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ABSTRACT
The past few years have seen a surge of work on fairness in allo-
cation problems where items must be fairly divided among agents
having individual preferences. In comparison, fairness in matching
settings with preferences on both sides, that is, where agents have
to be matched to other agents, has received much less attention.
Moreover, the two-sided matching literature has largely focused
on ordinal preferences. We study leximin optimality over stable
many-to-one matchings under cardinal preferences. We first inves-
tigate matching problems with ranked valuations for which we give
efficient algorithms to find the leximin optimal matching over the
space of stable matchings. We complement these results by showing
that relaxing the ranked valuations condition in any way, makes
finding the leximin optimal stable matching intractable.
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1 INTRODUCTION
In the past decade, the computational problem of achieving fairness
has been receiving intense attention [1, 2, 8, 9, 11, 12, 22]. Several
fairness notions have been studied for fair allocation problems.
These have been mostly unexplored for two-sided (bipartite) match-
ing problems [3, 10, 15, 17, 18, 21, 23–25], with the exception of
some very recent work [6, 13, 16]. Also, the two-sided matching
literature has largely assumed ordinal preferences. This paper initi-
ates the study of achieving fairness in stable, two-sided matchings
under cardinal valuations. We are motivated by several real-world
situations to explore leximin optimality as the notion of fairness
and focus on stable many-to-one matchings. We derive several
novel algorithmic and complexity results for various special cases
of many-to-one matchings. We use the setting of college admissions
to capture a general many-to-one matching setting.

In this paper, we seek to find a leximin optimal stable many-to-
one matching with cardinal valuations. Previous work has studied
leximin for fair allocation [4, 5, 11, 14, 22] and for the special case
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of dichotomous valuations [7, 19]. Table 1 summarises our contribu-
tions. Here,𝑚 and 𝑛 are the number of colleges and students. Strict
preferences mean that no agent is indifferent about any agent on
the other side (each agent’s valuations imply a strict linear order
over agents on the other side). Weak preferences allow agents to
be indifferent between two agents (their valuations imply a partial
order on the agents on the other side). Ranked valuations imply
that each agent has the same preference ordering over the other
side. Isometric valuations imply that the value a student has for a
college is the same as the value that the college has for that student.
The complete proofs of all results can be found in the full version
of the paper [20].

Nature of Valuations Strict Preferences Weak Preferences
General NP-Hard (Thm 4) APX-Hard (Thm 5)
Ranked Valuations 𝑂 (𝑚2𝑛2) (Thm 2) APX-Hard (Thm 5)
Ranked + Isometric 𝑂 (𝑚𝑛) (Thm 1) NP-Hard (Thm 3)

Table 1: Summary of Results

2 PRELIMINARIES AND NOTATIONS
Let S = {𝑠1, . . . , 𝑠𝑛} and C = {𝑐1, . . . , 𝑐𝑚} be the non-empty, fi-
nite, and ordered sets of students and colleges, respectively. We
assume that there are at least as many students as colleges , that
is, 𝑛 ≥ 𝑚. We shall assume that each college can be matched to as
many students at a time as needed. Let 𝑢𝑖 (·) and 𝑣 𝑗 (·) be the valua-
tion functions of student 𝑠𝑖 , and college 𝑐 𝑗 , 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑚]. This
paper studies only non-negative and additive (for colleges) valua-
tion functions. We define 𝑈 = (𝑢1, · · · , 𝑢𝑛) and 𝑉 = (𝑣1, · · · , 𝑣𝑚).
Hence, an instance of stable many-to-one matchings (SMO) is cap-
tured by the tuple 𝐼 = ⟨S, C,𝑈 , 𝑉 ⟩. Rankings or ranked valuations
imply that 𝑢𝑖 (𝑐1) > 𝑢𝑖 (𝑐2) > · · · > 𝑢𝑖 (𝑐𝑚) for all 𝑖 ∈ [𝑛] and
𝑣 𝑗 (𝑠1) > 𝑣 𝑗 (𝑠2) > · · · > 𝑣 𝑗 (𝑠𝑛) for all 𝑗 ∈ [𝑚]. Weak rankings shall
mean that the > relations are replaced by ≥.

We also look at isometric valuations; the details are deferred to
the full version of our paper [20]. Our goal is to find a many-to-one
matching 𝜇 of the bipartite graph 𝐺 = (S, C,S × C) such that 𝜇
satisfies stability as well as fairness properties. A (many-to-one)
matching 𝜇 ⊆ S × C is such that each student has at most one
incident edge present in the matching. We shall use 𝜇 (𝑎) to denote
the set of agents matched to 𝑎 ∈ S ∪ C under 𝜇. The valuation of a
student 𝑠𝑖 under 𝜇 𝑢𝑖 (𝜇) = 𝑢𝑖 (𝜇 (𝑠𝑖 )). For a college 𝑐 𝑗 the valuation
under𝜇 is 𝑣 𝑗 (𝜇) =

∑
𝑠𝑖 ∈𝜇 (𝑐 𝑗 ) 𝑣 𝑗 (𝑠𝑖 ) ≥ 0.

Definition 1 (Blocking Pair). Given a matching 𝜇, (𝑠𝑖 , 𝑐 𝑗 ) are called
a blocking pair if 𝑠𝑖 ∉ 𝜇 (𝑐 𝑗 ) and there exists 𝑠𝑖′ ∈ 𝜇 (𝑐 𝑗 ), 𝑐 𝑗 ′ = 𝜇 (𝑠𝑖 )
such that 𝑣 𝑗 (𝑠𝑖 ) > 𝑣 𝑗 (𝑠𝑖′) and 𝑢𝑖 (𝑐 𝑗 ) > 𝑢𝑖 (𝑐 𝑗 ′).
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Definition 2 (Stable Matching). A matching 𝜇 of instance 𝐼 =

⟨S, C,𝑉 ⟩ is said to be stable if no (𝑠𝑖 , 𝑐 𝑗 ) is a blocking pair for 𝜇.
Our work aims to find the leximin optimal matching over the space
of stable matchings. The leximin tuple of any matching is simply
the tuple containing the valuations of all the agents (students and
colleges ) under thismatching, listed in non-decreasing order. Hence,
the position of an agent’s valuation in the leximin tuple may change
under different matchings. The leximin tuple of a matching 𝜇 will
be denoted by L𝜇 . The 𝑡 th index of L𝜇 is denoted by L𝜇 [𝑡].
Definition 3 (Leximin Domination). We say that matching 𝜇1
leximin dominates 𝜇2 if there exists a valid index 𝑘 such that
L𝜇1 [𝑘 ′] = L𝜇2 [𝑘 ′] for all 𝑘 ′ < 𝑘 and L𝜇1 [𝑘] > L𝜇2 [𝑘].
Definition 4 (Leximin Optimal Matching). A leximin optimal
matching 𝜇∗ is one that is not leximin dominated by any other
matching.

3 MAIN RESULTS
Finding a leximin optimal matching is intractable in general, so we
first look at ranked valuations, where the space of stable matchings
has an appealing structure that we exploit.

Lemma 1. Given an instance of ranked valuations, a matching 𝜇

is stable, if and only if, for all 𝑗 ∈ [𝑚], 𝜇 (𝑐 𝑗 ) = {𝑠𝑤𝑗+1, · · · , 𝑠𝑤𝑗+𝑘 𝑗
}

where 𝑘 𝑗 = |𝜇 (𝑐 𝑗 ) | and𝑤 𝑗 =
∑𝑗−1
𝑡=1 𝑘𝑡 .

Lemma 1 ensures that a stable solution for a ranked instance
would necessarily match a contiguous set of students to each 𝑐 𝑗 .
We exploit this to give the following algorithmic result.

Theorem 1. A leximin optimal stable matching for ranked isomet-
ric valuations can be found in time 𝑂 (𝑚𝑛).

The proof is constructive and building on it, we give an algorithm
for general ranked valuations FaSt-Gen (Algorithm 1) which runs in
time 𝑂 (𝑚2𝑛2). We prove its correctness in the following theorem.

Theorem 2. FaSt-Gen (Algorithm 1) finds a leximin optimal stable
matching given an instance of general ranked valuations.

FaSt-Gen starts with the student optimal stable matching. In
each iteration, we increase the number of students matched to
the leftmost unfixed college by 1 if it increases the leximin value.
If not, the algorithm fixes the upper limit of this college and the
lower limit of the next highest ranked one. In order to do this,
we decrease one student from a higher ranked college using the
demote procedure (details in [20]). The choice of this higher ranked
college is 𝑐1 initially, till it can no longer give out anymore students,
then we consider the next college whose lower limit is not fixed.
Thus, the algorithm gradually fixes the upper and lower limits of the
students matched to each college. There is onemore subtlety to note.
When increasing the number of students of a particular college a
leximin decrease may happen due to a higher ranked student -
college pair. That is, a student which is being moved, but not to
the lowest unfixed college and may cause a leximin decrease. In
such cases, we “soft fix” the upper limits of some colleges and then
unfix them, once the college which caused the leximin decrease is,
starts giving out students currently matched to it. The details of
all routines called by FaSt-Gen are in [20]. Unfortunately, efficient
algorithms for more general settings are not possible if P≠NP.

Algorithm 1: FaSt-Gen
Input: Instance of general ranked valuations ⟨S, C,𝑈 ,𝑉 ⟩
Output: 𝜇

1 𝜇 (𝑐1) ← {𝑠1, · · · , 𝑠𝑛−𝑚+1 } and 𝜇 (𝑐 𝑗 ) ← {𝑠𝑛−(𝑚−𝑗 ) } for 𝑗 ≥ 2;
2 𝑈𝑝𝑝𝑒𝑟𝐹𝑖𝑥 ← {𝑐1 }, 𝐿𝑜𝑤𝑒𝑟𝐹𝑖𝑥 ← {𝑐𝑚 };
3 𝑆𝑜 𝑓 𝑡𝐹𝑖𝑥 ← ∅,𝑈𝑛𝑓 𝑖𝑥𝑒𝑑 ← 𝑈𝑝𝑝𝑒𝑟𝐹𝑖𝑥𝑐 ;
4 while |𝑈𝑝𝑝𝑒𝑟𝐹𝑖𝑥\𝐿𝑜𝑤𝑒𝑟𝐹𝑖𝑥 | + |𝐿𝑜𝑤𝑒𝑟𝐹𝑖𝑥 | <𝑚 do
5 𝑢𝑝 ← min𝑗∉𝐿𝑜𝑤𝑒𝑟𝐹𝑖𝑥 𝑗 ;
6 𝑑𝑜𝑤𝑛 ← argmin𝑗∈𝑈𝑛𝑓 𝑖𝑥𝑒𝑑 𝑣𝑗 (𝜇) .;
7 𝑆𝑜 𝑓 𝑡𝐹𝑖𝑥 ← 𝑆𝑜 𝑓 𝑡𝐹𝑖𝑥\{( 𝑗, 𝑗 ′) | 𝑗 ′ ≤ 𝑢𝑝 < 𝑗 };
8 if |𝜇 (𝑐𝑢𝑝 ) | = 1 OR 𝑣𝑢𝑝 (𝜇) ≤ 𝑣𝑑𝑜𝑤𝑛 (𝜇) then
9 𝐿𝑜𝑤𝑒𝑟𝐹𝑖𝑥 ← 𝐿𝑜𝑤𝑒𝑟𝐹𝑖𝑥 ∪ {𝑐𝑢𝑝 };

10 else
11 𝜇′ ← 𝐷𝑒𝑚𝑜𝑡𝑒 (𝜇,𝑑𝑜𝑤𝑛,𝑢𝑝) ;
12 if L𝜇′ ≥ L𝜇 then
13 𝜇 ← 𝜇′;
14 else
15 if 𝑠𝑜𝑢𝑟𝑐𝑒𝐷𝑒𝑐 (𝜇′, 𝜇) = 𝑐𝑢𝑝 then
16 𝐿𝑜𝑤𝑒𝑟𝐹𝑖𝑥 ← 𝐿𝑜𝑤𝑒𝑟𝐹𝑖𝑥 ∪ {𝑐𝑢𝑝 } ;
17 𝑈𝑝𝑝𝑒𝑟𝐹𝑖𝑥 ← 𝑈𝑝𝑝𝑒𝑟𝐹𝑖𝑥 ∪ {𝑐𝑢𝑝+1 }
18 else
19 if 𝑠𝑜𝑢𝑟𝑐𝑒𝐷𝑒𝑐 (𝜇′, 𝜇) ∈ S then
20 𝑐𝑡 ← 𝜇 (𝑠𝑜𝑢𝑟𝑐𝑒𝐷𝑒𝑐 (𝜇′, 𝜇)) ;
21 𝐿𝑜𝑤𝑒𝑟𝐹𝑖𝑥 ← 𝐿𝑜𝑤𝑒𝑟𝐹𝑖𝑥 ∪ {𝑐𝑡 };
22 𝑈𝑝𝑝𝑒𝑟𝐹𝑖𝑥 ← 𝑈𝑝𝑝𝑒𝑟𝐹𝑖𝑥 ∪ {𝑐𝑡+1 };
23 𝐴← { 𝑗 | 𝑗 > 𝑡 + 1, 𝑗 ∈ 𝑈𝑛𝑓 𝑖𝑥𝑒𝑑 };
24 𝑆𝑜 𝑓 𝑡𝐹𝑖𝑥 ← 𝑆𝑜𝑓 𝑡𝐹𝑖𝑥 ∪ (𝐴 × {𝑡 + 1}) ;
25 else
26 (𝜇, 𝐿𝑜𝑤𝑒𝑟𝐹𝑖𝑥,𝑈𝑝𝑝𝑒𝑟𝐹𝑖𝑥, 𝑆𝑜 𝑓 𝑡𝐹𝑖𝑥) ←

𝐿𝑜𝑜𝑘𝐴ℎ𝑒𝑎𝑑𝑅𝑜𝑢𝑡𝑖𝑛𝑒 (𝜇,𝑑𝑜𝑤𝑛, 𝐿𝑜𝑤𝑒𝑟𝐹𝑖𝑥 ,
𝑈𝑝𝑝𝑒𝑟𝐹𝑖𝑥 , 𝑆𝑜 𝑓 𝑡𝐹𝑖𝑥) ;

27 𝑈𝑛𝑓 𝑖𝑥𝑒𝑑 ← { 𝑗 | 𝑗 ∉ 𝑈𝑝𝑝𝑒𝑟𝐹𝑖𝑥 or ( 𝑗, 𝑗 ′) ∉ 𝑆𝑜𝑓 𝑡𝐹𝑖𝑥 for a 𝑗 ′ > 𝑗 };

Theorem 3. It is NP-Hard to find the leximin optimal stable match-
ing under isometric valuations with weak rankings with𝑚 = 2 and
strongly NP-Hard with 𝑛 = 3𝑚.

Theorem 4. It is NP-Hard to find a leximin optimal stable matching
under strict preferences, even in the absence of rankings.

Theorem 5. Unless P=NP, for any 𝛿 > 0, 𝑐 ∈ Z+ there is no 1/𝑐𝑛𝛿 -
approximation algorithm to find a leximin optimal stable matching
under unconstrained additive valuations.

4 DIRECTIONS FOR FUTUREWORK
This paper provides a relatively comprehensive report of when it
is possible to find a leximin optimal stable matching without any
restriction on the number of students or colleges. One open problem
is whether for a constant number of colleges with strict preferences,
an exact algorithm is possible. Another potential direction is to find,
an a more general subclass of matching instances, to find a fair or
approximately-fair and stable matching. While our results rule out
approximations for additive valuations in general, under isometric
valuations or general strict preferences, approximations may exist.
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