when the network 𝐺 is a forest. We will continue using

Example 2.6 to illustrate our notions and results.

3.1 Permission Structure in Forests
To tackle the failure of Shapley value, we recall an important con-

cept called permission structure. Gilles et al. [4, 5] firstly gave the

permission restriction on cooperative games. It restricts a player’s

impact by a permission group. We will use it here to represent the

invitations. Intuitively, a permission structure can represent how

players get involved in the game by others’ invitations/permissions.

Definition 3.1. A permission structure on 𝑁 is an asymmetric

mapping 𝑃 : 𝑁 → 2
𝑁
, i.e., 𝑗 ∈ 𝑃 (𝑖) implies that 𝑖 ∉ 𝑃 ( 𝑗).

Here, we define 𝑃 (𝑖) as the set of players who invited 𝑖 into the

coalition, i.e., 𝑃 (𝑖) = 𝑝 ′
𝑖
= { 𝑗 | 𝑖 ∈ \ ′

𝑗
}. In particular, in the forest

model, every player except for the initial players has a unique

parent who invites her (|𝑝 ′
𝑖
| = 1). For instance, in Example 2.6,

𝑃 (3) = {1} and 𝑃 (4) = {2}. With permission structure, we can

define the autonomous coalition.

Definition 3.2. A coalition 𝑆 ⊆ 𝑁 is autonomous in a permission

structure 𝑃 if for all 𝑖 ∈ 𝑆 , 𝑃 (𝑖) ⊆ 𝑆 .

A coalition 𝑆 is autonomous if and only if for each player 𝑖 ∈ 𝑆 ,

all her ancestors are also in 𝑆 . This property indicates whether a

coalition is able to collaborate together (generate a reward). For

instance, in Example 2.6, {1, 3} is autonomous while {4} is not

autonomous. Denote the collection of all autonomous coalitions

in permission structure 𝑃 by 𝐴𝑃 . Then for an arbitrary coalition

𝑆 ⊆ 𝑁 , we consider the largest autonomous coalition within 𝑆 .

Definition 3.3. Given a permission structure 𝑃 on 𝑁 , the largest

autonomous coalition of 𝑆 ⊆ 𝑁 is defined as

𝛼 (𝑆) =
⋃

{𝑇 | 𝑇 ⊆ 𝑆 and 𝑇 ∈ 𝐴𝑃 }.

Intuitively, 𝛼 (𝑆) is the largest subset of 𝑆 that is autonomous. In

particular, in the forest model, let 𝐺𝑆 be the subgraph of the forest

𝐺 formed by players in 𝑆 , then the largest autonomous coalition

of a coalition 𝑆 is all the connected components of 𝐺𝑆 where each

component contains at least one player in the initial set I. For
instance, in Example 2.6, the largest autonomous coalition of set

{1, 3, 4} is {1, 3}.

3.2 Applying Permission Shapley Value
Considering the diffusion network, we see that some players need

others’ participation/invitation to create value. For instance, in Ex-

ample 2.6, player 4 can only be invited by player 2. Hence, without

player 2, player 4 cannot join the game to provide her contribu-

tion to the coalition. This suggests applying Shapley value with a

permission structure.

Taking the notations in Section 3.1, with the restriction of the

permission structure, we can map the characteristic function 𝑣 of

the cooperative game to a projection 𝑣𝑃 on 𝑃 as

𝑣𝑃 (𝑆) = 𝑣 (𝛼 (𝑆))
for all 𝑆 ⊆ 𝑁 [5]. 𝑣𝑃 (𝑆) defines the contribution of a coalition 𝑆

by the contribution of those players who can actually participate

under the coalition 𝑆 .

Define the Shapley value under permission structure 𝑃 on game

𝑣 as 𝜑𝑃 (𝑣) = 𝜑 (𝑣𝑃 ), i.e., the Shapley value on game 𝑣𝑃 . Let’s call it

permission Shapley value. Applying the permission Shapley value

in Example 2.6, we have

𝑣𝑃 (𝑆) = I(1 ∈ 𝑆) + I({2, 4} ⊆ 𝑆)
and the reward distribution is

𝜑𝑃
1
= 1, 𝜑𝑃

3
= 0, 𝜑𝑃

2
= 𝜑𝑃

4
= 1/2.

From the example we can see two intuitions of the permission

Shapley value. Firstly, if a player has the same contribution as

her inviter (e.g., player 3 and her inviter player 1 in Example 2.6),

then only the inviter will be rewarded for that contribution. This

can be naturally obtained from the property of diffusion incentive

compatibility. No matter how much reward the player shared with

her inviter, the inviter will then have no incentives to invite the

player. On the other hand, if a player invites another player who

can bring additional contribution (e.g., player 2 and player 4 in

Example 2.6), then the reward of invitee will be equally shared

among the inviter and the invitee.

To see the intuition, we consider a special case where an additive

assumption is applied, i.e., for each two disjoint subsets of players

𝑆1, 𝑆2 ⊆ 𝑁 , we have 𝑣 (𝑆1 ∪ 𝑆2) = 𝑣 (𝑆1) + 𝑣 (𝑆2) ≥ 0. Under this

assumption, denote the depth of 𝑖 in the tree 𝑖 belongs to by 𝑑𝑖 (the

depths of the roots are 0) and the subtree rooted by 𝑖 by 𝑇𝑖 . Then

the permission Shapley value of all player 𝑖 ∈ 𝑁 is

𝜑𝑃𝑖 =
∑
𝑘∈𝑇𝑖

𝑣 ({𝑘})
𝑑𝑘 + 1

for every 𝑖 ∈ 𝑁 .

Intuitively speaking, the contribution of a player will be uniformly

distributed along the invitation chain.

Now, we show that the permission Shapley value is a desirable re-

ward distribution mechanism that satisfies efficiency and diffusion

incentive compatibility for the cooperative game in forests.

Main Track AAMAS 2022, May 9–13, 2022, Online

1511



Theorem 3.4. For the monotone diffusion cooperative game in
a forest, if the reward distribution mechanismM is the permission
Shapley value, then M is efficient and DIC.

Proof. (i)M is efficient since for all \ ′ ∈ Θ∑
𝑖∈𝑁

𝜑𝑃𝑖 (𝑣) =
∑
𝑖∈𝑁

𝜑𝑖 (𝑣𝑃 ) = 𝑣𝑃 (𝐽I (𝐺 (\ ′))) = 𝑣 (𝐽I (𝐺 (\ ′))) .

(ii) For the diffusion incentive compatibility, we will show that

for each player 𝑖 , her permission Shapley value is non-decreasing

after she invites more players in the game. Consider a player set

𝑋 which cannot be informed of the game if 𝑖 does not invite some

players. Let 𝑃 be the permission structure if 𝑖 does not invite these

players and 𝑃 ′ be the one if 𝑖 invites these players. Then,

• before 𝑖 invites some players to let 𝑋 get involved in the

game, the permission Shapley value of 𝑖 is

𝜑𝑃𝑖 (𝑣) = 𝜑𝑖 (𝑣𝑃 ) =
1

|𝑁 \ 𝑋 |!
∑

𝑅∈R(𝑁 \𝑋 )
𝐶𝑖 (𝑣𝑃 , 𝑅);

• if 𝑖 invites players such that 𝑋 then can be involved in the

game, notice that for all 𝑅 ∈ R(𝑁 \ 𝑋 ) and all 𝑌 ⊆ 𝑋 , we

have 𝑣𝑃 (𝐵𝑅,𝑖 ) = 𝑣𝑃
′ (𝐵𝑅,𝑖 ∪ 𝑌 ) since 𝑖 is not in the coalition.

Denote 𝐶𝑌 (𝑣𝑃
′
, 𝑅, 𝑖) = 𝑣𝑃

′ (𝐵𝑅,𝑖 ∪ 𝑌 ∪ {𝑖}) − 𝑣𝑃
′ (𝐵𝑅,𝑖 ∪ {𝑖}).

Then the permission Shapley value of 𝑖 will become

𝜑𝑃
′

𝑖 (𝑣) = 1

|𝑁 |!
∑

𝑅∈R(𝑁 )
𝐶𝑖 (𝑣𝑃

′
, 𝑅)

=
|𝑋 |!
|𝑁 |!

∑
𝑅∈R(𝑁 \𝑋 )

[(
|𝑁 |
|𝑋 |

)
𝐶𝑖 (𝑣𝑃 , 𝑅) +

∑
𝑌 ⊆𝑋

𝐶𝑌 (𝑣𝑃
′
, 𝑅, 𝑖)

]
≥ |𝑋 |!

|𝑁 |!
∑

𝑅∈R(𝑁 \𝑋 )

(
|𝑁 |
|𝑋 |

)
𝐶𝑖 (𝑣𝑃 , 𝑅)

=
1

( |𝑁 | − |𝑋 |)!
∑

𝑅∈R(𝑁 \𝑋 )
𝐶𝑖 (𝑣𝑃 , 𝑅) = 𝜑𝑃𝑖 (𝑣)

where the equality in the second line means the marginal contri-

bution gained by 𝑖 when asserting the players in 𝑋 to all orders in

R(𝑁 \ 𝑋 ). Therefore, the permission Shapley value is DIC. □

For structural fairness, we show that permission Shapley value

satisfies 1-SF. Intuitively, it means that if a player 𝑖 invites 𝑗 to the

game, then she will gain at least as much as the reward that is

distributed to 𝑗 .

Theorem 3.5. For the monotone diffusion cooperative game in
a forest, if the reward distribution mechanismM is the permission
Shapley value, then M is 1-SF.

Proof. For all \ ′ ∈ Θ, consider 𝑖, 𝑗 ∈ 𝐽I (𝐺 (\ ′)) with 𝑗 ∈ \ ′
𝑖
.

For all 𝑆 ⊆ 𝑁 with 𝑖 ∈ 𝑆 , let 𝑄𝑖
𝑆
= ( |𝑁 | − |𝑆 |)!( |𝑆 | − 1)!/|𝑁 |!, i.e.,

the probability of 𝐵𝑅,𝑖 = 𝑆 \ {𝑖} in all orders 𝑅 ∈ R(𝑁 ). Since 𝑅 is

sampled with uniform distribution, then for all 𝑆 ⊆ 𝑁 with 𝑖, 𝑗 ∈ 𝑁 ,

𝑄𝑖
𝑆
= 𝑄

𝑗

𝑆
. Hence, we have

𝜑𝑃𝑖 =
∑
𝑆 ∋𝑖

𝑄𝑖
𝑆

[
𝑣𝑃 (𝑆) − 𝑣𝑃 (𝑆 \ {𝑖})

]
=

∑
𝑆 ∋𝑖,𝑆∌𝑗

𝑄𝑖
𝑆

[
𝑣𝑃 (𝑆) − 𝑣𝑃 (𝑆 \ {𝑖})

]
+

∑
𝑆 ∋𝑖,𝑆 ∋ 𝑗

𝑄
𝑗

𝑆

[
𝑣𝑃 (𝑆) − 𝑣𝑃 (𝑆 \ {𝑖})

]
+

∑
𝑆∌𝑖,𝑆 ∋ 𝑗

𝑄
𝑗

𝑆
· 0

≥
∑

𝑆 ∋𝑖,𝑆 ∋ 𝑗
𝑄

𝑗

𝑆

[
𝑣𝑃 (𝑆) − 𝑣𝑃 (𝑆 \ {𝑖})

]
+

∑
𝑆∌𝑖,𝑆 ∋ 𝑗

𝑄
𝑗

𝑆
· 0 (1)

=
∑

𝑆 ∋𝑖,𝑆 ∋ 𝑗
𝑄

𝑗

𝑆

[
𝑣𝑃 (𝑆) − 𝑣𝑃 (𝑆 \ {𝑖})

]
+

∑
𝑆∌𝑖,𝑆 ∋ 𝑗

𝑄
𝑗

𝑆
·
[
𝑣𝑃 (𝑆) − 𝑣𝑃 (𝑆 \ { 𝑗})

]
(2)

≥
∑

𝑆 ∋𝑖,𝑆 ∋ 𝑗
𝑄

𝑗

𝑆

[
𝑣𝑃 (𝑆) − 𝑣𝑃 (𝑆 \ { 𝑗})

]
+

∑
𝑆∌𝑖,𝑆 ∋ 𝑗

𝑄
𝑗

𝑆
·
[
𝑣𝑃 (𝑆) − 𝑣𝑃 (𝑆 \ { 𝑗})

]
(3)

=
∑
𝑆 ∋ 𝑗

𝑄
𝑗

𝑆

[
𝑣𝑃 (𝑆) − 𝑣𝑃 (𝑆 \ { 𝑗})

]
= 𝜑𝑃𝑗

where the Inequality (1) is satisfied since the game is monotone;

the Equality (2) is satisfied since for all 𝑆 ⊆ 𝑁 with 𝑖 ∉ 𝑆 and 𝑗 ∈ 𝑆 ,

𝑗 ∉ 𝛼 (𝑆) and then 𝑣𝑃 (𝑆) − 𝑣𝑃 (𝑆 \ { 𝑗}) = 𝑣 (𝛼 (𝑆)) − 𝑣 (𝛼 (𝑆)) = 0;

the Inequality (3) is satisfied since for all 𝑆 ⊆ 𝑁 with 𝑖, 𝑗 ∈ 𝑆 ,

𝛼 (𝑆 \ {𝑖}) = 𝛼 (𝑆 \ {𝑖, 𝑗}) and then 𝑣𝑃 (𝑆) − 𝑣𝑃 (𝑆 \ {𝑖}) = 𝑣𝑃 (𝑆) −
𝑣𝑃 (𝑆 \ {𝑖, 𝑗}) ≥ 𝑣𝑃 (𝑆) − 𝑣𝑃 (𝑆 \ { 𝑗}).

□

3.3 Using Weights to Further Utilize the
Structure

In the game of Example 2.6, the permission Shapley value suggests

an equal share between players 2 and 4 for 4’s contribution. How-

ever, in this example, player 2 will have diffusion incentives if we

give any fraction of player 4’s contribution to him. That means we

can further tune the above mechanism to have the same properties.

One way to tune the share between an inviter and an invitee is to

introduce weights to them.

Kalai and Samet [7] introduced weights to the Shapley value

as an alternative solution to cooperative games. Radzaik [13] fur-

ther discussed the variants and properties of the weighted Shapley

value and Dragan [2] provided a computation method for weighted

Shapley value. Usually, the weighted Shapley value can be defined

as:

𝜑𝜔𝑖 (𝑣) = ED(𝜔) (𝐶𝑖 (𝑣, ·))
where 𝜔 = (𝜔 (1), 𝜔 (2), . . . , 𝜔 (𝑛)) ∈ R𝑁+ are the weights assigned

to players and D(𝜔) is a distribution on R(𝑁 ) based on 𝜔 .

To computeD(𝜔), consider an order 𝑅 = (𝑖1, 𝑖2, . . . , 𝑖𝑛) ∈ R(𝑁 ),
define 𝜔𝑅 =

∏𝑚
𝑘=1

(
𝜔 (𝑖𝑘 )/

∑𝑘
𝑝=1 𝜔 (𝑖𝑝 )

)
. This can be interpreted as

the probability of sampling the order 𝑅 by agents’ weights, e.g.,

sampling last player as 𝑖𝑛 has probability𝜔 (𝑖𝑛)/(𝜔 (𝑖1)+· · ·+𝜔 (𝑖𝑛))
and sampling previous player as 𝑖𝑛−1 in the remaining players has

probability 𝜔 (𝑖𝑛−1)/(𝜔 (𝑖1) + · · · + 𝜔 (𝑖𝑛−1)). Finally, in D(𝜔), the

Main Track AAMAS 2022, May 9–13, 2022, Online

1512



probability of selecting order 𝑅 is 𝜔𝑅 [7]. Table 1 shows an example

of the weight assignments.

order 𝑅 𝜔𝑅 (𝜔 (𝑖) = 1) 𝜔𝑅 (𝜔 (1 or 2) = 1, 𝜔 (3) = 2)

(1, 2, 3), (2, 1, 3) 1/6 1/4

(1, 3, 2), (2, 3, 1) 1/6 1/6

(3, 1, 2), (3, 2, 1) 1/6 1/12

Table 1: An example of computing theD(𝜔) fromweights𝜔 .
We can see when 𝜔 (3) is larger, player 3 has more chance to
appear the the later positions.

Note that when 𝜔 = 1
|𝑁 |

, the weighted Shapley value becomes

the classical Shapley value. In our setting, we can also assign

weights to players. Intuitively, the permission structure shows some

kinds of “external" relations of the players: how players are con-

nected; while the weights show some “internal" relations: which

player takes a more important role in a coalition. Thus, these two

solution concepts are of different classes. In our reward distribution

mechanism, we want to consider not only the “external" structures

but also “internal" relations between the players involved. More-

over, from the perspective of fairness, the weights will decide how

much a player 𝑖 can be rewarded by inviting her neighbours, i.e., the

parameter 𝛾 in structural fairness. Thus, we extend the permission

Shapley value by adding weights as weighted permission Shapley

value.

Definition 3.6. For a cooperative game 𝑣 on the player set 𝑁 ,

given a permission structure 𝑃 and weights𝜔 ∈ R |𝑁 |
+ , the weighted

permission Shapley value for a player 𝑖 ∈ 𝑁 is:

𝜑
𝜔,𝑃
𝑖

(𝑣) = 𝜑𝜔𝑖 (𝑣𝑃 ).

To apply the weighted permission Shapley value to our cooper-

ative game, we need to define the weight function 𝜔 (𝑖) to set the
weights to each player 𝑖 . As an example, let the weight function

be 𝜔 (𝑖) = 𝑑𝑖 + 1, where 𝑑𝑖 is the depth of player 𝑖 in the tree 𝑖

belongs to
2
. Then applying the weighted permission Shapley value

in Example 2.6, the rewards distributed to players are:{
𝜑
𝜔,𝑃
1

= 1, 𝜑
𝜔,𝑃
3

= 0,

𝜑
𝜔,𝑃
2

= 1/3, 𝜑
𝜔,𝑃
4

= 2/3.
From the example we can see that we make a difference between

players 2 and 3’s rewards. Again, consider the special case for

the additive characteristic function 𝑣 . Let 𝑇𝑖 be the subtree rooted

by 𝑖 . Then the weighted permission Shapley value with weight

𝜔 : 𝜔 (𝑖) = 𝑓 (𝑑𝑖 ) for all player 𝑖 ∈ 𝑁 is

𝜑
𝜔,𝑃
𝑖

=
∑
𝑘∈𝑇𝑖

𝑓 (𝑑𝑖 )∑𝑑𝑘
𝑗=0

𝑓 ( 𝑗)
𝑣 ({𝑘}) .

Intuitively speaking, the reward will be distributed along the in-

vitation chain according to the ratio of the weights rather than

uniformly divided.

If we set weights as 1
|𝑁 |

, the weighted permission Shapley value

will become normal permission Shapley value. Hence, the weighted

2
For players who are not in the set 𝐽I (𝐺 (\ ′)) , they can be assigned arbitrary positive

weight. We will not specify the conditions for these players in the rest unless necessary.

permission Shapley value is a more general class. We will show that

if we set weights properly, it is also a desirable solution to satisfy

efficiency and diffusion incentive compatibility.

Theorem 3.7. For the monotone diffusion cooperative game in
a forest, if the reward distribution mechanism M is the weighted
permission Shapley value with weight function 𝜔 (𝑖) = 𝑓 (𝑑𝑖 ) for all
player 𝑖 , which only depends on her distance to initial players, then
M is efficient and DIC.

Proof. (i)M is efficient since for all \ ′ ∈ Θ,∑
𝑖

𝜑
𝜔,𝑃
𝑖

(𝑣) =
∑
𝑖

𝜑𝜔𝑖 (𝑣𝑃 ) = 𝑣𝑃 (𝐽I (𝐺 (\ ′))) = 𝑣 (𝐽I (𝐺 (\ ′))).

(ii) For the property of DIC, suppose 𝑋 is the player set which

cannot be informed of the game if 𝑖 does not invite some players.

Let 𝑃 be the permission structure if 𝑖 does not invite these players

and 𝑃 ′ be the permission structure if 𝑖 invites these players. Then,

the weighted permission Shapley value before 𝑖 let 𝑋 get involved

in the game is

𝜑𝜔𝑖 (𝑣𝑃 ) =
∑

𝑅∈R(𝑁 \𝑋 )
𝜔𝑅𝐶𝑖 (𝑣𝑃 , 𝑅)

/ ∑
𝑅∈R(𝑁 \𝑋 )

𝜔𝑅 .

Consider an order 𝑅
𝑝

𝑗
= (𝑖1, . . . , 𝑖𝑝−1, 𝑗, 𝑖𝑝 , . . . , 𝑖𝑚), which inserts

player 𝑗 at the position 𝑝 in 𝑅. Then from the definition we can

derive that 𝜔𝑅 =
∑𝑚+1
𝑝=1 𝜔

𝑅
𝑝

𝑗
if for all 𝑘 , 𝜔 (𝑖𝑘 ) will not change after

𝑗 joins in. More generally, for any additional player set𝑋 , if for all 𝑘 ,

𝜔 (𝑖𝑘 ) will not change after 𝑋 joins in, we have

∑
𝑅′∈𝑅𝑋

𝜔𝑅′ = 𝜔𝑅 ,

where 𝑅𝑋 is the set of all possible orders that insert all players in

𝑋 into the order 𝑅. Then if 𝑖 invites players such that 𝑋 can be

involved in the game, since the weight function 𝜔 (𝑖) = 𝑓 (𝑑𝑖 ) only
depends on 𝑑𝑖 , for all player 𝑖 ∈ 𝑁 \𝑋 , 𝜔 (𝑖) will not change. Hence,
the weighted permission Shapley value of 𝑖 becomes

𝜑𝜔𝑖 (𝑣𝑃
′
) = 1∑

𝑅∈R(𝑁 ) 𝜔𝑅

∑
𝑅∈R(𝑁 )

𝜔𝑅𝐶𝑖 (𝑣𝑃
′
, 𝑅)

=
1∑

𝑅∈R(𝑁 \𝑋 ) 𝜔𝑅

∑
𝑅∈R(𝑁 \𝑋 )

∑
𝑅′∈𝑅𝑋

𝜔𝑅′𝐶𝑖 (𝑣𝑃 , 𝑅′)

≥ 1∑
𝑅∈R(𝑁 \𝑋 ) 𝜔𝑅

∑
𝑅∈R(𝑁 \𝑋 )

∑
𝑅′∈𝑅𝑋

𝜔𝑅′𝐶𝑖 (𝑣𝑃 , 𝑅)

=
1∑

𝑅∈R(𝑁 \𝑋 ) 𝜔𝑅

∑
𝑅∈R(𝑁 \𝑋 )

𝜔𝑅𝐶𝑖 (𝑣𝑃 , 𝑅) = 𝜑𝜔𝑖 (𝑣𝑃 ).

Therefore, M is DIC.

□

Moreover, by introducing weights, we can make the structural

fairness more tunable to customize the requirements in different

scenes.

Theorem 3.8. For the monotone diffusion cooperative game in
a forest, if the reward distribution mechanism M is the weighted
permission Shapley value with weight function 𝜔 (𝑖) that satisfies for
all \ ′ ∈ Θ and for all 𝑖, 𝑗 ∈ 𝐽I (𝐺 (\ ′)) with 𝑗 ∈ \ ′

𝑖
, 𝜔 (𝑖)/𝜔 ( 𝑗) ≥ 𝛾 ,

then M is 𝛾-SF.
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Proof. For all \ ′ ∈ Θ, consider 𝑖, 𝑗 ∈ 𝐽I (𝐺 (\ ′)) with 𝑗 ∈ \ ′
𝑖
. For

all 𝑆 ⊆ 𝑁 with 𝑖 ∈ 𝑆 , let 𝑄𝑖
𝑆
be the probability of 𝐵𝑅,𝑖 = 𝑆 \ {𝑖} in

all orders 𝑅 ∈ R(𝑁 ). Since 𝑅 is sampled with distribution D(𝜔),
then for all 𝑆 ⊆ 𝑁 with 𝑖, 𝑗 ∈ 𝑁 , we have

𝑄𝑖
𝑆

𝑄
𝑗

𝑆

=
𝜔 (𝑖)
𝜔 ( 𝑗) .

Hence, 𝑄𝑖
𝑆
=

𝜔 (𝑖)
𝜔 ( 𝑗)𝑄

𝑗

𝑆
and we have

𝜑
𝜔,𝑃
𝑖

=
∑
𝑆 ∋𝑖

𝑄𝑖
𝑆

[
𝑣𝑃 (𝑆) − 𝑣𝑃 (𝑆 \ {𝑖})

]
=

∑
𝑆 ∋𝑖,𝑆∌𝑗

𝑄𝑖
𝑆

[
𝑣𝑃 (𝑆) − 𝑣𝑃 (𝑆 \ {𝑖})

]
+ 𝜔 (𝑖)
𝜔 ( 𝑗)


∑

𝑆 ∋𝑖,𝑆 ∋ 𝑗
𝑄

𝑗

𝑆

[
𝑣𝑃 (𝑆) − 𝑣𝑃 (𝑆 \ {𝑖})

]
+

∑
𝑆∌𝑖,𝑆 ∋ 𝑗

𝑄
𝑗

𝑆
· 0


≥ 𝜔 (𝑖)
𝜔 ( 𝑗)


∑

𝑆 ∋𝑖,𝑆 ∋ 𝑗
𝑄

𝑗

𝑆

[
𝑣𝑃 (𝑆) − 𝑣𝑃 (𝑆 \ {𝑖})

]
+

∑
𝑆∌𝑖,𝑆 ∋ 𝑗

𝑄
𝑗

𝑆
· 0


≥ 𝜔 (𝑖)
𝜔 ( 𝑗)


∑

𝑆 ∋𝑖,𝑆 ∋ 𝑗
𝑄

𝑗

𝑆

[
𝑣𝑃 (𝑆) − 𝑣𝑃 (𝑆 \ { 𝑗})

]
+

∑
𝑆∌𝑖,𝑆 ∋ 𝑗

𝑄
𝑗

𝑆
·
[
𝑣𝑃 (𝑆) − 𝑣𝑃 (𝑆 \ { 𝑗})

] (4)

=
𝜔 (𝑖)
𝜔 ( 𝑗)


∑
𝑆 ∋ 𝑗

𝑄
𝑗

𝑆

[
𝑣𝑃 (𝑆) − 𝑣𝑃 (𝑆 \ { 𝑗})

]
=

𝜔 (𝑖)
𝜔 ( 𝑗)𝜑

𝜔,𝑃
𝑗

≥ 𝛾𝜑
𝜔,𝑃
𝑗

where the Inequality (4) is satisfied according to the same reason

for Equality (2) and Inequality (3) in Theorem 3.5.

Therefore, the M is 𝛾-SF. □

Intuitively, the parameter of the structural fairness is determined

by min𝑗 ∈\ ′
𝑖
𝜔 (𝑖)/𝜔 ( 𝑗). For example, if 𝜔 (𝑖) = 𝑑𝑖 + 1, then the cor-

responding weighted permission Shapley value is 1/2-SF.

4 THE ONLY SOLUTION TO QUERY
NETWORK

A classic problem that can be modelled as a diffusion cooperative

game is the query incentive network [8], where a requester tries

to find an answer to a specific problem by diffusing the request in

the network. A solution is given by the winning team from MIT

in the DARPA network challenge [12]. In the challenge, each team

needed to find positions of the red balloons to obtain rewards. The

solution proposed by the winning team is that they promised half

of the reward for the first person who found it and one-fourth of

the reward to the person who invited the finder and so on. The

requester (initial players) will get the remaining. An example is

shown in Figure 2.

We can model it as a diffusion cooperative game with an additive

characteristic function where only one agent (the answer holder)

can contribute the utility. Without loss of generality, we assume

1$1000

3$1000 4

6$2000 7

2$1000

5$1000

8$2000 9

Figure 2: An example of the solution given by winning team
in DARPA challenge. Players 1 and 2 are the initial team
members. Players 6 and 8 are those who find the balloon.

there is only one initial player as the requester and only one player

can provide the answer and the answer will bring one unit value

(for the game in the example shown in Figure 2, we can seperate it

as two games and add the two solutions up). More precisely, in the

corresponding diffusion cooperative game to the query network,

we setI = {1} and for any 𝑆 ⊆ 𝑁 , 𝑣 (𝑆) = 1 if and only if the answer

holder 𝑗 ∈ 𝑆 . In general, a solution to the query network is a reward

distribution 𝑥 (𝑖) for all players 𝑖 along the path from the requester

to answer provider. We require that the reward distribution 𝑥 (𝑖)
satisfies the following properties.

Definition 4.1. A reward distribution 𝑥 (𝑖) for all players 𝑖 along
the path from the requester 1 to answer provider 𝑗 in the query

network is

• anonymous if 𝑥 (𝑖) only depends on 𝑑𝑖 and 𝑑 𝑗 (the distances

from player 1 to 𝑖 and 𝑗 , which indicates 𝑖’s position);

• strongly individually rational (SIR) if 𝑥 (𝑖) > 0 for all 𝑖 from 1

to 𝑗 ;

• efficient if
∑
𝑖 𝑥 (𝑖) = 1.

For example, the solution given by the DARPAwinning team can

be described as 𝑥 (𝑖) = 1/2𝑑 𝑗+1−𝑑𝑖
with 𝑖 > 1 and 𝑥 (1) = 1/2𝑑 𝑗

for

all 𝑖 on the path from 1 to 𝑗 . We show that all the solution concepts

can be mapped to a set of weighted permission Shapley values. In

other words, the set of weighted permission Shapley value is the

only satifiable solution to the query network.

Theorem 4.2. A solution to a query network is anonymous, strongly
individually rational and efficient if and only if it is a weighted per-
mission Shapley value with 𝜔 (𝑖) = 𝑓 (𝑑𝑖 , 𝑑 𝑗 ), where 𝑗 is the answer
provider.

Proof. “⇒": suppose 𝑥 (𝑖) is an anonymous, SIR and efficient

solution to the query network. Construct a weighted permission

Shapley value with 𝜔 (𝑖) = 𝑥 (𝑖) for all 𝑖 on the path from agent 1 to

𝑗 and 𝜔 (𝑖) = 1 for other players. Then,

𝜑
𝜔,𝑃
𝑖

=
∑
𝑘∈𝑇𝑖

𝜔 (𝑖)∑𝑑𝑘
𝑙=0

𝜔 (𝑙)
𝑣 ({𝑘}) = 𝑥 (𝑖)∑

𝑙 𝑥 (𝑙)
= 𝑥 (𝑖)

for all 𝑖 on the path from agent 1 to 𝑗 and otherwise 𝜑
𝜔,𝑃
𝑖

= 0.

“⇐": consider a weighted permission Shapley value with 𝜔 (𝑖) =
𝑓 (𝑑𝑖 , 𝑑 𝑗 ). 𝜑𝜔,𝑃𝑖

= 0 if 𝑖 is not an ancestor of 𝑗 . For all 𝑖 on the path

from 1 to 𝑗 , we have

𝜑
𝜔,𝑃
𝑖

=
𝑓 (𝑑𝑖 , 𝑑 𝑗 )∑

𝑘∈ path from agent 1 to 𝑗 𝑓 (𝑑𝑘 , 𝑑 𝑗 )
=

𝑓 (𝑑𝑖 , 𝑑 𝑗 )∑𝑑 𝑗

𝑘=0
𝑓 (𝑘,𝑑 𝑗 )

> 0
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which only depends on 𝑑𝑖 and 𝑑 𝑗 . Finally, the efficiency holds since

𝑣 (𝑁 ) = 1. □

Again, take the solution of DARPA winning team as an exam-

ple. Consider the weighted permission Shapley value with 𝜔 (𝑖) =
max{1, 2𝑑𝑖−1}, and we have

𝜑
𝜔,𝑃
𝑖

=
2
𝑑𝑖−1

1 +∑𝑑 𝑗

𝑘=1
2
𝑘−1

=
2
𝑑𝑖−1

2
𝑑 𝑗

= 1/2𝑑 𝑗+1−𝑑𝑖

for all 𝑖 on the path from agent 1 to 𝑗 with 𝑖 > 1, 𝜑
𝜔,𝑃
1

= 1/2𝑑 𝑗
and

𝜑
𝜔,𝑃
𝑖

= 0 otherwise, which is equivalent to the solution of DARPA

winning team. Moreover, in this example, 𝜔 (𝑖) only depends on 𝑑𝑖 ,

so that we know the solution of DARPA winning team is diffusion

incentive compatible according to Theorem 3.7.

5 FROM FOREST TO DAG
In this section, we extend our result in the setting of forest to a

general DAG model. An instance of a cooperative game in a DAG

is shown in Example 5.1 below.

Example 5.1. Consider the case illustrated in Figure 3, where

I = {1, 2}. Agent 1 asks her friends 3 and 5, and 2 asks 4 and 5.

Then 3, 4 and 5 further ask their friends and so on. Suppose the

player 5 will join in if 2 invites her or 1 and 3 both invite her and

the player 7 will join in if 4 invites her or 5 and 6 both invite her.

Suppose the characteristic function 𝑣 is defined as for every 𝑆 ⊆ 𝑁 ,

𝑣 (𝑆) =


2 if 7 ∈ 𝑆 ;

1 if {1, 2} ∩ 𝑆 ≠ ∅, 7 ∉ 𝑆 ;

0 otherwise.

5

1

2

3

4

6

7

Figure 3: An example of a cooperative game in DAG. The
green nodes are initial players.

5.1 Permission Structure with Mixed Approach
Note that there is no existing approach of permission structure that

can handle the case in Example 5.1. Gilles et al. [4, 5] considered

the cases where each player has to get permissions either from all

or at least one of her superiors. Here we consider a more general

case where each player can get permission from a partial subset of

her superiors. A permission structure with mixed approach 𝜚 on 𝑁

is a pair (𝑃,Ψ) where 𝑃 is a mapping 𝑁 → 2
𝑁
. The mapping 𝑃 is

asymmetric, i.e., for any pair 𝑖 , 𝑗 ∈ 𝑁 , 𝑗 ∈ 𝑃 (𝑖) implies that 𝑖 ∉ 𝑃 ( 𝑗)
and 𝑗 is called a superior of 𝑖 . Define 𝑃−1 (𝑖) = { 𝑗 ∈ 𝑁 | 𝑖 ∈ 𝑃 ( 𝑗)}

as the set of 𝑖’s successors. Notice that 𝑃 (𝑖) = ∅ if 𝑖 ∈ I. For a
coalition 𝑆 ⊆ 𝑁 , the expression set 𝐿𝑆 is recursively defined as

(1) b𝑖 ∈ 𝐿𝑆 for any 𝑖 ∈ 𝑆 ;

(2) 𝑎 ∨ 𝑏 ∈ 𝐿𝑆 for any 𝑎, 𝑏 ∈ 𝐿𝑆 ;

(3) 𝑎 ∧ 𝑏 ∈ 𝐿𝑆 for any 𝑎, 𝑏 ∈ 𝐿𝑆 .

Given an expression𝜓 ∈ 𝐿𝑆 and a coalition 𝑇 ⊆ 𝑁 , the evaluation

𝜓 (𝑇 ) is the boolean result of 𝜓 when b𝑖 = 1 if 𝑖 ∈ 𝑇 and b𝑖 = 0

otherwise for all 𝑖 ∈ 𝑆 . Then the set Ψ = {𝜓𝑖 ∈ 𝐿𝑃 (𝑖) | 𝑖 ∈ 𝑁 }
consists of players’ satisfiable expressions, where𝜓𝑖 indicates how

her superiors hold the authority of permission: only when𝜓𝑖 (𝑇 ) is
true, 𝑖 can get the permission to create value in𝑇 . Specially, if 𝑖 ∈ I,
𝜓𝑖 is always true since 𝑖 does not need any others’ permission. For

instance, in Example 5.1,𝜓5 = b2 ∨ (b1 ∧ b3) and𝜓7 = b4 ∨ (b5 ∧ b6).
With the generalized permission structure, an autonomous coalition

now can be defined as follows.

Definition 5.2. A coalition 𝑆 ⊆ 𝑁 is autonomous in the permis-

sion structure 𝜚 = (𝑃,Ψ) if for all 𝑖 ∈ 𝑆 ,𝜓𝑖 (𝑆) = 1.

Denote the set of all autonomous coalitions in 𝜚 by 𝐴𝜚 . We can

observe several properties of 𝐴𝜚 as follows.

Lemma 5.3. Let 𝜚 be a permission structure on 𝑁 , then (i) ∅ ∈ 𝐴𝜚 ,
(ii) 𝑁 ∈ 𝐴𝜚 and (iii) for all 𝑆,𝑇 ∈ 𝐴𝜚 , 𝑆 ∪𝑇 ∈ 𝐴𝜚 .

Proof. (i) Since there is no 𝑖 ∈ ∅, then ∅ ∈ 𝐴𝜚 . (ii) for all𝜓 ∈ 𝐿𝑆 ,

𝑆 ⊆ 𝑁 ,𝜓 (𝑁 ) = 1 since all variables are true. Thus, 𝑁 ∈ 𝐴𝜚 . (iii) for

all 𝑖 ∈ 𝑆 ∪𝑇 , if 𝑖 ∈ 𝑆 , 𝜓𝑖 (𝑆) = 1 implies 𝜓𝑖 (𝑆 ∪𝑇 ) = 1 since more

variables get true; similarly for 𝑖 ∈ 𝑇 . Thus, 𝑆 ∪𝑇 ∈ 𝐴𝜚 . □

Then we can define the largest autonomous part of a coalition.

Definition 5.4. Let 𝜚 be a permission structure on 𝑁 . Then the

largest autonomous part of a coalition 𝑆 ⊆ 𝑁 is defined by

𝛼 (𝑆) =
⋃

{𝑇 | 𝑇 ⊆ 𝑆 and 𝑇 ∈ 𝐴𝜚 }.

Intuitively, 𝛼 (𝑆) is the largest autonomous sub-coalition of 𝑆 ,

which suggests that for any player 𝑖 ∈ 𝑆\𝛼 (𝑆), she cannot create
value in coalition 𝑆 . Similar to Section 3.2, we can map a character-

istic function 𝑣 to a projection 𝑣𝜚 on 𝜚 , where 𝑣𝜚 (𝑆) = 𝑣 (𝛼 (𝑆)), for
every coalition 𝑆 ⊆ 𝑁 .

5.2 Weighted Shapley Value on Permission
Structure

Now, we introduce weighted Shapley value with mixed permission

structure as a class of mechanisms for diffusion cooperative game

on DAGs.

Definition 5.5. For a cooperative game 𝑣 on the player set 𝑁 ,

given a permission structure 𝜚 and weights 𝜔 ∈ R |𝑁 |
+ , the weighted

permission Shapley value with mixed approach for a player 𝑖 ∈ 𝑁

is

𝜑
𝜔,𝜚

𝑖
(𝑣) = 𝜑𝜔𝑖 (𝑣𝜚 ) .

As an example, if we apply the weighted permission Shapley

value with mixed approach on the diffusion cooperative game in

Example 5.1 and letting 𝜔 = 1
|𝑁 |

, then the reward distributed to
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each player is
𝜑
𝜔,𝜚

1
= 11/15, 𝜑

𝜔,𝜚

2
= 2/3,

𝜑
𝜔,𝜚

3
= 𝜑

𝜔,𝜚

5
= 𝜑

𝜔,𝜚

6
= 𝜑

𝜔,𝜚

7
= 1/15,

𝜑
𝜔,𝜚

4
= 1/3.

Similar to themechanisms in a forest, we can conclude thatweighted

Shapley value with mixed approach is a desirable mechanism that

satisfies efficiency and diffusion incentive compatibility if theweight

function is selected properly.

Definition 5.6. A weight function 𝜔𝑖 is proper if it only depends

on 𝑑𝑖 as𝜔𝑖 = 𝑓 (𝑑𝑖 ), where 𝑑𝑖 is the distance of player 𝑖 to the initial
players I in the graph, i.e. the minimum distance between 𝑖 to one

of the initial players (min𝑗 ∈I {𝑑 𝑗𝑖 }) and 𝑓 : N→ R+ is monotone

non-decreasing.

Theorem 5.7. For the monotone diffusion cooperative game in
a DAG, if the reward distribution mechanism M is the weighted
permission Shapley value with mixed approach with a proper weight
function 𝜔𝑖 = 𝑓 (𝑑𝑖 ), then M is efficient and DIC.

Proof. The efficiency can be easily derived since for all \ ′ ∈ Θ,
𝑣𝜚 (𝐽I (𝐺 (\ ′))) = 𝑣 (𝐽I (𝐺 (\ ′))).

For the property of DIC, if we consider each player 𝑖 and edge

𝑒 = (𝑖, 𝑗) ∈ 𝐸, there are two cases that may happen if 𝑖 does not

invite 𝑗 given any possible report profile of others \ ′−𝑖 ∈ Θ−𝑖 .
(i) if 𝑗 cannot join the coalition, i.e., 𝑗 ∉ 𝐽I (𝐺 (\ ′)), then the

proof is similar to that of Theorem 3.7 that shows player 𝑖 will not

get more reward without inviting 𝑗 .

(ii) if 𝑗 still can join the coalition, i.e., 𝑗 ∈ 𝐽I (𝐺 (\ ′)), Let 𝑣𝜚 be

the projection game when 𝑖 invites 𝑗 and 𝑣𝜚
′
be the projection game

when 𝑖 does not invite 𝑗 . Suppose 𝑅 is an order in R(𝑁 ). Then we

have {
𝐶𝑖 (𝑣𝜚 , 𝑅) = 𝐶𝑖 (𝑣𝜚

′
, 𝑅) if 𝑖 comes before 𝑗 in 𝑅;

𝐶𝑖 (𝑣𝜚 , 𝑅) ≥ 𝐶𝑖 (𝑣𝜚
′
, 𝑅) if 𝑗 comes before 𝑖 in 𝑅.

The above (in)equalities hold because (1) if 𝑖 is at the position

before 𝑗 , the marginal contribution of 𝑖 is unchanged; (2) if 𝑖 is at

the position after 𝑗 , she cannot bring 𝑗 ’s contribution when she

does not invite 𝑗 . Note that 𝑑𝑘 will not change for any player 𝑘

with 𝑑𝑘 < 𝑑 𝑗 . Let 𝑑
′
𝑗
be the distance of player 𝑗 to initial players if 𝑖

does not invite 𝑗 and hence 𝑑 ′
𝑗
≥ 𝑑 𝑗 . Thus, (1) if 𝑑

′
𝑗
= 𝑑 𝑗 , then the

weights of all players will not change and so do the weights of the

orders, which can be computed from weights 𝜔 . Hence,

𝜑
𝜔,𝜚

𝑖
=

∑
𝑅∈R(𝑁 )

𝜔𝑅𝐶𝑖 (𝑣𝜚 , 𝑅) ≥
∑

𝑅∈R(𝑁 )
𝜔𝑅𝐶𝑖 (𝑣𝜚

′
, 𝑅) = 𝜑

𝜔,𝜚 ′

𝑖

where 𝜑
𝜔,𝜚

𝑖
is player 𝑖’s reward when she invites 𝑗 and 𝜑

𝜔,𝜚 ′

𝑖
is

player 𝑖’s reward when she does not invite 𝑗 . (2) if 𝑑 ′
𝑗
> 𝑑 𝑗 , then

𝑓 (𝑑 𝑗 ) ≤ 𝑓 (𝑑 ′
𝑗
) since 𝑓 is monotone non-decreasing. Let𝑅𝑖 𝑗 ∈ R(𝑁 )

be some order where 𝑖 comes before 𝑗 and 𝑅 𝑗𝑖 is the corresponding

order where 𝑖 and 𝑗 ’s positions are exchanged in 𝑅𝑖 𝑗 . We have

𝜔𝑅𝑗𝑖

𝜔𝑅𝑖 𝑗
≥

𝜔′
𝑅𝑗𝑖

𝜔′
𝑅𝑖 𝑗

(since 𝑅𝑖 𝑗 is more likely sampled than 𝑅 𝑗𝑖 with a

larger 𝜔 ( 𝑗)). Hence, we have

𝜑
𝜔,𝜚

𝑖
=

∑
𝑅𝑖 𝑗 ∈R(𝑁 )

[
𝜔𝑅𝑖 𝑗𝐶𝑖 (𝑣

𝜚 , 𝑅𝑖 𝑗 ) + 𝜔𝑅 𝑗𝑖
𝐶𝑖 (𝑣𝜚 , 𝑅 𝑗𝑖 )

]
≥

∑
𝑅𝑖 𝑗 ∈R(𝑁 )

[
𝜔 ′
𝑅𝑖 𝑗

𝐶𝑖 (𝑣𝜚
′
, 𝑅𝑖 𝑗 ) + 𝜔 ′

𝑅 𝑗𝑖
𝐶𝑖 (𝑣𝜚

′
, 𝑅 𝑗𝑖 )

]
= 𝜑

𝜔,𝜚 ′

𝑖
.

The inequality in the second line holds since 𝜔𝑅𝑖 𝑗 + 𝜔𝑅 𝑗𝑖
= 𝜔 ′

𝑅𝑖 𝑗
+

𝜔 ′
𝑅 𝑗𝑖

, 𝐶𝑖 (𝑣𝜚 , 𝑅𝑖 𝑗 ) ≥ 𝐶𝑖 (𝑣𝜚
′
, 𝑅 𝑗𝑖 ) and 𝐶𝑖 (𝑣𝜚 , 𝑅𝑖 𝑗 ) = 𝐶𝑖 (𝑣𝜚

′
, 𝑅𝑖 𝑗 ) (i.e.,

the larger term will obtain a larger factor). Therefore, in all cases 𝑖

will not invite fewer agents. As a result, M is DIC. □

Finally, it is worth to point out that the weighted permission

Shapley value that represents the solution of DARPA winning team

also has a monotone non-decreasing weight function 𝜔 . Hence, it

can be seen as a diffusion incentive compatible extension in
DAGs of DARPA winning team’s solution.

5.3 Applying on General Graphs
Finally, we discuss the possibility to apply our method on general

networks. One may observe that in some real scenarios, the DAG

we modelled is not necessarily the underlying social network. The

underlying network could be any undirect graph. We have mainly

focused on the DAG because in practice, a DAG could be the result

of players’ invitations associated with timestamp. Another reason

to use DAG is that it is intuitive and handy to define permissions,

which clearly specifies who permits/invites who.

In fact, our results can be extended to general undirected graphs.

The only difficulty here is to define the permission structure which

has many possible ways. We provide one feasible way to define

the permission structure in a general undirected graph. First, de-

fine the permission set 𝑃 (𝑖) of agent 𝑖 to be all her neighbors via

whom 𝑖 can reach one of the sources with a simple path (this

also works even if there are cycles), i.e., 𝑃 (𝑖) = { 𝑗 | (𝑖, 𝑗) ∈
𝐸 and there exists a simple path 𝑖 → 𝑗 → · · · → 𝑠 such that 𝑠 ∈
I}. Then, 𝑖 can get permissions from all, at least one, or a partial

subset of agents in 𝑃𝑖 as stated previously. Finally, it can be easily

checked that all the results in this section still hold.

6 CONCLUSION
In this paper, we formalized the problem of diffusion incentives

in cooperative games for the first time. We designed a family of

reward distribution mechanisms such that the players are incen-

tivized to invite their neighbours to join the coalition. The family

of the reward distribution mechanisms combines the idea of the

Shapley value with permission structure and weight system, which

for the first time theoretically explained the winning solution of

DARPA 2009 network challenge. We expect that our work will have

a broad application on social networks such as crowdsourcing and

question answering. One interesting future direction is to charac-

terize the necessary and sufficient conditions for diffusion incentive

compatibility.
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