Doctoral Consortium

AAMAS 2022, May 9-13, 2022, Online

Using Multi-objective Optimization to Generate Timely
Responsive BDI Agents

Doctoral Consortium

Marcio Fernando Stabile Junior
Universidade de Sdo Paulo
S30 Paulo, Brazil
mstabile@ime.usp.br

ABSTRACT

A BDI agent’s ability to perform well depends on its reasoning time.
If the reasoning is slow, it is possible that the environment has
changed and the action selected is no longer optimal by the time
the agent has finished to deliberate. This work then builds a BDI
architecture using Anytime Algorithms that can control the amount
of time used by the agent to reason and act on the environment. I
briefly describe the proposed architecture and its implementation
in the Jason agent language.

KEYWORDS
BDI agents; Anytime algorithms; Multi-objective optimization

ACM Reference Format:

Marcio Fernando Stabile Junior. 2022. Using Multi-objective Optimization
to Generate Timely Responsive BDI Agents: Doctoral Consortium. In Proc.
of the 21st International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2022), Online, May 9-13, 2022, IFAAMAS, 3 pages.

1 INTRODUCTION

The BDI model proposed by Bratman [2] and formalized by Rao
and Georgeff [6] mainly consists of reviewing the agent’s beliefs
based on perceptions, listing and filtering desires to generate inten-
tions, and creating and executing plans to achieve those intentions.
However, Bratman et al. [3] states that one of the problems with
agents is that reasoning is not immediate, as studied by Simon
[8]. Hence, the agent risks that the environment changes and the
selected action is no longer optimal when the agent finishes deliber-
ating. Considering this problem, to plan actions in scenarios where
the time available to generate the plan is variable, and the process
of decision making is complex, Dean and Boddy [4] defined a class
of algorithms called anytime algorithms. Based on the work of Dean
and Boddy [4], Zilberstein [12] proposed ways to analyze and com-
pose algorithms in order to create complex systems that allow the
balancing between processing time and quality of results. Since one
of the issues of the BDI architecture is the need for fast practical
reasoning, and the main characteristic of Anytime Algorithms is
the possibility of controlling the execution time, it seems logical to
use anytime algorithms to design more efficient BDI agents.

This work then aims to answer the question: How can we build
a BDI architecture using Anytime Algorithms that can control
the amount of time used by the agent to reason and act on the
environment while assuring a minimum quality in the actions?

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9-13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved.

1875

2 ANYTIME BDI

In order to answer this question, in this section I present a brief
description of the formal model called Anytime BDL First, it is
necessary to define three terms: Internal actions, external actions
and plans. Based on the definitions made by Schut et al. [7], I
formally define these elements below:

(1) An external action («) is an action that is performed by the
agent on the environment. Examples of external actions include
agent movement, activating a button and carrying an item. (2) An
internal action (f) is an action that is performed by the agent that
does not directly change the environment. Instead, it affects the
internal state of the agent. Examples of internal actions include
creating a new belief or acquiring a new goal. (3) A plan () is a
pre-defined sequence of internal () and external (f) actions.

Having made these definitions, I present a description of the
model of the Anytime BDI Agent:

An Anytime BDI Agent is an intelligent agent architecture com-
posed of two layers. One is the Agent Data Layer (ADL), which
contains all the agent’s data structures. The other is the Agent
Control Layer (ACL), composed of the mechanisms that control the
agent execution. The Anytime Data Layer is comprised of all the
structures that store the necessary data for the execution of the
agent. We define ADL = (P, B,I1,D,9, adefau“,tA,CDﬂ,@@)
where:(1) The set of perceptions ; (2) The set of beliefs B; (3) The
set of desires @; (4) The set of plans IT; (5) The set of intentions
J; (6) The default action agef4y1; executed if no better action was
found; (7) The response time 7; (8) The queue of delayed actions
DA; (9) The set of performance profiles PP;

The Anytime Control Layer is comprised of the processes respon-
sible for running the Anytime BDI Agent and ensuring its execution
within the specified time. We define ACL = (B111,9¢, 98,1, F)
where: (1) B111 : Belief Manager is the anytime component respon-
sible for producing a new set of beliefs from perceptions; (2) ¢ :
Intention Generator is the anytime component responsible for based
on current beliefs, desires, and intentions, produce a new set of
intentions and plans; (3) J§& : Intention Executor is the anytime
component responsible for based on current beliefs, intentions, util-
ity function, and delayed actions, choose an external action to be
executed on the environment; (4) 771 : Monitor is the component
responsible for based on the performance profiles and £, calcu-
late time allocation and control the execution; (5) F is a function
responsible for calculating the utility of an external action a.

The goal of this model is to make the agent perform an exter-
nal action « in the environment at each time interval 5. For this,
three modules were defined (B171, 4@, and 9 &), which are anytime
algorithms responsible for analyzing perceptions, beliefs, desires,



Doctoral Consortium

plans and intentions in order to generate an external action to be
performed in the environment. To ensure that these modules run
within the time limit, the Monitor 771 analyzes the performance
profiles of each algorithm involved and executes them for the cal-
culated time. At the end of the time, the Monitor 771 receives the
generated external action and executes it in the environment.

The B assumes that there is a list of perceptions to evaluate. As
long as the processing time is not over and there are perceptions not
yet analysed, the component will analyse the perceptions ordered
by a user-defined policy based on the remaining perceptions and
the time remaining. The d@ analyses desires and intentions one
at a time. Thus, it is possible to balance the frequency of creating
new intentions and reconsidering existing ones. Lastly, J & executes
the plans in a round-robin style, until it finds an external action.
When one is found, it is scheduled for execution at the end of the
allocated time, the plan is paused and the & resumes executing
the remaining plans. If multiple external actions are found, the ones
with lower priority are stored in the Delayed Action queue (?D.A)
for future evaluation.

3 ANYTIME JASON

To validate the model and show that it allows achieving the research
objectives, I chose to implement the model and carry out experi-
ments using the BDI Jason agent programming language [1]. The
main reasons are its popularity in the area of multi-agent systems
and because it is a well-documented open-source language. Using
an existing and well-accepted language allows us to compare the
behavior of the agents and to identify the positive and negative
points of the proposed architecture.

I then made the necessary changes to create a Jason architecture
whose execution follows the theoretical model described in the
Section 2. I named this architecture AnytimeJason. However, it is
not possible to entirely change the way the language works. For ex-
ample, Jason uses events as one of its primary mechanisms. Neither
the model proposed in [11] nor the model I defined in the section 2
has any mention of events. On the other hand, ignoring the event
mechanism could indicate that the model defined is not flexible
enough to be implemented by the existing languages. I decided
then to draw the best possible parallels to bring the language as
close as possible to the theoretical model presented.

A Jason agent is executed through three main components (Sense,
Deliberate, and Act). Each of these components consists of a set
of functions responsible for the agent’s execution. Rather than
executing the steps in the reasoning cycle repeatedly, it is necessary
to link the agent’s reasoning cycle to the agent’s expected response
time. Thus, by implementing the behaviors defined for the B171,
9@ and 9 modules to the Sense, Deliberate and Act methods, we
can control the execution of the agent’s reasoning cycle. The next
step was to make the calling of these functions and their execution
time managed by the Monitor 771. For this, when an Anytime agent
is created, the Jason compiler creates a Monitor 771 module for it
and informs it of the response time tA that is defined by the user in
the agent’s creation code. Once created, the Monitor 777 optimally
splits the response time among the other components based on
their performance profiles, determining t3,,, tig, tie, that are the
amount of time allocated for each of the components.

1876

AAMAS 2022, May 9-13, 2022, Online

To control the Sense runtime, I implemented a policy based on
perception filters similar to those in [10]. By defining different
filters, it is possible to priorize certain perceptions. For Deliberate, I
modified Jason so that it analyzes more than one event in the same
cycle, and it is possible to interrupt the analysis if the time runs
out and continue at a later time. Finally, in the Act component, I
implemented the proposed Delayed Action queue, which stores the
external actions the agent is waiting to perform in the environment.

4 MULTI-OBJECTIVE OPTIMIZATION OF
TIME ALLOCATION

Since I proposed a monitor that optimally splits the response time
among the other components, it is necessary to describe how the
Monitor 711 performs the split. I implemented a profiling mech-
anism in Jason. This mechanism records a series of information
about the agent’s execution. This information includes how many
perceptions the agent receives, how long it takes to update each
perception, how many internal actions it performs before finding
an external action, etc. Based on this information, I generate the
performance profiles of each component in each agent, which are
estimates of the performance of each one. The quality of the Sense
component is measured by how many percent of the total beliefs
it was able to assess. Deliberate’s measures how many percent of
the events it would evaluate. The quality of the Act’s response, on
the other hand, is measured based on the probability of finding an
external action within the given time. As the quality of the result
of a component depends on the quality of the previous, I use for
the Deliberate and Act components a type of performance profile
called Conditional Performance Profile, described in [12]. Thus, we
have three quality functions (performance profiles), and we aim to
maximize the qualities of the responses given by the components.
I then use the e-constraint method described in [5] to optimize
the time allocation. This method optimizes one of the functions
while defining constraints for the others. So, in our case, the agent
designer can, as an example, state that the Sense component can
never evaluate less than 20% of the total perceptions. Thus, the
e-constraint method will calculate a set of time allocations that
maximizes the quality of the responses. Based on the user restric-
tions, the Monitor 771 selects one of the time allocations in the
set and executes the other modules accordingly. If the Monitor 771
needs to change the allocations during the execution of a module
(e.g., there are no perceptions to evaluate), the Monitor 771 can
select another one based on the current status of the execution.

5 FUTURE WORK

I'm currently developing a set of experiments that seek to demon-
strate the advantages and disadvantages of the proposed architec-
ture compared to Jason’s default architecture. These experiments
will employ the agents created for the Multi-Agent Programming
Contest [9]. The contest scenario is very conducive to this function
as it already aims to compare teams of agents.

ACKNOWLEDGMENTS

This work was supported by CNPq, Brazil, Grant 140448/2016-0.
The author would like to thank Jaime S. Sichman for his constant
guidance and support as supervisor.



Doctoral Consortium

REFERENCES

[1] Rafael H. Bordini and Jomi F. Hiibner. 2006. BDI Agent Programming in AgentS-

peak Using Jason. In Computational Logic in Multi-Agent Systems, Francesca
Toni and Paolo Torroni (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
143-164.

M. Bratman. 1987. Intention, plans, and practical reason. Harvard University
Press, Cambridge, MA. http://books.google.de/books?id=I0nuAAAAMAA]J
Michael E. Bratman, David J. Israel, and Martha E. Pollack. 1988. Plans and
resource-bounded practical reasoning. Comput. Intell. 4 (1988), 349-355. https:
//doi.org/10.1111/j.1467-8640.1988.tb00284.x

Thomas Dean and Mark Boddy. 1988. An Analysis of Time-Dependent Planning.
In Seventh AAAI National Conference on Artificial Intelligence (AAAI), Howard E.
Shrobe, Tom M. Mitchell, and Reid G. Smith (Eds.). AAAI Press / The MIT Press,
49-54. http://dl.acm.org/citation.cfm?id=2887974

Kaisa Miettinen. 2008. Introduction to Multiobjective Optimization: Noninteractive
Approaches. Springer Berlin Heidelberg, Berlin, Heidelberg, 1-26. https://doi.
0rg/10.1007/978-3-540-88908-3_1

Anand S. Rao and Michael P. Georgeff. 1991. Modeling Rational Agents within
a BDI-Architecture. In Proceedings of the Second International Conference on

1877

AAMAS 2022, May 9-13, 2022, Online

Principles of Knowledge Representation and Reasoning (Cambridge, MA, USA)
(KR’91). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 473-484.
Martijn Schut, Michael Wooldridge, and Simon Parsons. 2004. The theory and
practice of intention reconsideration. Vol. 16. 261-293 pages. https://doi.org/10.
1080/09528130412331309277

Herbert A. (Herbert Alexander) Simon. 1957. Models of man, social and rational :
mathematical essays on rational human behavior in a social setting. Wiley, New
York.

Marcio Fernando Stabile and Jaime S. Sichman. 2021. The LTI-USP Strategy to the
2020/2021 Multi-Agent Programming Contest. In The Multi-Agent Programming
Contest 2021, Tobias Ahlbrecht, Jirgen Dix, Niklas Fiekas, and Tabajara Krausburg
(Eds.). Springer International Publishing, Cham, 108-133.

Marcio Fernando Stabile Jr and Jaime S Sichman. 2015. Melhorando o desempenho
de agentes BDI Jason através de filtros de percep¢do. Master’s thesis. Universidade
de Sao Paulo.

M Wooldridge. 2000. Reasoning About Rational Agents. MIT Press.

Shlomo Zilberstein. 1993. Operational rationality through compilation of anytime
algorithms. Ph.D. Dissertation. http://www.aaai.org/ojs/index.php/aimagazine/
article/viewArticle/1136


http://books.google.de/books?id=I0nuAAAAMAAJ
https://doi.org/10.1111/j.1467-8640.1988.tb00284.x
https://doi.org/10.1111/j.1467-8640.1988.tb00284.x
http://dl.acm.org/citation.cfm?id=2887974
https://doi.org/10.1007/978-3-540-88908-3_1
https://doi.org/10.1007/978-3-540-88908-3_1
https://doi.org/10.1080/09528130412331309277
https://doi.org/10.1080/09528130412331309277
http://www.aaai.org/ojs/index.php/aimagazine/article/viewArticle/1136
http://www.aaai.org/ojs/index.php/aimagazine/article/viewArticle/1136

	Abstract
	1 Introduction
	2 Anytime BDI
	3 Anytime Jason
	4 Multi-objective optimization of time allocation
	5 Future work
	Acknowledgments
	References



