JAAMAS Track

AAMAS 2022, May 9-13, 2022, Online

Combining Quantitative and Qualitative Reasoning
in Concurrent Multi-player Games
JAAMAS Track

Nils Bulling

Clausthal University of Technology
Clausthal-Zellerfeld, Germany
bulling@in.tu-clausthal.de

ABSTRACT

We propose and study a general framework for modelling and for-
mal reasoning about multi-agent systems and, in particular, multi-
stage games where both quantitative and qualitative objectives and
constraints are involved. Our models enrich concurrent game mod-
els with payoffs and guards on actions associated with each state of
the model. We propose a quantitative extension of the logic ATL*
that enables combination of quantitative and qualitative reasoning.
We illustrate the framework with some examples and then con-
sider the model-checking problems arising in it and establish some
general undecidability and decidability results for them.

KEYWORDS

Multi-stage Games; Quantitative and Qualitative Reasoning; Tem-
poral Logic ATL; Model Checking; Decidability; Undecidability

ACM Reference Format:

Nils Bulling and Valentin Goranko. 2022. Combining Quantitative and Quali-
tative Reasoning in Concurrent Multi-player Games: JAAMAS Track. In Proc.
of the 21st International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2022), Online, May 9-13, 2022, IFAAMAS, 3 pages.

1 INTRODUCTION

Quantitative and qualitative reasoning about agents and multi-
agent systems is pervasive in many areas of Al and game theory,
including multi-agent planning and intelligent robotics. In partic-
ular, the studies of cooperative and non-cooperative multi-player
games deal with both aspects of strategic abilities of agents, but
usually separately. Quantitative reasoning concerns the abilities of
agents to achieve quantitative objectives, such as optimizing payoffs
(e.g., maximizing rewards or minimizing cost) or, more generally,
ensuring most preferred outcomes. This tradition comes from game
theory and usually studies one-shot normal form games, or their
(finitely or infinitely) repeated versions, or extensive form games.
On the other hand, qualitative reasoning, coming mainly from logic
and computer science, is about strategic abilities of players for
achieving qualitative objectives: reaching or maintaining states with
desired properties, e.g., winning states or safe states, etc. Put as
a slogan, quantitative reasoning is concerned with how players
can become maximally rich, or how to pay as little cost as possi-
ble, while qualitative reasoning is about how players can achieve a
state of ‘happiness’, e.g. winning, or how to avoid reaching a state of
‘unhappiness’ (losing) in the game. Often both types of reasoning

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9-13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved.

1926

Valentin Goranko
Stockholm University
Stockholm, Sweden
valentin.goranko@philosophy.su.se

about multi-agent systems are essential and must be explored in-
teractively. For instance, in multi-agent planning and robotics it is
important to achieve the agents’ qualitative goals while satisfying
various quantitative constraints on time and resource consump-
tion. This motivates the development of a modelling framework
for combining qualitative and quantitative reasoning, which is the
main objective of this work, presented in detail in the full paper
[4] (substantially extending the earlier version [3]), where a wide
range of related works are also surveyed.

2 CONCURRENT GAME MODELS WITH
PAYOFFS AND GUARDS

A concurrent game model ([1]) (CGM) as a tuple
S = (Ag, St, {Actataeag, {actataeag, out, Prop, L) comprising:

> a non-empty, fixed set of players (agents) Ag = {1,...,k}anda
set of actions Act, # 0 for each a € Ag. For any A C Ag we denote
Acty = [],ea Acta and will use a4 to denote a tuple from Act 4.
In particular, Actag is the set of all possible action profilesin S.

> a non-empty set of game states St.

> for each a € Ag, a map act, : St = P(Act,) setting for each
state s the actions available to a at s.

> a transition function out : StxActag — St that assigns to every
state g and action profile apg = (a1, ...,), such that &, € acta(q)
for every a € Ag (i.e., every a, that can be executed by player a in
state q), the (deterministic) successor (outcome) state out(q, ctag).

> a set of atomic propositions Prop and a labelling function
L: St —» P(Prop).

A CGM represents a multi-agent transition system where at any
state all players in choose and execute their actions synchronously,
and the combination of these actions determines the transition
to a (unique) successor state in the CGM. A play in a CGM M
is an infinite sequence of such subsequent states. Alternatively,
concurrent game models can be viewed as multi-stage combinations
of normal form games each associated with a state of the system.
For further technical details we refer to [1], [5], [6, Ch.9],

We are now going to introduce an extension of concurrent game
models that can be viewed as a multi-stage game, where at every
stage the result of the simultaneous collective action of all players
is two-fold: first, players receive individual payoffs - just like in
the normal form games and repeated games traditionally studied
in game theory - and second, a transition is effected to (possibly)
another state, where (possibly) another such game is played, etc.,
infinitely. More precisely, we extend concurrent game models with
utility payoffs for every action profile applied at every state. Thus,
every action profile applied at a given state has now two effects:

JAAMAS Track

i) it assigns a payoff to each player, and
ii) determines a transition to a new state, where the game asso-
ciated with it is played at the next round of the play.

Besides, we also add individual guards that determine which
actions are available to a player at a given configuration consisting
of a state and the vector of current accumulated utilities for each
player, i.e. the current sum of all payoffs the player has received in
the course of the current play of the game.

To give the formal definition, we need some preliminaries. An
arithmetic constraint over a set of constants X in a fixed numerical
domain D and a set of agents A is any expression of the form t; * t5
where * € {<, <,=,>,>} and 11, t, are terms built over a set X UV,
by applying addition, where V4 = {v, | a € A} consists of special
variables used to refer to the accumulated utilities of the players
in A at the current state of the game. The set of these arithmetic
constraints is denoted by AC(X, A). For any a € Ag, an (individual)
a-guard is an arithmetic constraint formula ac € ACF(X, {a}).

Definition 2.1. A guarded CGM with payoffs (GCGMP) is a tuple
M = (8, payoff, grd) consisting of:

>a CGM S = (Ag, St, {Acta}aeag, {actataeag, out, Prop, L),

> a payoff function, payoff : Ag X St X Actag — D assigning
for every agent a, state s, and action profile « applied at s a payoff
payoff, (s, &) to that agent.

> a guard function grd : AgxStxActag — ACF(X, Ag), such that
for each a € Ag, state s € St and action a, the guard grd(a, s, @), also
denoted grd, (s, @), is an arithmetic constraint formula in ACF (X, {a})
that determines whether « is enabled for a at state s, given the value
of a’s current utility. It is required that grd is a total function.

Example 2.2. The GCGMP shown in Figure 1 involves 2 players,
Iand II, and 3 states, where in every state each player has 2 possible
actions, C (‘cooperate’) and D (‘defect’). The transition function is
depicted in the figure. The normal form games associated with the
states are respectively versions of the Prisoners Dilemma at state
s1, Battle of the Sexes at state s2, and Coordination Game at state
s3. The full details of the example, incl. the the guards, are in [4].

A
C

(D,D)

Figure 1: A simple GCGMP combining 3 games.

3 THE LOGIC FOR QUANTITATIVE AND
QUALITATIVE REASONING QATL"

3.1 Syntax, Semantics and Expressiveness

QATL™ extends the Alternating time Temporal Logic ATL* [1] with
atomic quantitative objectives expressed by arithmetic constraints
from a set AC over the players’ currently accumulated utilities. The

1927

AAMAS 2022, May 9-13, 2022, Online

language of QATL* consists of state formulae ¢, and path formulae
v, generated as follows, where A C Ag ac € AC, and p € Prop:

pu=placl -l (@A) | Ay

ya=ely [y Ay) Xy |Gy [(yUy).

The semantics of QATL* naturally extends the semantics of ATL*
over GCGMP, based on the notion of truth of a state formula ¢ at
a configuration ¢ in a GCGMP M, denoted M, ¢ |= ¢, and possibly
parameterised with two classes of admissible strategies, S? for the
proponents and S for the opponents. See the full details of the
formal semantics in [4].

The logic QATL* is quite expressive. Besides capturing all purely
qualitative, ATL*-definable properties, the logic QATL* can also ex-
press purely quantitative properties like {{a}»G (v, > 0), meaning
“Player a has a strategy to maintain his accumulated utility to be
always positive”. QATL* can also express combined qualitative and
quantitative properties, e.g. {{a})((a is happy) U(vs = 10%)),
saying “Player a has a strategy to stay happy until a becomes a mil-
lionaire”, or {{a, b} ((va + vp > vc) UG (safe)), saying “Players
a and b have a joint strategy to keep their joint accumulated utility
greater than the one of ¢ until a the system enters a safe region and
remains there forever.” More such examples, based on Example 2.2
and on another one, can be found in [4].

3.2 Some Results on Model Checking in QATL*

The GCGMP models are too rich and the language of QATL* is too
expressive to expect computational efficiency, or even decidability,
of either model checking or satisfiability. Indeed, in [4] we show
that model checking of QATL*~- and even of QATL - in a GCGMP
is undecidable under rather weak assumptions, e.g., in the 2-agent
case, with state-based guards, where the proponent or the opponent
can use finite memory strategies, effectively definable by means of
finite transducers. These undecidability results are not surprising,
as GCGMPs are technically closely related to Petri nets and vector
addition systems with states (VASS) and it is known that logic-based
model checking over them is generally undecidable. For example,
in [7] this is shown for fragments of CTL and (state-based) LTL
over Petri nets. Essentially, the reason is that these logics allow
encoding a “test for zero” over such models; for Petri nets this
means to check whether a place contains a token or not. In our
setting undecidability follows for the same reason, and we have
obtained such results in [4]. The reduction is done by applying ideas
from [2] to simulate a two-counter machine (TCM) (aka two-counter
automaton, or 2-register Minsky machine [9]).

Despite the wide-ranging undecidability results, there are some
natural semantic and syntactic restrictions of QATL" where decid-
ability of the model checking problem may be restored, by making
the configuration space and the strategy search space finite. Such
restrictions include: the enabling of only memoryless strategies,
imposing non-negative payoffs, constraints on the transition graph
of the model, restrictions of the arithmetical constraints and guards
ensuring bounded players’ accumulated utilities, etc. In [4] we out-
line one such non-trivial case, using a result by Karp and Miller [8]
for the coverability problem for vector addition systems, and discuss
some other ideas and conjectures. Identifying sufficiently expres-
sive fragments of QATL* and restrictions on GCGMP models with
decidable model checking is a major direction for future work.

JAAMAS Track

REFERENCES

(1]
[2

R. Alur, T. A. Henzinger, and O. Kupferman. 2002. Alternating-Time Temporal
Logic. . ACM 49 (2002), 672-713. https://doi.org/10.1145/585265.585270

Nils Bulling and Berndt Farwer. 2010. On the (Un-)Decidability of Model-Checking
Resource-Bounded Agents. In Proc. of ECAI 2010, H. Coelho and M. Wooldridge
(Eds.). IOS Press, Amsterdam, 567-572. https://doi.org/10.3233/978-1-60750-606-
5-567

Nils Bulling and Valentin Goranko. 2013. How to Be Both Rich and Happy:
Combining Quantitative and Qualitative Strategic Reasoning about Multi-Player
Games (Extended Abstract). In Proceedings of the 1st International Workshop on
Strategic Reasoning (Electronic Proceedings in Theoretical Computer Science). Rome,
Italy, 33-41. https://doi.org/10.4204/EPTCS.112.8 arXiv:arXiv/1303.0789

Nils Bulling and Valentin Goranko. 2022. Combining quantitative and qualitative
reasoning in concurrent multi-player games. Auton. Agents Multi Agent Syst. 36, 1

1928

8

]

AAMAS 2022, May 9-13, 2022, Online

(2022), 2. https://doi.org/10.1007/s10458-021-09531-9

Nils Bulling, Valentin Goranko, and Wojciech Jamroga. 2015. Logics for Reasoning
About Strategic Abilities in Multi-player Games. In Models of Strategic Reasoning -
Logics, Games, and Communities, Johan van Benthem, Sujata Ghosh, and Rineke
Verbrugge (Eds.). Lecture Notes in Computer Science, Vol. 8972. Springer, 93-136.
https://doi.org/10.1007/978-3-662-48540-8

Stéphane Demri, Valentin Goranko, and Martin Lange. 2016. Temporal Logics in
Computer Science. Cambridge University Press.

Javier Esparza. 1997. Decidability of Model Checking for Infinite-State Con-
current Systems. Acta Informatica 34 (1997), 85-107. https://doi.org/10.1007/
5002360050074

R. M. Karp and R. E. Miller. 1969. Parallel Program Schemata. J. Comput. System
Sci. 3, 2 (1969), 147-195.

[9] M. Minsky. 1967. Computation, Finite and Infinite Machines. Prentice Hall.

https://doi.org/10.1145/585265.585270
https://doi.org/10.3233/978-1-60750-606-5-567
https://doi.org/10.3233/978-1-60750-606-5-567
https://doi.org/10.4204/EPTCS.112.8
https://arxiv.org/abs/arXiv/1303.0789
https://doi.org/10.1007/s10458-021-09531-9
https://doi.org/10.1007/978-3-662-48540-8
https://doi.org/10.1007/s002360050074
https://doi.org/10.1007/s002360050074

	Abstract
	1 Introduction
	2 Concurrent Game Models with Payoffs and Guards
	3 The Logic for quantitative and qualitative reasoning QATL*
	3.1 Syntax, Semantics and Expressiveness
	3.2 Some Results on Model Checking in QATL*

	References

