Resource-Aware Adaptation of Heterogeneous Strategies for Coalition Formation

Extended Abstract

Anusha Srikanthan
University of Pennsylvania
Philadelphia, Pennsylvania, USA
sanusha@seas.upenn.edu

Harish Ravichandar
Georgia Institute of Technology
Atlanta, Georgia, USA
harish.ravichandar@cc.gatech.edu

ABSTRACT

Existing approaches to coalition formation assume that task requirements are precisely specified by the human operator. Further, existing approaches ignore the fact that tasks could often be performed by following one of many equivalent strategies. However, prior work has demonstrated that humans, while extremely adept at solving complex problems, struggle to explicitly state the intuition that led to their solution. In this work, we propose a two-part framework to i) learn implicit heterogeneous strategies for coalition formation directly from expert demonstrations, and ii) adaptively select one of the inferred strategies based on available resources, without additional training.

KEYWORDS

Multiagent Systems; Coalition Formation; Heterogeneity

ACM Reference Format:


1 INTRODUCTION

Coalition formation problems require a team of agents to be partitioned into non-overlapping sub-teams (i.e., coalitions) in order to perform multiple concurrent tasks [1, 2]. In this work, we are interested in coalition formation for heterogeneous teams (i.e., teams made of agents with different capabilities). Formally, task allocation problems are categorized based on three axes: Single-Task (ST) vs. Multi-Task (MT) robots; Single-Robot (SR) vs. Multi-Robot (MR) tasks; and Instantaneous Allocation (IA) vs. Time-extended Allocation (TA). Our work addresses the coalition formation problem, which is an instance of the ST-MR-IA problem.

Most existing approaches to coalition formation assume that the requirements associated with different tasks are explicitly specified by the human operator (e.g., [5, 6]). However, prior work has demonstrated that manually specifying multi-dimensional objective functions that capture trade-offs between various factors can be very challenging [3, 8, 9]. Therefore, we extract implicit task requirements from expert demonstrations, similar in spirit to inverse reinforcement learning (IRL). We model task requirements in terms of traits (i.e., multi-dimensional capabilities) that are required to accomplish the task.

A rich body of work in psychology and human-robot teaming suggest that complex tasks are often solved using one of many comparable strategies [4, 7]. For instance, consider a search task as part of a disaster response mission. To search effectively, one can either allocate i) a slow-moving coalition with a large collective sensing area, or ii) a fast-moving coalition with a small collective sensing area. We denote such different, yet equivalent, trait requirements as heterogeneous strategies. Our approach explicitly accounts for and extracts such diverse strategies. Further, we propose a strategy-selection algorithm that chooses the most appropriate strategy given the resources available from a new team.

In summary, we contribute: 1) a coalition formation framework that accounts for heterogeneous strategies, 2) a clustering-based approach for inferring such generalizable heterogeneous strategies from expert demonstrations, and 3) an optimization-based method for resource-aware strategy selection that can generalize to entirely new teams without additional training.

2 PROBLEM FORMULATION

We consider a heterogeneous team composed on $S$ species (i.e., robot types), in which the $s$th species contains $N_s$ robots. Let the team be tasked with a set of $M$ concurrent tasks denoted by $T = \{T_1, T_2, \ldots, T_M\}$. Please refer to [10] for a more formal description.

Let a set of heterogeneous strategies associated with the $m$th task be made up of $P_m$ strategies. The $r$th strategy for the $m$th task is given by $r_m^r \in \mathbb{R}_+$, $\forall r \in \{1, \ldots, P_m\}$. A set of $N$ expert demonstrations in the form of robot assignments be given by

$$D = \{X^{(i)}, Q^{(i)}\}_{i=1}^N$$

where $X^{(i)}$ represents the expert-specified assignment matrix for a team with capabilities encoded by the Species-Trait matrix $Q^{(i)}$.

Given the above definitions, our problem consists of two steps: i) extracting the set of approximated strategies $\hat{y}_m^r$ for each task from $D$, and ii) optimizing the Assignment matrix $X^{(j)}$ of a new team with Species-Trait matrix $Q^{(j)} \notin D$.

3 PROPOSED METHOD

3.1 Extracting heterogeneous task requirements

To extract implicit task requirements, we first compute the trait aggregations from the demonstrations $D$ as $y_m^{(i)} = Q^{(i)} T_m^{(i)}$, $\forall m, i$ where $y_m^{(i)}$ represents trait aggregation associated with the $m$th task of the $i$th demonstration. We apply agglomerative (i.e., hierarchical
bottom-up) clustering on the computed trait aggregation vectors for each task to obtain clusters denoted by \( \{C_m\}_{m=1}^M \). Once the clusters are identified, we compute the approximate task requirements associated with each strategy on every task as follows

\[
\hat{r}_m y_m = \sum_{y_m \in |C_m|} y_m \frac{t_m}{|C_m|}
\]

where \(|C_m|\) denotes the number of demonstrations for Task \( T_m \) that are identified as a part of the \( r \)th cluster. Revisiting our disaster response example, we could extract two distinct strategies from multiple expert coalitions assigned to the search task: one requiring large sensing radius and slow speed, and another requiring small sensing radius and high speed.

3.2 Resource-aware coalition formation

To denote the choice of strategy for each task, we introduce one-hot encoded \( \text{strategy selectors} \ z_m \in \{0, 1\}^P, \forall m \). We also introduce integer decision variables \( x_m \in \mathbb{Z}_+^D, \forall m \) representing the assignment of robots to each task. We simultaneously optimize the overall assignment such that the chosen set of trait requirements are satisfied for all tasks. Let \( t_m \) be the trait mismatch error between the aggregated traits and the trait requirements of the \( r \)th strategy \( t_m \) for Task \( T_m \). Hence, the net trait mismatch error for Task \( T_m \) is given by \( E_m = x_m^T t_m \) where \( t_m = \{ t_m, \ldots, t_m \} \in \mathbb{R}_+^D \).

Finally, we cast the resource-aware optimization of robot assignments for the new team with \( Q^{(j)} \notin \mathcal{D} \) as a constrained quadratic integer program:

\[
\begin{align*}
\{x_m^{(j)} & , z_m^{(j)}\}_{m=1}^M = \arg \min_{x_m, z_m} \sum_{m} E_m \\
\text{s.t.} \sum_{m} x_m \leq N_u, & z_m^T \cdot 1 = 1, \ y_m z_m \leq Q^{(j)} T_m, \forall m
\end{align*}
\]

where \( N_u \in \mathbb{Z}_+^D \) represents the vector of total robots per species, \( 1 \) is a vector of ones, and \( y_m = \{ y_m, \ldots, y_m \} \in \mathbb{R}_+^{P \times |C_m|} \) represents all the distinct trait requirements for Task \( T_m \) extracted from the demonstrations.

Revisiting our disaster response example, our framework chooses between the two strategies for the search task (low speed and large sensing radius vs. high speed and small sensing radius) depending on the capabilities of the available team. Indeed, one of the two strategies is likely to be better suited than the other for a given target team. Further, the resource constraint in (4) helps our framework realize that if all ground vehicles are assigned to the search task, we will not be able to utilize them to remove debris.

4 EXPERIMENTAL EVALUATION

We evaluate our approach against several baselines, including some that resemble existing approaches, using detailed numerical simulations, StarCraft II battles, and a multi-robot emergency-response scenario. Our results indicate that our framework consistently outperforms all baselines in terms of requirement satisfaction, resource utilization, and task success rates. For further details and more comprehensive results, please refer to [10].

ACKNOWLEDGMENTS

This work was supported by the Army Research Lab under Grants W911NF-20-2-0036 and W911NF-17-2-0181 (DCIST CRA).
REFERENCES