
Enabling BDI Group Plans with Coordination Middleware:
Semantics and Implementation

JAAMAS Track

Stephen Cranefield
University of Otago

Dunedin, New Zealand
stophen.cranefield@otago.ac.nz

ABSTRACT
This extended abstract summarises an article with the same title
published in the journal Autonomous Agents and Multi-Agent Sys-
tems [6].

KEYWORDS
BDI agents; Group plans and goals; Coordination middleware
ACM Reference Format:
Stephen Cranefield. 2022. Enabling BDI Group Plans with Coordination
Middleware: Semantics and Implementation: JAAMAS Track. In Proc. of the
21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), Online, May 9–13, 2022, IFAAMAS, 3 pages.

1 INTRODUCTION
Belief-Desire-Intention (BDI) agent programming provides a power-
ful and popular model for developing software that is goal-oriented,
adaptive to its circumstances, and equipped with pre-existing do-
main knowledge in the form of plans. However, the BDI architecture
is a model for a single practical reasoning agent, and does not ad-
dress the question of how to create a group of agents that need to
coordinate their actions while achieving some common goals.

Many theories, models and systems have addressed this ques-
tion, as outlined in the full paper. Prominent approaches include: (i)
systems based on the joint intention theory [11] and related work,
which provide rich logical accounts of the interplay between agents’
beliefs, goals and intentions during the execution of group tasks,
but require agent reasoning capabilities that are, in general, beyond
the in-built capabilities of BDI agent platforms; and (ii) practical
agent programming tools that extend BDI agent platforms with
support for team activities, such as JACK Teams [1] and JaCaMo [2],
but which lack formal semantics that relate them to the underlying
BDI model. Alternatively, (iii) the agent programmer(s) can manage
coordination by explicitly sending messages (or invoking coordi-
nation middleware) to coordinate agents’ plan executions and to
propagate knowledge of their success and/or failure—thus increas-
ing the code complexity for all team members, and compromising
correctness, scalability and robustness.

This work aims to provide an alternative approach for program-
ming agent teams that provides a straightforward extension of the
BDI agent programming model, encapsulates the coordination of
individual agent behaviour, and has formal semantics that extend
the standard BDI semantics.
Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9–13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved.

2 GROUP GOALS AND PLANS
The approach allows the declarative specification of the coordina-
tion required between agents in a team, using a new programming
abstraction: the group goal. A group goal specifies a set of subgoals,
one for each member of the group to perform, that must all be
achieved for the overall group goal to succeed. A group goal be-
comes active when one or more agents begin working towards it,
and can then eventually fail or succeed. As group goals are only
satisfied when all agents’ subgoals are completed, the successful
completion of each group goal is a point of synchronisation be-
tween agents. In other words, an agent that quickly completes its
subgoal for one group goal cannot begin work on the next group
goal until all other agents complete their subgoals. This is in line
with the idea that a group plan is a mechanism for specifying the
coordinated action of a group of agents. To avoid agents waiting
indefinitely for other agents to complete their subgoals, we allow a
group goal to fail due to a join timeout or a completion timeout. A
join timeout occurs when some agents do not begin working on
their subgoals within a certain time interval after the earliest start
of any of the other agents’ subgoals. A completion timeout occurs
when the result of some subgoals are still unknown within a certain
interval since the last agent began work on its subgoal.

From the programmer’s point of view, a group goal is called
directly, via a small supporting library of generic plans that handle
the required coordination with other agents implicitly using robust
industry-grade coordination middleware (Apache Camel [9] and
ZooKeeper [8]). These generic plans ensure the group goal will
succeed only when all agents begin and complete their plans in
a timely manner. This makes the programmer’s task simpler as
the plans that he or she writes will be less complex and more
maintainable.

We conceptualise a group plan as one that defines a collective
view of coordinated action amongst a group of agents, and which
can be followed in a synchronised way by all agents. We rely on
group goals to provide the coordination between agents, and define
a group plan as one that includes group goals. Group plans may be
complex and include any control structures provided by the BDI
programming language used. A group plan is supported by a set of
individual plans for each agent to achieve its local subgoals. These
individual plans could be known by all agents, or they could be kept
private, as the application and group requires. Group goal timeout
values are specified as part of a group plan.

Group plans can be dynamically acquired—they do not need to be
loaded in advance into organisational middleware as, for example,
in JaCaMo [2]. A single top-level group plan, containing group

JAAMAS Track AAMAS 2022, May 9–13, 2022, Online

1932



Group goal state machine

Individual agent semantics

Coordination semantics

Distributed implementation

Model checking of
desired properties

Performance 
evaluation 

Figure 1: Overview of our methodology

goals, can be shared amongst all group members to serve as the
blueprint for their collective action (supported by their own local
plans for their individual subgoals).

3 METHODOLOGY
Figure 1 illustrates our methodology. The semantics of group goals
are defined in terms of a state machine (top left) defining how indi-
vidual agents starting, succeeding and failing their local subgoals
affect the state of a group goal. The semantics for individual agent
goal executions are defined as transition rules on intention stacks
(middle left), and a set of coordination rules (upper middle) define
how these local semantics are modified for a group goal, depend-
ing on its state. The aim is to distinguish the situations in which
individual agents can perform their BDI reasoning independently
of the other agents, and those in which their computations must
update the state machine for a group goal or wait for a group to
reach a particular state.

A set of desired properties for group goal execution were verified
using LTL model checking, given a direct translation of the seman-
tics into the Maude equational logic programming language [5]
(one property is shown in the lower middle of the figure). This
approach allowed the semantics to be refined iteratively, with a
number of subtle bugs corrected, until all six properties were veri-
fied. The properties state that timeouts should happen in the correct
circumstances and have the effect of failing a group goal, and that
when no timeouts occur, all agents should eventually detect either
the success of a group goal if all agents successfully complete their

local plans, or the failure of a group goal if any local plan failure
occurs.

The right hand side of the figure illustrates our implementa-
tion of group goals for Jason [3] agents, based on a set of domain-
independent plans for interacting with group goals. These plans
maintain a connection to the industry-grade Apache ZooKeeper
coordination middleware, via Apache Camel [9] service integration
routes and the camel-agent Camel component [7]. A performance
evaluation showed that the implementation is scalable.

4 FUTUREWORK
In future work, it would be useful to support other types of group
goals, e.g. disjunctions of local subgoals or relaxed conjunctions
where at least𝑚 out of 𝑛 agents must participate to achieve success.
This would also require different timeout models to be designed. A
current limitation of our approach is that free variables in group
goals and local subgoals are not supported: an instantiation of
a variable in a local subgoal will not cause the instantiation of
the same variable in the group goal to be shared across all group
members. Communication of variable bindings between agents
can be implemented using similar middleware techniques to those
we use to implement group goals [10], and the same approach
could also be used to provide a notion of shared group beliefs. On
the implementation side, a comparison could be made between
our implementation approach using ZooKeeper and alternative
middleware tools that can maintain an eventually consistent shared
state, such as Cassandra [4].

JAAMAS Track AAMAS 2022, May 9–13, 2022, Online

1933



REFERENCES
[1] Agent Oriented Software Pty Ltd. 2005. JACK Intelligent Agents Teams Man-

ual, Release 5.5. https://aosgrp.com/media/documentation/jack/JACK_Teams_
Manual.pdf.

[2] Olivier Boissier, Rafael H. Bordini, Jomi F. Hübner, Alessandro Ricci, and An-
drea Santi. 2013. Multi-Agent Oriented Programming with JaCaMo. Science of
Computer Programming 78, 6 (2013), 747–761.

[3] Rafael H. Bordini, Jomi Fred Hübner, andMichaelWooldridge. 2007. Programming
Multi-Agent Systems in AgentSpeak using Jason. Wiley.

[4] Jeff Carpenter and Eben Hewitt. 2022. Cassandra: The Definitive Guide (revised
third ed.). O’Reilly.

[5] Manuel Clavel, FranciscoDurán, Steven Eker, Patrick Lincoln, NarcisoMartí-Oliet,
José Meseguer, and Carolyn Talcott. 2003. The Maude 2.0 System. In Rewrit-
ing Techniques and Applications. Lecture Notes in Computer Science, Vol. 2706.
Springer, 76–87.

[6] Stephen Cranefield. 2021. Enabling BDI Group Plans with Coordination Mid-
dleware: Semantics and Implementation. Autonomous Agents and Multi-Agent

Systems 35, 2 (2021), 45. https://doi.org/10.1007/s10458-021-09525-7
[7] Stephen Cranefield and Surangika Ranathunga. 2013. Embedding Agents in

Business Processes Using Enterprise Integration Patterns. In Engineering Multi-
Agent Systems. Lecture Notes in Computer Science, Vol. 8245. Springer, 97–116.

[8] Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira, and Benjamin Reed. 2010.
ZooKeeper: Wait-free Coordination for Internet-scale Systems. In Proceedings of
the USENIX Annual Technical Conference. USENIX Association.

[9] Claus Ibsen and Jonathan Anstey. 2018. Camel in Action (second ed.). Manning.
[10] Edmund Soon Lee Lam, Iliano Cervesato, and Nabeeha Fatima. 2015. Comin-

gle: Distributed Logic Programming for Decentralized Mobile Ensembles. In
Coordination Models and Languages – 17th IFIP WG 6.1 International Conference,
COORDINATION 2015. Lecture Notes in Computer Science, Vol. 9037. Springer,
51–66.

[11] Hector J. Levesque, Philip R. Cohen, and José H. T. Nunes. 1990. On Acting
Together. In Proceedings of the 8th National Conference on Artificial Intelligence.
AAAI Press / The MIT Press, 94–99.

JAAMAS Track AAMAS 2022, May 9–13, 2022, Online

1934

https://aosgrp.com/media/documentation/jack/JACK_Teams_Manual.pdf
https://aosgrp.com/media/documentation/jack/JACK_Teams_Manual.pdf
https://doi.org/10.1007/s10458-021-09525-7

	Abstract
	1 Introduction
	2 Group Goals and Plans
	3 Methodology
	4 Future Work
	References



