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ABSTRACT
This works deals with an apportionment problem recently intro-
duced in [9]. In this problem involvingmultiple agents, it is desirable
to propose fair and efficient solutions. Several alternative notions
of fairness exist but combining efficiency with fairness is often
impossible, and a trade-off has to be made. We first study the com-
putation of almost fair and approximately efficient solutions, and
we determine when these two goals can be met. Afterwards, we
characterize the price of fairness which bounds the loss of efficiency
caused by imposing fairness or one of its relaxations.
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1 INTRODUCTION
The present work deals with budget apportionment, a problem
which falls into the social choice area that has received considerable
attention from the AI community [6, 19, 22]. Suppose that 𝑛 agents
share a common budget 𝐵. Every agent submits some demands
whose acceptance consumes indivisible portions of the budget.
For example, two people named Alice and Bob share a budget of
100, and their demands are {15, 41} and {37, 85}, respectively. A
solution is to accept a selection of demands whose total sum does
not exceed the budget. Every demand is either accepted or rejected,
but fractional decisions are not allowed. We assume that the utility
of an agent is equal to the sum of her accorded demands.

Recently introduced in [9], budget apportionment models
several real-life situations. For example, some people may want to
store digital files on a shared memory space (see for example [12]
for a similar problem). The budget is the capacity of the memory,
and each demand corresponds to a file. The model also applies to big
organizations who have to decide which projects of their members
should be funded [15].

When allocating resources to a group of agents, two goals are typ-
ically pursued: try being fair among the agents and avoid resource
wasting [4, 16]. Fairness and efficiency are known to be conflicting
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objectives [5]. This article explores the possible trade-offs for the
budget apportionment problem.

Three fundamental notions of fairness are considered: max-min
[2, 3], proportionality [23], and envy-freeness [11, 24]. These con-
cepts are borrowed from the fair allocation of indivisible goods
and adapted to budget apportionment. In particular, since envy-
freeness does not suit well with the budget problem (an agent can
only benefit from her own demands), we resort to a close notion
named jealousy-freeness [13]. Existing relaxations of proportionality
[1, 19] and envy-freeness [8, 17] ask to satisfy the criterion up to
one/any good. Similar relaxations up to one/any demand will be
used for the fairness criteria of budget apportionment. Regarding
efficiency, our primary criterion corresponds to the maximization
of the utilitarian social welfare. Our second efficiency criterion is
Pareto optimality.

2 BUDGET APPORTIONMENT
In budget apportionment, a set 𝑁 of 𝑛 agents shares a com-
mon budget 𝐵 ∈ N. Each agent 𝑗 ∈ 𝑁 has a demand set 𝐷 𝑗 =

{𝑑 𝑗1 , . . . , 𝑑
𝑗

𝑚 𝑗 } where 𝑑
𝑗
𝑖
∈ N is upper bounded by 𝐵. We suppose

that
∑
𝑖 𝑑

𝑗
𝑖
> 𝐵/𝑛 holds for all 𝑗 ∈ 𝑁 , otherwise we could accept all

the demands of 𝑗 , and remove 𝑗 from the instance along with her
demands. A feasible solution 𝑆 = (𝑆1, . . . , 𝑆𝑛) is a tuple verifying
𝑆 𝑗 ⊆ 𝐷 𝑗 , ∀𝑗 ∈ 𝑁 , and budget constraint

∑
𝑗 ∈𝑁

∑
𝑑∈𝑆 𝑗 𝑑 ≤ 𝐵.

For a solution 𝑆 = (𝑆1, . . . , 𝑆𝑛), the value of 𝑆 𝑗 is 𝑠 𝑗 := ∑
𝑑∈𝑆 𝑗 𝑑 ,

and the value of 𝑆 is defined by
∑

𝑗 ∈𝑁 𝑠 𝑗 . The utility of agent 𝑗 for
𝑆 is 𝑠 𝑗 , corresponding to the proportion of the common budget that
is dedicated to her accepted demands.

3 COMBINING FAIRNESS AND EFFICIENCY
In this section we define fairness and efficiency criteria, and study
how they can be combined.
Fairness criteria and relaxations. Solution 𝑆 is:

• max-min if no solution 𝑇 satisfies min𝑗 ∈𝑁 𝑡 𝑗 > min𝑗 ∈𝑁 𝑠 𝑗 ;
• Proportional (PROP), if each agent’s utility is at least 𝐵/𝑛;
• Proportional up to one demand (PROP1) (resp., proportional

up to any demand (PROPX)) if for all 𝑗 ∈ 𝑁 , either 𝐷 𝑗 = 𝑆 𝑗 or
𝑠 𝑗 +𝑑 ≥ 𝐵/𝑛 holds for some 𝑑 ∈ 𝐷 𝑗 \𝑆 𝑗 (resp., for any 𝑑 ∈ 𝐷 𝑗 \𝑆 𝑗 );

• Jealousy-free (JF) if 𝑠 𝑗 ≥ 𝑠𝑖 holds for any pair (𝑖, 𝑗) ∈ 𝑁 ;
• Jealousy-free up to one demand (JF1) (resp., JFX) if for any

pair of agents (𝑖, 𝑗) ∈ 𝑁 such that 𝑠 𝑗 < 𝑠𝑖 , 𝑠 𝑗 ≥ 𝑠𝑖 − 𝑑 holds for at
least one 𝑑 ∈ 𝑆𝑖 (resp., for all 𝑑 ∈ 𝑆𝑖 );
Efficiency criteria. Solution 𝑆 is:

• Utilitarian optimal (UO) if no solution 𝑇 satisfies
∑

𝑗 ∈𝑁 𝑡 𝑗 >∑
𝑗 ∈𝑁 𝑠 𝑗 ;
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Figure 1: Implications between the criteria.

• Pareto optimal (PO) if we cannot strictly increase the utility of
an agent, without decreasing the utility of another one.

The above criteria are logically connected and Figure 1 summa-
rizes our results on the implication between the different notions.
An implication 𝐴 ⇒ 𝐵 between criteria means that if a solution
satisfies𝐴 for a given instance, then the same solution also satisfies
𝐵 for the same instance. PROP is central but it is shaded on the
picture because, as opposed to the other criteria, the existence of a
PROP solution is not guaranteed (see the example with Alice and
Bob in the introduction).

Every instance of budget apportionment admits a PROPX
solution and we proposed a polynomial algorithm to build such a
solution. A JF (and thus JF1 and JFX) solution always exists: 𝑆 𝑗 = ∅
for all 𝑗 . The construction of a max-min (resp., PO) solution is
NP-hard but we have shown that one can always compute an 𝜀-
approximation1 of a max-min (resp., PO) solution, for all 𝜀 > 0.

Now, given a notion of fairness and an efficiency criterion, we
are interested in knowing whether every instance of budget ap-
portionment admits a feasible solution that is fair and efficient at
the same time. The situation is summarized in Table 1.

max-min PROP PROPX JF1
UO ✗ ✗ ✗ ✗

PO ✓ ✗ ✓ ✗

Table 1: Guaranteed existence (✓) or not (✗) of a solution
combining a notion of efficiency and a concept of fairness.

The good news is that whatever the instance, PO can always be
combined with max-min or PROPX. From a computational point
of view, this cannot be done in polynomial time (unless P=NP) but
an approximation can be computed in polynomial time. Indeed, a
solution that is an 𝜀-approximation of a PO solution and PROPX at
the same time can be computed in time polynomial in 𝑛 and 1

𝜀 . The
bad news is that UO cannot be combined with the given fairness
criteria. However, we shall see in the next section how close to UO
a fair solution can be.

4 PRICE OF FAIRNESS
One can be interested in the existence of fair solutions that offer
an approximation of the maximum utilitarian social welfare. This
question is known as the price of fairness (PoF in short) [7]. Given
an instance 𝐼 and a fairness concept, the PoF of 𝐼 is the ratio be-
tween the maximum utilitarian social welfare achieved by a feasible
solution and the largest utilitarian social welfare of a fair solution.
The PoF of a problem is the largest value taken by the previous
1𝑇 is an 𝜀-approximation of 𝑆 if 𝑠 𝑗 ≤ (1 + 𝜀)𝑡 𝑗 holds for all 𝑗 ∈ 𝑁 .

max-min PROP PROPX PROP1 JF JFX or JF1
∞ 1 ∞ 𝑛 ∞ 2
𝑛+1
𝑛 1 𝑛+1

𝑛
𝑛+1
𝑛 ∞ 𝑛+1

𝑛

Table 2: The PoF for several fairness concepts (first/second
line: unrestricted/moderate demands). “∞” means un-
bounded. Grey highlighting boxes indicate that a solution
with the corresponding PoF can be built in polynomial time.

ratio over all instances. The PoF is a measure of adequacy between
a fairness concept and efficiency; the lower the better.

The results of this section, summarized in Table 2, deal with
budget apportionmentwith 𝑛 ≥ 2 agents. The first line of Table 2
gives the PoF when no specific assumption is made on the demands
(every demand can be as big as the entire budget 𝐵). The second line
covers the case where every demand is at most 𝐵/𝑛. The motivation
for this second scenario comes from the fact that the PoF is often
due to extreme instances where the agents have demands of the
order of the whole budget. Therefore, it is relevant to study a more
likely setting where the demands cannot be too large (here 𝐵/𝑛 is
the fair share of every agent).

Note that when every demand is at most𝐵/𝑛, the PoF ofmax-min,
PROPX, PROP1, JFX and JF1 is 𝑛+1

𝑛 , which is significantly smaller
than in the general case. Therefore, even though the existence of an
efficient and fair solution is not always guaranteed, there always
exists a fair solution that is close to the optimal utilitarian social
welfare when every single demand is moderate.

5 CONCLUSION
The central notion of proportionality is a kind of holy grail which,
unfortunately, cannot be reached for every instance. However, there
are two cases where fairness and efficiency can always be combined:
max-min with PO, and PROPX with PO. Even though computing
such solutions can be computationally hard, we can still compute 𝜀-
approximations of these solutions in polynomial time. Concerning
jealousy-freeness, even if we take its weakest relaxation JF1, one
cannot guarantee the existence of an efficient and fair solution for
every instance. Though JF1 and JFX cannot always be combined
with efficiency, we have shown that their PoF is low (namely, 2). In
contrast, relaxations of proportionality can be combinedwith Pareto
optimality but their PoF can be high (namely, 𝑛 or unbounded).

An alternative way to balance fairness and efficiency is to max-
imize the product of the agents’ utilities [8, 10]. This objective,
also known as the Nash product [14, 20], is reputed to offer a good
compromise between fairness and efficiency [16, 18, 21]. Therefore,
it would be interesting to study the Nash product of budget ap-
portionment in the future. Since this problem is clearly NP-hard,
providing an approximation algorithm with a good performance
guarantee would be a valuable complement to the present work.

Finally, a natural generalization of budget apportionment is
when every demand has a size and a profit, and these quantities are
not necessarily equal. It would be interesting to extend the results
of the present work to this setting.
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