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ABSTRACT
We investigate the mean dynamics of the soft-max policy gradient
algorithm in multi-agent normal-form games by resorting to evolu-
tionary game theory and dynamical system tools. First, we consider

the best-response problem analysis, where a single learner plays

against a fixed opponent in continuous time. For such dynamics, we

provide a complete characterization of the set of bad initializations
(points for which the dynamics initially move towards sub-optimal

strategies). Then, we resort to models based on single- and multi-

population games, showing that the dynamics preserve the volume

and, in arbitrary instances, it is impossible to obtain last-iterate

convergence when the equilibrium of the game is fully mixed. Fur-

thermore, we give empirical evidence that dynamics starting from

close initial points may expand over time, thus showing that the

behavior of the dynamics in games with fully-mixed equilibrium is

chaotic.
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1 LEARNING DYNAMICS AND POLICY
GRADIENT

Multi-Agent Reinforcement Learning (MARL) recently demonstrated

to be one of the most effective research fields in tackling complex

multi-agent settings and leading to major Artificial Intelligence (AI)
achievements, such as AlphaStar [19] and Libratus [1]. In MARL,

every agent learns how to play a strategic interaction situation

(a.k.a. strategic game) in a shared environment. In particular, ev-

ery agent acts in an unknown non-stationary Markov Decision

Problem, where the non-stationarity is due to the evolution of the
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opponents’ strategies over time. A plethora of MARL algorithms

is available in the literature. These algorithms usually provide the-

oretical guarantees only in restricted settings, i.e., every agent is

guaranteed to converge to the optimal solution when facing non-

learning opponents. Furthermore, some MARL algorithms also

present convergence guarantees in self-play under very restrictive

assumptions, e.g., Neural Fictitious Self Play [4] and Deep-CFR [2].

One of the mainstream approaches to study the learning dy-

namics of MARL algorithms, introduced by Börgers and Sarin

[3], leverages the formalism and tools of evolutionary game the-
ory [6, 11, 15, 16, 20] (EGT). This framework models the evolution

of a population of agents as a dynamical system specified by a set

of differential equations: the arguably most famous of such systems

give rise to the so-called Replicator Dynamics (RD). In the same way,

the continuous-time mean learning dynamics of an algorithm are

modeled through a dynamical system. Such a system can, in turn,

be studied in terms of specific properties, i.e., the convergence rate,
the set of stationary strategies, and asymptotic stability. These prop-

erties relate to different settings,i.e., best-response problem, single-

population games, and multi-population games, respectively. Inter-

estingly, most MARL algorithms, such as Q-learning [7, 8, 12, 18],

and a family of no-regret algorithms [10] have mean dynamics that

are slight variants of the RD, sharing the same properties.

The algorithm we focus on in this paper belongs to the class

of reinforcement learning techniques known as policy gradient

methods [13, 17]. These methods search directly for the best policy

in a constrained space where each policy is parameterized by a real-

valued vector. Our paper focuses on the Soft-max Policy Gradient

(SPG) algorithm, the most commonly adopted variant of policy gra-

dient. In particular, we consider the evolutionary dynamics of SPG

in the setting of normal-form games with linear reward functions.

The SPG dynamics (shortly SPGD from here on) present a different

structure not corresponding to any known evolutionary dynamics

(see the work by Sandholm [16] for a detailed discussion of the main

known dynamics), in contrast to the dynamics mentioned above

of other classical RL algorithms. However, we draw an essential

parallel between SPGD and RD: namely, SPGD correspond to RD

on a game with non-linear payoffs. Even if this correspondence

does not allow us to use already known results, it helps guide the

analysis in many ways.
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2 SINGLE-AGENT LEARNING ANALYSIS
This section considers the setting in which an agent maximizes her

utility while the opponents’ joint strategy is fixed over time.

Let x(𝑡) ∈ Δ𝑚 be the mixed strategy of the learning agent, i.e., a
point in the simplex of probability distributions over a finite space

of𝑚 actions, and let the strategy of the opponent be y(𝑡) = y. The
expected reward of the first agent is 𝐽 (𝑡) := x(𝑡)⊤𝐴 y, where 𝐴 is

a real-valued matrix. We restrict ourselves to the non-degenerate

case in which there is a unique, and thus pure, best response ē𝑗 .
First, we show that SPGD converge to the best response, providing

an upper bound to the convergence rate. Formally, we have:

Theorem 2.1. Let 𝑉 (𝑡) be defined as 𝑉 (𝑡) := 𝐽 ∗ − 𝐽 (𝑡), where 𝐽 ∗
is the value of the best response. If x(𝑡) evolves according to SPGD, it
holds (for a suitable constant 𝐶0 ∈ R+) that:

𝑉 (𝑡) ≤ 1

𝜂

(
𝑚−𝜉
𝑚+𝜉

)
2

𝑡 +𝐶0

, (1)

where 𝜉 is the optimality gap between the best response ē𝑗 and the

second best response, i.e., 𝜉 := ē⊤
𝑗
𝐴 y−max

𝑘≠𝑗

{
ē⊤
𝑘
𝐴 y

}
.

The idea behind the proof of Theorem 2.1 is to show that the

dynamics leave in finite time a certain set of bad initialization

points, such that the dynamics starting from them are initially

more attracted towards a sub-optimal action rather than by the best

response. We then show that, outside of this region, the dynamics

monotonically converge to the best response. In the following the-

orem, we characterize precisely this set of points, which does not

exist for RD and RD-like dynamics.

Theorem 2.2. Let ē𝑗 be the (unique) pure best response. If x(𝑡)
evolves according to SPGD, at every point in time, there is at least one
𝑘 ≠ 𝑗 such that the ratio between 𝑥 𝑗 (𝑡) and 𝑥𝑘 (𝑡) increases over time.
Moreover, if𝑚 > 2, there exists a non-empty subspace of the simplex
of mixed strategies E such that, if x(𝑡) ∈ E, the dynamics is attracted
towards a sub-optimal action. Moreover the center of the simplex Δ𝑚

is always outside E. The set E is defined as:

E :=
⋃
𝒃∈B

{
w ∈ Δ𝑚 |w = 𝛼 𝒃 + (1 − 𝛼) ē𝑗 , 1 > 𝛼 > 𝔅(𝒃)

}
,

where the set B ⊂ Δ𝑚 is the set of x such that 𝑥 𝑗 = 0, and 𝔅(𝒃) ∈
[0, 1] is a well-defined quantity for each 𝒃 ∈ B.

The theorem shows that, while SPG has sound theoretical guaran-

tees when learning the best response, the non-monotonic behavior

of the dynamics starting from E can make the convergence slow in

practice. An adversarial opponent could exploit this fact in specific

settings. On the other hand, the theorem shows that the uniform

initialization is always outside the bad initialization region.

3 MULTI-AGENT LEARNING ANALYSIS
This section studies the case in which all the agents simultaneously

learn. To the best of our knowledge, this is the first work to theoret-

ically study the behavior of the SPG algorithm in multi-agent envi-

ronments. For this study, we adopt an evolutionary game-theoretic

perspective: the strategy of one learning agent is treated as a pop-
ulation of individuals evolving according to the equations of the
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Figure 1: (a) Diameter evolution. (b) SPGD trajectories, start-
ing points x(𝑡0) ∈ 𝑆 (𝑡0) in blue, end points x(𝑇 ) ∈ 𝑆 (𝑇 ) in red.

dynamics. As commonly done in evolutionary game theory, we in-

vestigate separately the single-population, a.k.a. self-play, case and
themultiple-population one, in which different independently learn-

ing agents co-evolve. In the single-population setting, we prove that,

in terms of asymptotic convergence in the interior of the strategy

space, the two dynamics present similar, desirable properties. In

particular, we show that the spaces of asymptotically stable states

in the interior of the simplex of RD and SPGD coincide. We tackle

the multiple-population case in a two-population case. We cast the

SPGD as RD on a game with non-linear payoffs and, in particular,

a differentiable game. Let us denote with G the original game and

P the derived differentiable one. We show:

Theorem 3.1. Let NE(G) be the set of Nash equilibria of G and
NE(P) the set of Nash equilibria of P. Then it holds:

NE(G) ∩ {int(Δ𝑚) × int(Δ𝑚)} = NE(P) ∩ {int(Δ𝑚) × int(Δ𝑚)}.
The theorem states that the equilibria in the interior of the sim-

plex coincide. However, at the simplex borders, we may experience

an increased instability of the dynamics near pure strategies. Fi-

nally, we give a negative result regarding the convergence of SPGD:

Theorem 3.2. No closed set in int(Δ𝑚 × Δ𝑚) is asymptotically
stable for the SPGD.

Similar to what is proposed for RD [14, Proposition 6], the proof

exploits the fact that SPGD preserve volume in a reparametrized

space. Therefore, while convergence to an interior equilibrium is

impossible, the dynamics are Poincaré recurrent or convergent to

the border of the actions’ simplex. Finally, we provide empirical

evidence (Fig. 1) that the dynamics are chaotic. More precisely, we

show that the diameter 𝑑 (𝑆 (𝑡0)) of a set of close initial points 𝑆 (𝑡0)
increases over time (Fig. 1a), and a small deviation from a starting

point results in a large deviation in the ending point (Fig. 1b).

4 CONCLUSIONS
Our analysis paves the way to further evolutionary game the-

ory studies of policy-gradient-based algorithms (including, e.g.,
NeuRD [5]) when the policy space is restricted to assess the impact

of special policy space structures on the evolutionary dynamics.

A natural future direction is to analyze the dynamics of SPGD in

multi-agent games with multiple states, such as Extensive-Form

Games. Another interesting direction is to analyze, under the EGT

lenses, other flavors of policy-gradients, such as Natural Policy Gra-

dient [9]. Finally, it is an interesting line of research the study of the

behavior of RD on general non-convex payoff functions, which may

lead to even deeper insights on the behavior of SPGD by exploiting

the same connection we drew between these two dynamics.
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