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ABSTRACT
Evacuation plans are designed to move people to safety in case
of a disaster. It mainly consists of two components: routing and
scheduling. Joint optimization of these two components with the
goal of minimizing total evacuation time is a computationally hard
problem, specifically when the problem instance is large. More-
over, often in disaster situations, there is uncertainty regarding the
passability of roads throughout the evacuation time period. In this
paper, we present a way to model the time-varying risk associated
with roads in disaster situations. We also design a heuristic method
based on the well known Large Neighborhood Search framework
to perform the joint optimization task. We use real-world road net-
work and population data from Harris County in Houston, Texas
and apply our heuristic to find evacuation routes and schedules for
the area. We show that the proposed method is able to find good
solutions within a reasonable amount of time. We also perform
agent-based simulations of the evacuation using these solutions to
evaluate their quality and efficacy.
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1 OVERVIEW
Evacuation plans are essential to ensure the safety of people living
in areas that are prone to potential disasters such as floods, hurri-
canes, tsunamis, and wildfires. Large scale evacuations have been
carried out during the past hurricane seasons. For instance, before
the landfall of Hurricane Rita (2005), about 2.5 million individuals
were evacuated from the coastal areas of Texas [3]. At such a scale,
it is essential to have an evacuation plan to ensure that people can
evacuate in a safe and orderly manner. A plan consists of two com-
ponents: (𝑖) Evacuation Routes, which are paths that the evacuees
will follow to reach safety, and an (𝑖𝑖) Evacuation Schedule which
dictates when people should leave from different regions. The goal
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is to minimize the average evacuation time. Jointly optimizing over
the routes and schedule is a computationally intractable problem
and thus finding optimal evacuation routes for a large fraction of
the population in a city becomes especially challenging. Further-
more, the availability of all road segments throughout the entire
evacuation time period is not guaranteed. For instance, before a
hurricane makes a landfall, roads in low lying areas can become
flooded due to heavy rainfall.

Our contributions in this paper are as follows: First, we present
a heuristic method, designed based on the Large Neighborhood
Search framework [8, 9], to perform joint optimization over evac-
uation routes and schedule. We model the evacuation planning
problem as a Mixed Integer Program (MIP) and use the heuristic
method to solve this MIP. Second, we choose Harris county in
Houston, Texas, with a population of ∼ 1.5 million and a history
of major hurricanes, as our study area and propose an evacuation
plan for it. We use real-world road network data from HERE [6]
and population data generated by Adiga et al. [1] to construct a
realistic problem instance. We show that our method can find good
solutions in a reasonable time. We also validate the efficacy of the
solution by simulating evacuations in the study area using our
agent-based discrete event queuing simulation system (QueST) [7].
Third, we propose a way to model the time varying risk associated
with each road during evacuation. Finally, we define individual
utility for each evacuee that represents how good an evacuation
plan is for the evacuee, and a social utility to quantify the quality of
an evacuation plan. We then perform experiments to observe how
these values are affected by failure of edges during evacuation.

2 PROBLEM FORMULATION
For the joint optimization problem, we have the following as input:
(𝑖) A directed graph G = (N ,A) representing a road network. Here,
N denotes the set of vertices,A denotes the set of edges. Each edge
has a constant travel time and a flow capacity. (𝑖𝑖) A set of source
nodes E ⊂ N and the number of evacuees at each of these nodes.
(𝑖𝑖𝑖) A set of safe nodes S ⊂ N .

The goal is to find: (𝑖) A set of convergent routes, one route from
each source node to one of the safe nodes. A route is a sequence
of edges where no edge is repeated. ‘Convergent’ means evacuees
coming to the same intersection follow the same path afterwards.
(𝑖𝑖) A schedule for evacuation, i.e., when should evacuees leave
from their source nodes. Evacuees are not allowed to stay/wait in
transit nodes (nodes that are not source or safe nodes).

The objective is to minimize the total evacuation time, which is
equivalent to minimizing the average evacuation time.
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Figure 1: Sample Network. Edges are labeled with their
travel time and flow capacity respectively. The number under
square nodes denote number of evacuees.

A sample road network is shown in Figure 1. Here, we have
three types of vertices: sources (squares), safe nodes (triangles), and
transit nodes (circles). Their respective sets are denoted by E, S,
and T ( N = E ∪ T ∪ S).

min
∑︁

𝑒∈𝛿− (𝑣𝑡 )
𝜙𝑒 ∗ 𝑡𝑠 (𝑒) (1)

𝑠 .𝑡 .
∑︁

𝑒∈𝛿+ (𝑘)
𝑥𝑒 = 1 ∀𝑘 ∈ E (2)∑︁

𝑒∈𝛿+ (𝑖)
𝑥𝑒 ≤ 1 𝑖 ∈ T (3)

𝜙𝑒 (𝑣𝑠 ,𝑢0) = 𝑤 (𝑢) ∀𝑢 ∈ E (4)∑︁
𝑒∈𝛿− (𝑖)

𝜙𝑒 =
∑︁

𝑒∈𝛿+ (𝑖)
𝜙𝑒 ∀𝑖 ∈ N𝑥 \ {𝑣𝑠 , 𝑣𝑡 } (5)

𝜙𝑒′ ≤ 𝑥𝑒 ∗ 𝑐𝑒 ∀𝑒 ∈ A, 𝑒 ′ ∈ 𝑒𝑥 (6)
𝜙𝑒 ≥ 0 ∀𝑒 ∈ A𝑥 (7)
𝑥𝑒 ∈ {0, 1} ∀𝑒 ∈ A (8)

Following Hasan and Hentenryck [5], we use a time expanded
graph (Appendix A), denoted byG𝑥 = (N𝑥 = E𝑥∪T𝑥∪S𝑥 ,A𝑥 ), to
capture the flow of evacuees over time and formulate the evacuation
planning problem as an MIP given by (1–8). Here, we have two
types of variables: (𝑖) binary variable 𝑥𝑒 , which is equal to one if
and only if the edge 𝑒 ∈ A is used for evacuation; otherwise it
will be zero. (𝑖𝑖) continuous variable 𝜙𝑒 , which denotes the flow
of evacuees on edge 𝑒 ∈ A𝑥 . The objective (1) is to minimize the
total (i.e. sum) evacuation time; here 𝑣𝑡 denotes a super sink node
that connects all safe nodes, and 𝑡𝑠 (𝑒) denotes the arrival time at
this node. Constraint (2) ensures that there is exactly one outgoing
edge from each source node, and constraint (3) ensures that the
routes are convergent. Constraint (4) sets the initial flow from
each source node to the number of evacuees (𝑤 (𝑢)) at those nodes.
Constraint (5) and (6) corresponds to the flow conservation and the
flow capacity constraint respectively.

3 HEURISTIC OPTIMIZATION
Solving the model (1-8) is computationally expensive. In fact, the
problem of minimizing the evacuation completion time, with the
constraints (2-8), is hard to approximate too [4]. For this reason, we
present a heuristic optimization method, to find good solutions in
a reasonable amount of time.

First, we calculate an initial feasible solution by taking the short-
est path from each source node to the nearest safe node (by road)
and determine the minimum time required to evacuate everyone
using these paths. The latter is used to set the time horizon. We

Algorithm 1: Heuristic Method for Optimizing model (1-8)
Input: Initial solution: sol, Time Horizon: 𝑇 , Percentage of

routes to update: 𝑝 , Number of Iterations: 𝑛
Output: Solution of the model (1-8)

1 for 1 to n do
2 Select (100-p)% of the source locations uniformly at

random. Let their set be 𝑆
3 Fix the routes from the source locations in 𝑆 , by setting

𝑥𝑒 = 1 if 𝑒 is on any of the routes from 𝑆 in sol
4 sol← Solution of optimized model (1-8)
5 𝑇 ′← evacuation completion time for solution sol
6 if 𝑇 −𝑇 ′ > +𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
7 Update the model (1-8) by setting the time horizon to

𝑇 ′. Prune the Time Expanded Graph by removing
8 (𝑖) nodes that are unreachable from the evacuation

nodes within time horizon 𝑇 ′, and
9 (𝑖𝑖) nodes from which none of the safe nodes can be

reached within time horizon 𝑇 ′
10 Increase 𝑝
11 return sol

then apply Algorithm 1 to optimize the model (1-8). It runs for 𝑛
iterations, in each iteration we randomly select some source loca-
tions (line 2) and keep the routes from these sources fixed. We then
optimize the model over the rest of the routes and the schedule.
If we find a better solution, with an evacuation completion time
smaller than the current time horizon, then we also apply pruning
strategies (lines 7-9) to reduce the size of the model.

Using our method, we calculate an evacuation plan for our study
area. The road network for this area consists of 1338 nodes and 1751
edges. We have 374 sources and 8 safe nodes. The execution of our
algorithm takes ∼ 3.5 hours and returns a solution that evacuates
∼ 1.5 million evacuees in ∼ 8 hours. We validate our results by
simulating the evacuation using QueST [7] (Appendix B).

4 TIME VARYING RISK MODEL AND
INDIVIDUAL VS SOCIAL UTILITY

We extend the damage model proposed by Agarwal et al. [2] by
considering the time varying aspect of risk during disasters. We
calculate a failure probability for each road at each timestep (Ap-
pendix C) based on the following assumption: probability of a road
becoming damaged increases as we temporally get closer to the
time of disaster, and it is maximum at the time of the disaster.

Due to the failure of edges, different scenarios may arise during
evacuation. To understand how it affects the evacuees and the
efficacy of an evacuation plan, we define: (𝑖) individual utility of an
evacuee in a given scenario when following a given evacuation plan,
and (𝑖𝑖) social utility of an evacuation plan in a given scenario. In
our experiments, we generated five thousand scenarios in the study
area using our risk model. Results show that our evacuation plan
achieves good social utility, compared to the best utility achievable,
in most of the scenarios (Appendix D).
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