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ABSTRACT
Centaurs are half-human, half-AI decision-makers where the AI’s

goal is to complement the human. To do so, the AI must be able

to recognize the goals and constraints of the human and have the

means to help them. We present a novel formulation of the inter-

action between the human and the AI as a sequential game where

the agents are modelled using Bayesian best-response models. We

show that in this case the AI’s problem of helping bounded-rational

humans make better decisions reduces to a Bayes-adaptive POMDP.

In our simulated experiments, we consider an instantiation of our

framework for humans who are subjectively optimistic about the

AI’s future behaviour. Our results show that when equipped with

a model of the human, the AI can infer the human’s bounds and

nudge them towards better decisions. We discuss ways in which the

machine can learn to improve upon its own limitations as well with

the help of the human. We identify a novel trade-off for centaurs

in partially observable tasks: for the AI’s actions to be acceptable

to the human, the machine must make sure their beliefs are suffi-

ciently aligned, but aligning beliefs might be costly. We present a

preliminary theoretical analysis of this trade-off and its dependence

on task structure.
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1 INTRODUCTION
Humans and AI systems have different computational bounds and

biases, and these differences lead to unique strengths and weak-

nesses. Using this insight, hybrid intelligence aims to combine

human and machine intelligence in a complementary way in order

to augment the human intellect [2]. From an agent-based perspec-

tive, the hybrid intelligence can be seen as a centaur: a part human,

part AI decision-maker. Even though essentially a multiagent team,

a distinguishing feature of centaurs is that they appear to others as
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a single entity, two agents acting as one, when acting in an environ-

ment. In this work, we introduce two important design factors for

centaurs: I) The AI must be able to learn a model of the human’s

decision-making, and II) The interaction protocol between the AI

and the human must never prohibit an option for the human.

Cognitive science research has been providing empirically veri-

fied computational models of human decision-making that can be

used as forward and inverse models in control and reinforcement

learning settings [21]. Specifically, the theory of computational ra-
tionality [14, 28] focuses on developing models of decision-making

under computational bounds, resource constraints, and biases. It

argues that agents who seem irrational behave rationally according

to their subjective models and constraints. This implies that in a

centaur, the AI and the human may disagree on optimal behaviour.

Consider the grid-world in Figure 1, a variant of the Food Truck
environment of Evans et al. [8] where a human’s restaurant pref-

erences are 𝑣𝑒𝑔𝑎𝑛 ≻ 𝑑𝑜𝑢𝑔ℎ𝑛𝑢𝑡 ≻ 𝑛𝑜𝑜𝑑𝑙𝑒 . The optimal trajectory is

the blue line as the shortest path to the most preferred restaurant.

However, the human in question follows the red trajectory: they

think they can resist the temptation of a doughnut but when the

doughnut shop is too close, they fail to do so, and after the dust

settles, they regret their decision. Behavioural sciences explain such

behaviour in humans as having preferences that are not consistent

over a period of time [13, 29]. In decision-making with delayed re-

wards, human time-inconsistency is well-modelled by discounting

the rewards with hyperbolic functions of the form 𝑑(𝑡 ;𝛾 ) =
1

1+𝑡𝛾

[17, 23, 25]. This is due to the fact that unlike in the exponential

discounting of the form 𝑑(𝑡 ; 𝜆) = 𝜆𝑡 , in hyperbolic discounting the

ratio
𝑑(𝑡 ;𝛾 )

𝑑(𝑡+𝑘 ;𝛾 )
depends on 𝑡 as well as 𝑘 which can lead to prefer-

ence reversals. Now imagine that a time-inconsistent human has

recruited an AI to help them eat healthily, and asked the AI to au-

tonomously drive them to the nearest vegan restaurant. Since the

typical AI agent has been trained with exponential discounting, it

would attempt to follow the blue trajectory, and the human would

override the AI at grid 15 by taking control of the car to stop for

a doughnut. However, if the AI was able to predict this, it could

try to follow the purple trajectory instead by attempting a detour

at grid 9. The purple trajectory costs two time-steps extra, but the

human may allow this detour if they decide saving two time-steps

is not worth overriding the autonomous driver.

In this paper, we formalize these intuitions by developing a

decision-theoretic multiagent model for centaurs. Our main contri-

butions from the most general to specific are: I) We formulate the

interaction protocol between the human and the AI as a sequential

game. First, the AI proposes to execute an action, and then the
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Figure 1: The Food Truck environment has a vegan restau-
rant, a noodle café, and two identical doughnut shops.When
the preferences are 𝑣𝑒𝑔𝑎𝑛 ≻ 𝑑𝑜𝑢𝑔ℎ𝑛𝑢𝑡 ≻ 𝑛𝑜𝑜𝑑𝑙𝑒, the blue tra-
jectory is optimal, but the time-inconsistency bias might
lead to the red trajectory. In this case, the purple trajec-
tory would help a time-inconsistent human avoid getting
tempted by the doughnut shop.

human responds by either allowing or overriding it. The human’s

internal incentive to delegate tasks to the AI is modelled as a cost

the human pays when they override an action. We model the agents

in a centaur with Bayesian best-response models (defined in Sec-

tion 3), where learning about the human and nudging them is cast

into a Bayesian reinforcement learning problem. (II) We identify

a novel challenge in centaurs for partially observable cases, called

the belief alignment problem, and analyse some of its theoretical

properties. (III) As an instance of our framework, we model a class

of humans who are optimistic about the machine and compute their

best-response approximately. Adopting computational models of

human bounded-rationality provided by behavioural economics

[13, 25, 29] and cognitive science [17, 20, 23, 40], we simulate two

cases of human bounded-rationality: time-inconsistent preferences

and over (or under) estimation of probabilities. Our experiments

show that if a human’s incentives allow it, the AI is able to nudge

the human into making better decisions. The mathematical and

computational framework we present opens up a new research

direction where various hybrid intelligence problems can be cast

into centaurs and more complex model spaces for humans can be

investigated in the future.

2 BACKGROUND
In this section we give a brief introduction to Bayesian reinforce-

ment learning (BRL) for partially observable Markov decision pro-

cesses (POMDPs), and Bayesian best response models (BA-BRM).

POMDPs and Bayesian Reinforcement Learning. We define a dis-

crete POMDP by a 6-tuple (S,A,𝑇 , 𝑅,Ω,𝑂) where (S,A,𝑇 , 𝑅) are

the sets of states and actions, transition dynamics, and the reward

function of a Markov decision process (MDP); Ω is a set of observa-

tions, and 𝑂 : Ω × S × A → [0, 1] is the observation function that

defines the conditional observation probabilities which can be rep-

resented as a set of |S|×|Ω| matrices {𝑂𝑎}∀𝑎∈A with the i-th row,

j-th column giving the observation probability 𝑂𝑎
(𝑖 𝑗 )

= 𝑃𝑟 (𝑜 𝑗 | 𝑠𝑖 , 𝑎).

The Bayes-adaptive POMDP (BA-POMDP) is a BRL model where

the unknown transition and observation probabilities are modelled

with Dirichlet distributions, and the S is augmented to include the

Dirichlet parameters which transition according to the Bayes rule

[35]. The solution to the BA-POMDP is the Bayes-optimal policy

in terms of the exploration/exploitation trade-off, with respect to

the prior.

Bayesian Best Response Models. In the same vein as interactive

POMDPs (I-POMDPs) [16] and the recursive modellingmethod [15],

Bayesian best-response models (BRM) [31] fall under the subjective
perspective approach to multi-agent systems, where the systems

are modelled from the point of view of a protagonist agent [32]. In

Bayesian BRMs, the protagonist (denoted by 𝑖) is considered in its

subjective view of the multi-agent environment defined as𝑀𝐴𝐸𝑖 ≜
(S, {A𝑖 ,A 𝑗 },𝑇 , {Ω𝑖 ,Ω𝑗 },𝑂, 𝑅𝑖 ) where 𝑗 denotes the antagonist,A 𝑗

and Ω𝑗 are the sets of actions and observations of 𝑗 , and 𝑅𝑖 is

the protagonist’s reward function. The transition dynamics and

observation function are defined for the joint set of actions A =

A𝑖 × A 𝑗 and the observations Ω = Ω𝑖 × Ω𝑗 . To compute a best-

response, the protagonist also needs a model of 𝑗 as described below,

and an optimality criterion 𝑂𝑃𝑇𝑖 that defines how 𝑖 accumulates

reward over time, such as the exponentially discounted sum of

rewards.

A model of an agent 𝑗 is a tuple𝑚 𝑗 = (A 𝑗 ,Ω𝑗 ,I𝑗 , 𝜋 𝑗 , 𝛽 𝑗 , 𝐼 𝑗 ) that
is consistent with the𝑀𝐴𝐸𝑖 and fully specifies how the agent will

respond to future observations. The I𝑗 denotes the finite set of

internal states of 𝑗 , 𝐼 𝑗 is its current internal state, 𝜋 𝑗 : I𝑗 → ∆(A 𝑗 )

is a policy mapping the internal states to action probabilities, and

𝛽 𝑗 : I𝑗 × A 𝑗 × Ω𝑗 → ∆(I𝑗 ) is a belief update function describing

how 𝑗 maintains beliefs over I𝑗 . In a BRM, the agent 𝑖 is uncertain

about some elements of𝑚 𝑗 such as 𝐼 𝑗 or 𝜋 𝑗 , however it has a set of

modelsM 𝑗 that are consistent with the known elements of it. In

the end, the best-response model combines these three elements,

denoted with 𝐵𝑅𝑀𝑖 = (𝑀𝐴𝐸𝑖 ,M 𝑗 ,𝑂𝑃𝑇𝑖 ), where the state-space

gets augmented to
¯S = S×I𝑗 . The dynamics of the BRM𝑖 is defined

as:

𝐷𝑖 (𝑠
′
𝑖 , 𝑜𝑖 | 𝑠𝑖 , 𝑎𝑖 ) =

∑
𝑎 𝑗

∑
𝑜 𝑗

𝑂(𝑜 𝑗 , 𝑜𝑖 | 𝑠 ′, 𝑎𝑖 , 𝑎 𝑗 )𝑇 (𝑠 ′ | 𝑠, 𝑎𝑖 , 𝑎 𝑗 )

𝛽 𝑗 (𝐼
′
𝑗 | 𝐼 𝑗 , 𝑎 𝑗 , 𝑜 𝑗 )𝜋 𝑗 (𝑎 𝑗 | 𝐼 𝑗 ). (1)

Oliehoek and Amato [31] have shown that BRMs are a class of

POMDPswhich, when solved, provides 𝑖’s best response to 𝑗 . There-

fore, if the 𝑇 and 𝑂 are unknown to 𝑖 , they can be modelled with

Dirichlet distributions as in BA-POMDPs, which leads to Bayes-

adaptive best-response models (BA-BRMs). The BA-BRM of 𝑖 is

defined as BA-BRM𝑖 = (
¯S,A𝑖 ,Ω𝑖 , 𝐷̄𝑖 , 𝑅𝑖 ) where ¯S = S × I𝑗 × Θ is

the augmented set of states with Θ denoting the parameter space

of Dirichlet distributions; 𝑅𝑖 (𝑠, 𝑎𝑖 ) =

∑
𝑎 𝑗
𝑅𝑖 (𝑠, 𝑎𝑖 , 𝑎 𝑗 )𝜋 𝑗 (𝑎 𝑗 | 𝐼 𝑗 ) is

the augmented reward function; and 𝐷̄𝑖 is the joint transition and

observation dynamics defined as:

𝐷̄𝜃 (𝑠 ′, 𝑜𝑖 | 𝑠, 𝑎𝑖 ) ≜
𝜃
𝑠′,𝑜𝑖
𝑠,𝑎𝑖∑

𝑠′,𝑜𝑖 𝜃
𝑠′,𝑜𝑖
𝑠,𝑎𝑖

𝐷̄𝑖 (𝑠
′, 𝑜𝑖 | 𝑠, 𝑎𝑖 ) = 𝐷̄𝜃 (𝑠 ′, 𝑜𝑖 | 𝑠, 𝑎𝑖 )I[𝜃 ′ = 𝜃 + 𝛿

𝑠′,𝑜𝑖
𝑠,𝑎𝑖

]. (2)

Here 𝜃
𝑠′,𝑜𝑖
𝑠,𝑎𝑖

is the count for (𝑠 ′, 𝑜𝑖 , 𝑠, 𝑎𝑖 ), 𝛿
𝑠′,𝑜𝑖
𝑠,𝑎𝑖

is the one-hot encoding

of (𝑠 ′, 𝑜𝑖 , 𝑠, 𝑎𝑖 ), and I is the indicator function. Intuitively, BA-BRM𝑖

models the 𝑖’s uncertainty about 𝑗 as part of its uncertainty about

the dynamics.
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3 THE HUMAN–MACHINE CENTAUR
(HUMACE) MODEL

In this section we formalize our general framework for human–

machine centaurs (HuMaCe), and then present empirical and theo-

retical results on an instantiation of our framework. The HuMaCe

model represents the human and the machine’s behaviour as BRMs

with different subjective models of the same task, which will be

defined explicitly. BRMs inherently assume some model about the

other agent, and if that other agent itself employs a BRM this leads

to a recursion of beliefs, as in I-POMDPs. Here, we cut this short

by considering the BRMs from both agents in isolation, assuming

that a sufficiently useful model of the other is available.

The interaction protocol. The interaction between the human (ℎ)

and the machine (𝑚) is modelled as a sequential game. At time 𝑡 ,

first the machine chooses an action 𝑎𝑚 , and the human observes

this choice. Then, the human either lets 𝑎𝑚 get executed by playing

a special no operation action 𝑎ℎ = noop or overrides it with another

action 𝑎ℎ ̸= noop. If the human overrides, they pay an additional

cost, 𝑐ℎ(𝑠, 𝑎ℎ), which represents the human’s internal incentive to

automate the task and delegate things to the machine. When over-

ridden, the machine also receives an additional cost (or reward),

𝑐𝑚(𝑠, 𝑎ℎ), that determines its incentives about getting overridden.

The specification of 𝑐𝑚 is part of the machine’s design and offers

significant flexibility. For instance in an autonomous car it makes

sense to avoid forcing the human to take control, thus 𝑐𝑚 might

penalize overrides just like 𝑐ℎ . In other cases such as autonomous

flight, we may want to incentivize the machine with 𝑐𝑚 to safely

trigger an override if the human operator is losing attention. The

underlying task performed by the centaur is single-agent: either

the human or the machine execute an action in the real environ-

ment. The executed action, called the centaur action, is defined as

a function 𝑎𝑐 (𝑎𝑚, 𝑎ℎ) = I[𝑎ℎ ̸= noop]𝑎ℎ + I[𝑎ℎ = noop]𝑎𝑚 , and it is

observed by both agents. This switching-controller property of the

protocol leads to MAEs with specific structure where the underly-

ing transition dynamics and rewards are essentially single-agent as

𝑇𝑖 (𝑠
′ | 𝑠, 𝑎𝑐 (𝑎𝑚, 𝑎ℎ)) and 𝑅𝑖 (𝑠, 𝑎𝑐 (𝑎𝑚, 𝑎ℎ)) for 𝑖 ∈ {ℎ,𝑚}.

The objective and subjective task models. As described in the inter-
action protocol, the underlying dynamics of the agents’ multiagent

environments is single-agent. Therefore, we represent an agent’s se-

quential decision-making task with a POMDP𝑀 = (S,A,𝑇 , 𝑅,Ω,𝑂)

and an objective optimality criterion 𝑂𝑃𝑇 . The objective task model
is defined as𝑂𝑇𝑀 ≜ (𝑀,𝑂𝑃𝑇 ). When solved exactly, the𝑂𝑇𝑀 pro-

vides the best behaviour possible (e.g. the blue trajectory in Figure

1), and represents the ideal problem definition a rational agent can

hope for. However, in general the OTM is unknown even to the

designer of the machine. Therefore, the human and the machine

each have their own subjective model of the task, STM𝑖 , which

consists of their subjective POMDP M𝑖 and optimality criterion

OPT𝑖 for 𝑖 ∈ {ℎ,𝑚}. The 𝑆𝑇𝑀s represent the agents’ subjective sur-

rogates that approximate the 𝑂𝑇𝑀 , and since they can be different,

they may lead to disagreements on what is optimal behaviour. For

instance, in our introductory example the disagreement is due to

differences in OPT𝑖 : OPTℎ is the hyperbolically discounted sum of

rewards whereas 𝑂𝑃𝑇𝑚 and 𝑂𝑃𝑇 are exponentially discounted.

Since the dynamics of MAEs are fully determined by STMs here,

an STM and amodel of the human suffice to derive the best-response

model of the machine.

3.1 Best Response Model of the Machine
In this section, we define the machine’s model for computing its

best response to the human. The model space of the other agent in

BRMs is quite general, since it can represent a wide range of agent

types, including POMDP-based agents and any policy that can be

represented as a finite state controller.

The machine’s BRM. We define the model space of the human

as Mℎ = {𝑚ℎ | 𝑚ℎ = (
¯Aℎ, Ω̄ℎ,𝑂ℎ,Iℎ, 𝜋ℎ, 𝛽ℎ, 𝐼ℎ)} where

¯Aℎ =

Aℎ ∪ {noop}; the augmented observation space Ω̄ℎ includes A𝑚 ,

and the 𝑂ℎ provides full observability of the machine’s actions.

The human’s internal states 𝐼ℎ ∈ Iℎ include the observed action

of the machine. With the Mℎ , the machine’s BRM is defined as

𝐵𝑅𝑀𝑚(𝑆𝑇𝑀𝑚,Mℎ) = (
¯S𝑚,A𝑚, 𝐷̄𝑚, Ω̄𝑚, 𝑅𝑚), where

¯S𝑚 = S × Iℎ ,
Ω̄𝑚 = Ω𝑚 × ¯Aℎ , and 𝑅𝑚(𝑠𝑚, 𝑎𝑚) = 𝑅𝑚(𝑠, 𝑎𝑐 (𝑎𝑚, 𝑎ℎ)) − I[𝑎ℎ ̸=
noop]𝑐𝑚(𝑠, 𝑎ℎ). The Ω̄𝑚 captures the fact that the machine can ob-

serve the human’s override, but only after it had happened. The

𝐷̄𝑚 is defined as follows, where the 𝑎𝑐 overloads 𝑎𝑐 = 𝑎𝑐 (𝑎𝑚, 𝑎ℎ):

𝐷̄𝑚(𝑠 ′𝑚, 𝑜𝑚 | 𝑠𝑚, 𝑎𝑚) =

∑̄
𝑎ℎ

∑̄
𝑜ℎ

𝑂(𝑜ℎ, 𝑜𝑚 | 𝑠 ′𝑚, 𝑎𝑐 )𝑇𝑚(𝑠 ′ | 𝑠, 𝑎𝑐 )

𝛽ℎ(𝐼 ′
ℎ
| 𝐼ℎ, 𝑎𝑐 , 𝑜ℎ)𝜋ℎ(𝑎ℎ | 𝐼ℎ). (3)

The form of 𝐷̄𝑚 captures the fact that once the machine chooses 𝑎𝑚 ,

𝜋ℎ determines the centaur action 𝑎𝑐 by overriding or not. Then the

dynamics, observations, and the human’s belief update evolve ac-

cording to the 𝑎𝑐 . The machine cannot observe 𝑎ℎ before it chooses

𝑎𝑚 , and must predict that using 𝜋ℎ and 𝐼ℎ . If these two are un-

known, then the machine’s BRM is augmented to a BA-BRM by

placing a prior over them, as described in Section 2.

In practice, the machine will need a more concrete model space

for the human in order to infer the human’s model and assist them.

Next, we define a bounded-rational model space for humans as an

instantiation of our framework.

3.2 The Machine-Optimistic Human
It is not realistic to assume the human will have a perfect model of

the machine and will override it optimally with respect to the 𝑆𝑇𝑀ℎ ,

due to cognitive bounds. Optimism is one of the most prevalent and

ubiquitous approximations humans use to make bounded-rational

decisions under cognitive bounds [19, 27, 34, 37]. We apply this

approximation to our setting and propose the machine-optimistic
human (MoH) model, where the human assumes that the machine’s

behaviour will agree with them from 𝑡 + 1 onward, so after 𝑡 they

will not have to override. This model is one of many possible instan-

tiations of our framework, and future work will focus on enriching

the space of humanmodels under the guidance of cognitive sciences

as proposed in Ho and Griffiths [21].

The following proposition states that a MoH compares the value

of the machine’s action 𝑎𝑚 to the action they think is optimal, using

the optimal value function of their 𝑆𝑇𝑀ℎ : the 𝑄
𝜋∗
ℎ .

Proposition 3.1. Let𝑄𝜋∗
ℎ (𝑏, 𝑎) and𝑉 𝜋∗

ℎ (𝑏) be the value functions
of the subjectively optimal policy 𝜋∗

ℎ
computed according to the𝑂𝑃𝑇ℎ
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for𝑀ℎ . Given their current belief 𝑏ℎ and the machine’s action 𝑎𝑚 , the
MoH overrides the machine if and only if 𝑉 𝜋∗

ℎ (𝑏ℎ) −𝑄𝜋∗
ℎ (𝑏ℎ, 𝑎𝑚) >

E𝑠∼𝑏ℎ [𝑐ℎ(𝑠, 𝜋∗
ℎ

(𝑏ℎ))], and if they decide to override 𝑎𝑚 , the subjec-
tively rational choice is to override with 𝜋∗

ℎ
(𝑏ℎ).

In Supplementary Section 1.1, we prove that Proposition 3.1

follows directly if the human is solving a BRM of their own to

decide when to override, using their optimal policy for 𝑆𝑇𝑀ℎ , the

𝜋∗
ℎ
, for predicting how the machine will behave in the future. This

result provides a decision-theoretic grounding for the MoH model.

For the machine, Proposition 3.1 implies that the 𝑄𝜋∗
ℎ , 𝑏ℎ , and

𝑐ℎ are sufficient to predict the MoH’s response to 𝑎𝑚 , where 𝑏ℎ is

the MoH’s belief in𝑀ℎ over S. Next, we define the model space for

MoH and the machine’s BA-BRM for MoH models using this result.

The space of machine-optimistic human models. AMoH’s internal

state is defined as 𝐼ℎ = (𝑏ℎ, 𝑧, 𝑎𝑚), where 𝑏ℎ is its belief state in𝑀ℎ

and 𝑎𝑚 is the machine’s action. The 𝑧 combines 𝑄𝜋∗
ℎ and 𝑐ℎ to a

binary function indicating if the MoH will override as: 𝑧(𝑎𝑚) =

I[𝑉 𝜋∗
ℎ (𝑏ℎ)−𝑄𝜋∗

ℎ (𝑏ℎ, 𝑎𝑚) > E𝑏ℎ [𝑐ℎ(𝑠, 𝜋∗
ℎ

(𝑏ℎ))]]. The definition of 𝜋ℎ
follows directly from Proposition 3.1 as 𝜋ℎ(𝑎ℎ | 𝐼ℎ) = 𝑧(𝑎𝑚)𝜋∗

ℎ
(𝑏ℎ) +

(1 − 𝑧(𝑎𝑚))𝛿(𝑎ℎ, noop) where 𝛿 is the Kronecker delta function. The

𝜋∗
ℎ
is an optimal policy to a POMDP and assumed to be deterministic

without loss of generality, and thus 𝜋ℎ is also deterministic.

The machine’s BA-BRM for machine-optimistic humans. In our

setting the machine’s uncertainty over Mℎ is due to unknowns 𝜋ℎ
and 𝐼ℎ . However, the human affects the machine’s dynamics only

through 𝑎𝑐 and therefore the machine’s uncertainty over Mℎ still

manifests itself as uncertainty over the dynamics. The most general

Bayes-adaptive approach would be to place a Dirichlet prior on the

parameters of the categorical distribution 𝐷̄𝑚 as in BA-POMDPs.

However, this would ignore the structure in 𝐷̄𝑚 : if the machine

had known 𝑆𝑇𝑀ℎ = (𝑀ℎ,𝑂𝑃𝑇ℎ) and the 𝑐ℎ , it could compute 𝑄𝜋∗
ℎ

which is enough to fully determine 𝐷̄𝑚 for MoHs. Therefore, in

this case it is more sample-efficient to maintain a posterior over

𝑆𝑇𝑀ℎ . We will choose an appropriately parameterized distribution

𝜇(𝑆𝑇𝑀 ;𝜃 ) over the set of possible 𝑆𝑇𝑀s to capture the machine’s

uncertainty over the MoH’s subjective task model. Together with

𝜇, the machine’s BA-BRM can be defined as:

BA-BRM𝑚(𝐵𝑅𝑀𝑚, 𝜇) = (
´S𝑚,A𝑚, 𝐷́𝑚, Ω̄𝑚, 𝑅𝑚) (4)

where the augmented state space
´S𝑚 = S × Iℎ × Θ includes the

parameter space of 𝜇 as Θ.

The definition of 𝐷́𝑚,𝜃 (𝑠 ′𝑚, 𝑜𝑚 | 𝑠𝑚, 𝑎𝑚) is as follows, where the

𝑂ℎ and 𝜋ℎ are fully determined by the corresponding STM:∑̄
𝑜ℎ

𝑇𝑚(𝑠 ′ | 𝑠, 𝑎𝑐 )𝑂𝑚(𝑜𝑚 | 𝑠 ′𝑚, 𝑎𝑐 )𝛽ℎ(𝐼 ′
ℎ
| 𝐼ℎ, 𝑎𝑐 , 𝑜ℎ)∫

𝑂ℎ(𝑜ℎ | 𝑠 ′𝑚, 𝑎𝑐 , 𝑆𝑇𝑀)𝜋ℎ(𝑎ℎ | 𝐼ℎ, 𝑆𝑇𝑀)𝑑𝜇(𝑆𝑇𝑀 ;𝜃 ). (5)

The 𝐷́𝑚 is simply the filtration of 𝐷́𝑚,𝜃 similar to the equation 2’s

𝐷̄𝑖 , which makes sure 𝜃 transitions according to the Bayes rule.

4 LEARNING AS PLANNING IN HUMACE
Any planning algorithm designed for BA-POMDPs can be applied

to BA-BRMs, and therefore can solve the machine’s problem in

Figure 2: Food Shelter environment taken from
Dimitrakakis et al. [5]. Food randomly appears and gives
positive reward when consumed. The agent receives a nega-
tive reward for each time-step the shelter remains collapsed,
and can re-build it by visiting its grid.

HuMaCe [31]. In this section, we present a specific adaptation of

the root sampling of the model variant of the BA-POMCP algorithm

proposed in Katt et al. [22], for the case of machine-optimistic

human models.

An adaptation for machine-optimistic humans. For partially ob-

servable state-spaces, each simulation starts by sampling (𝑠, 𝜃 ) from

the current belief, and in fully-observable settings the current (𝑠, 𝜃 )

is known. Then, an 𝑆𝑇𝑀 from 𝜇(𝑆𝑇𝑀 ;𝜃 ) is sampled, and from

thereon the simulation proceeds with the 𝑆𝑇𝑀 fixed.

Updating our belief about the human’s STM 𝜇(𝑆𝑇𝑀 ;𝜃 ) is in-

tractable, since computing the likelihood requires computing 𝜋ℎ
for infinitely many 𝑆𝑇𝑀s. However, the (PO)MDPs of STMs are dis-

crete, thus the set of possible 𝜋ℎs is finite and discrete for machine-

optimistic human models. This implies that for MoH, there are

finitely many behavioural equivalence classes over the space of

𝑆𝑇𝑀s. We take advantage of this implication and discretize 𝜇 with

a weighted set of particles 𝜇 = {𝑆𝑇𝑀 (𝑘)}𝑘=1,...,𝑁 . The 𝜇 is initialized

by sampling 𝑆𝑇𝑀s according to a prior 𝜇(𝑆𝑇𝑀 ;𝜃0), and 𝜋ℎ is com-

puted and stored offline for each particle. The 𝜇(𝑆𝑇𝑀 ;𝜃 ) therefore

is updated by filtering the particles in 𝜇.

Maintaining particles. In some cases, we may need to reinvigo-

rate the particle set 𝜇. New 𝑆𝑇𝑀s can be added by perturbing the ex-

isting ones. Unfortunately this will require us to solve the new 𝑆𝑇𝑀s

in the online phase. However, if the perturbations applied to existing

particles are bounded, it is reasonable to assume the newly added

𝑆𝑇𝑀s will lead to 𝜋ℎs that are close to pre-existing ones thanks

to behavioural equivalence. In that case, this can be amortized by

training a neural network parameterized by 𝜙 , 𝜋ℎ(𝑎ℎ | 𝐼ℎ, 𝑆𝑇𝑀 ;𝜙),

which takes (𝐼ℎ, 𝑆𝑇𝑀) as input and provides a distribution over

𝑎ℎ . Further details of this amortization procedure are discussed in

Supplementary Section 3.

5 EXPERIMENTS AND RESULTS
We consider two cases of bounded-rationality when the humans

want the machine to help themmake better decisions, and apply our

framework instantiated with the machine-optimistic human mod-

els. In both cases, the machine’s 𝑆𝑇𝑀𝑚 is a better model of 𝑂𝑇𝑀

compared to the human’s 𝑆𝑇𝑀ℎ . For the Food Shelter environment,

the converse of this case, where the human can correct the ma-

chine’s behaviour and help it learn a better policy, is also presented.

All experiments are run with 19 seeds and both the 𝑐ℎ(𝑠, 𝑎) = 𝑐ℎ and
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Figure 3: The machine’s return in the Food Truck environ-
ment with a time-inconsistent human (𝛾 = 7.5). Low 𝑐ℎ
(0.01): the human always overrides, so the machine cannot
help avoid the red trajectory. Medium 𝑐ℎ (0.21): machine fol-
lows the purple trajectory and increases the human’s per-
formance drastically. Dashed lines show the undiscounted
return of the three trajectories from Figure 1 without any
overrides. The shades represent one standard error.

𝑐𝑚(𝑠, 𝑎) = 𝑐𝑚 are assumed to be non-negative constants. However,

the machine does not know 𝑐ℎ and must infer it from interaction.

The details of each setting are provided in Supplementary Section

2.

5.1 Time-Inconsistent Preferences
Motivation and setup. In the introduction, we have given an

example for time-inconsistent behaviour: the red trajectory in

Figure 1. We implement the gridworld shown in Figure 1 as an

MDP 𝑀 and the objective optimality criterion 𝑂𝑃𝑇 is the undis-

counted sum of rewards. The subjective task models of agents are

𝑆𝑇𝑀𝑖 = (𝑀,𝑂𝑃𝑇𝑖 ), 𝑖 ∈ {ℎ,𝑚}, where𝑂𝑃𝑇ℎ is the hyperbolically dis-

counted sum of rewards with discount function 𝑑(𝑡 ;𝛾 ) =
1

1+𝑡𝛾 , and

the 𝑂𝑃𝑇𝑚 is exponentially discounted with factor 𝜆 = 0.95. Both

𝛾 and 𝑐ℎ are unknown to the machine. If 𝛾 is small enough, 𝑑(𝑡 ;𝛾 )

becomes flat and behaves like exponential discounting, thus this

model space is expressive enough to capture both time-inconsistent

and consistent behaviour.

In this setting, we do not need the amortization from 𝜋ℎ . Let

𝑄∗
𝜆
denote an optimal Q-function computed with exponential dis-

counting 𝑑(𝑡 ; 𝜆) = 𝜆𝑡 . Any optimal Q-function 𝑄∗
𝛾 computed with

hyperbolic discounting 𝑑(𝑡 ;𝛾 ) =
1

1+𝑡𝛾 is equal to

∫
1

0
𝑤 (𝛾, 𝜆)𝑄∗

𝜆
𝑑𝜆

where the weights are computed in closed form as𝑤 (𝛾, 𝜆) =
1

𝛾 𝜆
1

𝛾
−1

[11]. We discretize the belief space with a grid of (𝑐ℎ, 𝛾 ) values, and

approximate the integral with a weighted Riemannian sum over

a grid of 𝜆s and their corresponding 𝑄∗
𝜆
s offline. The details are

deferred to Supplementary.

Results. We simulate the interaction with six behavioural classes

of the human based on (𝑐ℎ, 𝛾 ) pairs: When 𝛾 is high (≥ 2.0), the

human’s solution to 𝑆𝑇𝑀ℎ produces the time-inconsistent red tra-

jectory, and if low (≤ 0.5) the hyperbolic function becomes flat and

the 𝑂𝑃𝑇ℎ agrees with 𝑂𝑃𝑇𝑚 , producing the blue trajectory. If the

𝑐ℎ is too low (≤ 0.2) the AI is overridden whenever the human

disagrees, and if high enough (≥ 0.4) the AI can execute the blue

trajectory regardless of 𝛾 . For medium 𝑐ℎ ([0.21, 0.4]) and high 𝛾 ,

the AI cannot execute the blue, but can get the purple accepted. In

this case, the Monte Carlo planning in the first episodes attempts

to execute the blue trajectory and gets overridden. Once the be-

lief is updated with the override, the following episodes produce

the purple trajectory. Figure 3 shows the machine’s undiscounted

return (i.e.

∑
𝑡 𝑟

(𝑡 )

𝑚 ) for the three cases when 𝛾 is high. The dashed

lines show the returns of trajectories shown in Figure 1. When 𝑐ℎ
is low, the centaur learns that following the red trajectory is the

only option, whereas if the 𝑐ℎ is high, it learns to follow the blue. In

the case of medium 𝑐ℎ , the blue trajectory is not admissible, but the

planner learns that the purple is. Thus, the machine improves the

human’s return drastically. In experiments with low 𝛾 , the centaur

follows the blue trajectory since the machine and the human fully

agree and the machine never gets overridden.

5.2 Overestimation of Probabilities
Motivation and setup. When using probabilities for making deci-

sions, humans sometimes overestimate the probability of negative

events, which may lead to less than ideal decisions, or underesti-

mate, and take risks they cannot afford to. The former may result

from a fear and an overestimation of the risk. When overestimation

causes the human to unnecessarily avoid certain actions, it is called

maladaptive avoidance behaviour [20].

We will model the case of overestimation as follows: Given an

MDP 𝑀 , the STMs are 𝑆𝑇𝑀𝑖 = (𝑀𝑖 ,𝑂𝑃𝑇 ), 𝑖 ∈ {ℎ,𝑚} where the

human and the machine disagree in transition probabilities. The𝑇ℎ
is an 𝜖𝑇ℎ -approximation of 𝑇 with 𝐾𝐿(𝑇 (. | 𝑠, 𝑎) | | 𝑇ℎ(. | 𝑠, 𝑎)) ≤ 𝜖𝑇ℎ
for all (𝑠, 𝑎), whereas, 𝑇𝑚 = 𝑇 which means 𝑆𝑇𝑀𝑚 = 𝑂𝑇𝑀 . The

latter can be relaxed to an 𝜖𝑇𝑚 -approximation as long as 𝜖𝑇ℎ ≥
𝜖𝑇𝑚 . A similar setting with a fully-known human model has been

investigated by Dimitrakakis et al. [5] and we use the same Food

Shelter environment from their paper in our experiment, shown

in Figure 2. Here, food re-appears uniformly randomly and the

shelter collapses with non-zero probability. All actions have the

same noise where the execution of an action fails with probability

0.1, transitioning the agent to a neighbour state uniformly random.

The human believes that the diagonal action noise is 0.1 + 2𝜖 and

the rest are 0.1 + 𝜖 .

Results. Dimitrakakis et al. [5] assume that both the 𝑇ℎ (i.e. 𝜖)

and 𝑐ℎ are fully known to the machine, but in our experiments they

are unknown and must be learned from the interaction.

The worst human performance in their experiment is for 𝜖 = 0.45,

so we chose this setting and set a low cost of effort 𝑐ℎ = 0.05. The

machine’s uniform belief on 𝜖 ∈ [0.0, 0.45] and 𝑐ℎ ∈ [0.0, 0.5] are

discretized covering different behavioural classes. In this case, the

initial set of particles had good coverage and re-invigoration was

not necessary. We have run the experiment for a fixed horizon of

100 steps, and noticed that the centaur can infer the true human

model 𝑆𝑇𝑀ℎ quickly in about the first 10 time steps. Figure 4a shows

the machine’s undiscounted return (i.e.

∑
𝑡 𝑟

(𝑡 )

𝑚 ) evaluated in the

real environment (i.e. 𝑂𝑇𝑀) for three cases: centaur is our method,

naive is when the machine tries to execute its optimal solution to

𝑆𝑇𝑀𝑚 , and ideal is when the machine knows 𝑆𝑇𝑀ℎ and solves the

𝐵𝑅𝑀𝑚 exactly. Additionally, the human shows the human’s optimal

solution to 𝑆𝑇𝑀ℎ evaluated in the real environment. The centaur’s
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(a) The machine’s model is correct and the human’s
is wrong. The centaur shows the mean return for our
method with unknown (𝜖, 𝑐ℎ), naive is when the machine
executes the policy MCTS gives with 𝑆𝑇𝑀𝑚 , ignoring the
human. Ideal is the machine’s MCTS solution to known
true (𝜖, 𝑐ℎ). The shades represent one standard error.

(b) Themachine’smodel is wrong and the human’s is cor-
rect. The human is the best case policy. The naive per-
forms very badly since the machine is overridden many
times. Ideal knows human’s model, and the centaur can
quickly infer the human’s model and avoid getting over-
ridden by learning to perform the better policy.

Figure 4: Machine’s return in the Food Shelter environment
under overrides of a human, with (𝜖 = 0.45, 𝑐ℎ = 0.05, 𝑐𝑚 = 0.2).

performance is consistently above the naive and the human, since

in certain states it can nudge the human to allow diagonal actions.

Figure 4b shows the results for the case when the STMs of the two

agents are swapped: the human is correct and the machine is wrong.

The centaur learns to perform similarly to the human by inferring

the human’s model and using it to avoid getting overridden. This

way, the human effectively teaches the machine to perform a better

policy via overrides.

6 AN ANALYSIS OF THE PARTIALLY
OBSERVABLE CASES

Even though we have defined the HuMaCe and our algorithm in

general for partially-observable settings, the 𝑂𝑇𝑀 and the 𝑆𝑇𝑀s

have been fully observable in our empirical results in order to make

sure the qualitative aspects of the interaction between the human

and the machine are apparent. When both 𝑆𝑇𝑀ℎ and 𝑆𝑇𝑀𝑚 are

POMDPs, differences between observation models and transition

models can still be converted to differences in transition dynamics

in their corresponding fully-observable belief MDPs. However, this

does not reduce to the same setting described in Section 5.2. In the

fully observable case of Section 5.2, themachine and the human fully

agree on the state they are in, but in the case of partial observability

the two agents may disagree on this. Specifically, at any given time

𝑡 , the agents’ beliefs (𝑏ℎ,𝑡 , 𝑏𝑚,𝑡 ) may not be the same even if they

have the exact same action-observation history. This can happen

not only due to differences in transition or observation models,

but also due to differences in how the beliefs are maintained. If

𝑏ℎ,𝑡 ̸= 𝑏𝑚,𝑡 , then even when their value functions are the same,

the agents may still disagree on what action to take. This is an

additional challenge brought by partial observability, and we will

call it the belief alignment problem.

Here, we present an intuitive example followed by an analysis

of the belief alignment problem, and discuss its relation to the task

structure. Our analysis reveals a novel trade-off for centaurs: to be

able to nudge the human’s decisions, the machine must make sure

their beliefs are sufficiently aligned. However, aligning beliefs might

be costly, and in some cases this trade-off can make it infeasible

for the machine to augment the human. This result indicates the

importance of studying the partial observability for centaurs in

greater detail in future work.

An example for the belief alignment problem. Consider the Rock-
Sample environment in Figure 5. Here, a rover is rewarded for

picking good rock samples and penalized for picking bad ones. The

rover knows its position on the map and the position of the rocks,

but does not know the quality of the rocks. We denote the fully and

partially observed parts of the state variable with 𝑠𝑘 (known) and

𝑠𝑢 (unknown). The rover can measure any rock from any grid, but

the distance to the measured rock increases observation noise expo-

nentially with a rate determined by the sensor efficiency parameter.

When the rover is on top of the rock, the distance is zero, thus there

is no noise. Now, let the subjective models of the human and the ma-

chine be 𝑆𝑇𝑀ℎ and 𝑆𝑇𝑀𝑚 where the only difference between the

two is in the observation models𝑂ℎ ̸= 𝑂𝑚 : machine thinks the sen-

sor efficiency is quite high whereas the human thinks it is extremely

low. Let us also assume that the machine is correct about the true

sensor efficiency, therefore 𝑂𝑚 = 𝑂 . In this case, since the human

thinks observations are extremely noisy, their optimal policy is to

visit each rock, measure them on top for a noise-free observation,

pick the good ones and then exit. However, the rocks are quite far

apart and this wastes time. The machine knows that the true sensor

efficiency is much higher, and its optimal policy is to measure all

rocks from the starting corner and simply pick up the good ones.

Unfortunately, the human does not allow this and overrides. Quali-

tatively, a similar result to our previous experiments would be if

the machine learns a policy that, instead of measuring from the

start location, gets closer to the rocks before measuring. This way it

can avoid getting overridden, pick up the good rocks, and still save

some time compared to the human’s policy. Unfortunately, this may

not be possible. Since the measurements were not made on top of

the rocks, the human considers them very noisy. Therefore, after

receiving a "good" observation from a good rock, 𝑏ℎ changes ever

slightly while 𝑏𝑚 becomes confident that the rock is good, which

means the human may still not allow the machine to pick it up. The
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Figure 5: The RockSample environment. Red rocks are bad
quality and greens are good. The rovermust pick good rocks
and avoid picking bad rocks. The quality of the rocks are
partially observed through noisy measurement actions.

machine can try to convince the human by measuring the same

rock multiple times to get 𝑏ℎ closer to 𝑏𝑚 , however this can take

even longer than simply traversing all the rocks. We note that this

issue arises due to the properties of the RockSample environment

and not our model. Next, we examine what these properties are,

and derive theoretical results intended to guide further research.

Analysis of the RockSample task. In the rest of this section, wewill
analyse how the structure of transition and observation dynamics af-

fect the belief alignment problem by using the RockSample as a run-

ning example. Let us define two operators T𝑎
𝑖

(𝑏) and O𝑜,𝑎
𝑖

(𝑏) where

(T𝑎
𝑖
𝑏)(𝑠) =

∑
𝑠′ 𝑏(𝑠 ′)𝑇𝑖 (𝑠 | 𝑠 ′, 𝑎) and (O𝑜,𝑎

𝑖
𝑏)(𝑠) =

𝑏(𝑠)𝑂𝑖 (𝑜 |𝑠)∑
𝑠′ 𝑏(𝑠′)𝑂𝑖 (𝑜 |𝑠′) . The

former propagates a belief through the dynamics model and the

latter conditions it on the observation. Therefore, once an action

𝑎 is taken and observation 𝑜 is received, rational POMDP agents

update their beliefs with 𝑏 ′ = O𝑜,𝑎
𝑖

(T𝑎
𝑖

(𝑏)). For the rest of this sec-

tion, we will assume the human and the machine both have the

true dynamics model 𝑇ℎ = 𝑇𝑚 = 𝑇 . The dynamics of RockSample is

fully deterministic, and the transitions do not change the unknown

factor 𝑠𝑢 (quality of rocks) at all, which means T𝑎(𝑏) = 𝑏 for all 𝑎.

Moreover, only the measurement actions provide belief changing

observations, soO𝑜,𝑎
𝑖

(𝑏) = 𝑏 for any action other than measurement.

The following results specify how the sparsity of belief changing

observations and the fact that the transitions do not alter beliefs

severely limit the possibility of the two agents aligning their beliefs.

Definition 6.1 (Value of observation [10]). Given a hidden Markov

model with an observation distribution 𝑂 , let M𝑂
denote the ob-

servation matrix with entries 𝑂(𝑜 | 𝑠). HMM’s value of observation

𝛾 (𝑂) is defined as inf𝑥 : | |𝑥 | |1=1
| | M𝑂𝑥 | |1. If 𝛾 (𝑂) = 0 the process is

unobservable, and if it is 1, fully observed.

For a fixed centaur policy 𝜋𝑐 , the subjective POMDPs become

hidden Markov models, and the value of observation for each agent

depends on the 𝜋𝑐 . In RockSample, if 𝜋𝑐 does not execute any

measurement action, the value of observation is 0 for both agents

and their beliefs do not change. The more measurement actions 𝜋𝑐
executes, the higher the value of observations gets.

Next, we focus on how the structure of transition dynamics affect

agents’ belief updates.

Definition 6.2 (Minimal mixing rate [4]). For a Markovian process

with a stochastic transition dynamics 𝑇 , minimal mixing rate 𝛼(𝑇 )

is defined as min𝑠1,𝑠2

∑
𝑠′ min[𝑇 (𝑠 ′ | 𝑠1),𝑇 (𝑠 ′ | 𝑠2)].

The main result of Boyen and Koller [4] is that 𝐾𝐿(T𝑎(𝑏𝑚) | |
T𝑎(𝑏ℎ)) ≤ (1 − 𝛼(𝑇 ))𝐾𝐿(𝑏𝑚 | | 𝑏ℎ). When the transition dynamics

are deterministic, the 𝛼(𝑇 ) = 0, and the contraction result becomes

uninformative. In RockSample, it is obvious that since T𝑎(𝑏) = 𝑏, the

equality occurs. However, for deterministic dynamics in general,

the bound does not tell us whether the contraction happens or

not. The following lemma provides a necessary condition for the

inequality to be strict in the case of deterministic transitions. Its

proof is in Supplementary Section 1.2.

Lemma 6.3. Let T𝑎 be the deterministic transition matrix with
entries (𝑖, 𝑗 ) as 𝑇 (𝑠𝑖 | 𝑠 𝑗 , 𝑎) where T𝑎(𝑏) = T𝑎𝑏. If 𝑟𝑎𝑛𝑘(T𝑎) =| 𝑆 |
for all 𝑎 ∈ A, then 𝐾𝐿(T𝑎(𝑏𝑚) | | T𝑎(𝑏ℎ)) = 𝐾𝐿(𝑏𝑚 | | 𝑏ℎ) for all
𝑎 ∈ A and 𝑏ℎ, 𝑏𝑚 ∈ ∆(𝑆). Therefore, 𝑟𝑎𝑛𝑘(T𝑎) < | 𝑆 | is a necessary
condition for the strict inequality.

If 𝑟𝑎𝑛𝑘(T𝑎) < | 𝑆 | for some 𝑎 but it is | 𝑆 | for others, whether the
beliefs come closer or not will depend on 𝜋𝑐 . In general, for 𝛼(𝑇 ) = 0

(deterministic dynamics) and 𝛾 (𝑂) = 0 (unobservable), full-rank

transition matrices mean beliefs cannot contract. The condition of

Lemma 6.3 is indeed satisfied by the RockSample dynamics.

Next, we combine the value of observation with the minimal

mixing rate to derive a bound that describes under what conditions

the beliefs of two agents will come closer. The proof of the theorem

combines a lemma from Even-Dar et al. [10] with the theorem of

Boyen and Koller [4], and is given in Supplementary Section 1.2.

Theorem 6.4. For 𝑆𝑇𝑀ℎ = (S,A,𝑇 ,Ω, 𝑅,𝑂ℎ,𝑂𝑃𝑇 ) and 𝑆𝑇𝑀𝑚 =

(S,A,𝑇 ,Ω, 𝑅,𝑂𝑚,𝑂𝑃𝑇 ) with 𝑂𝑚 = 𝑂 , let 𝐾𝐿(𝑂𝑚(. | 𝑠, 𝑎) | | 𝑂ℎ(. |
𝑠, 𝑎)) ≤ 𝜖𝑂 for all (𝑠, 𝑎) ∈ S × A. Let T𝑎𝑐 be the transition matrix of
the hidden Markov model induced by a fixed centaur policy 𝜋𝑐 , with
entries 𝑇 (𝑠 ′ | 𝑠, 𝑎𝑐 ) where 𝑎𝑐 denotes the executed centaur action. The
belief updates satisfy the inequality;

E𝑜∼𝑂𝑚 (. |𝑏𝑚,𝑎𝑐 )
[𝐾𝐿(𝑏 ′𝑚 | | 𝑏 ′

ℎ
)] ≤

(
1 − 𝛼(T𝑎𝑐 )

)
𝐾𝐿(𝑏𝑚 | | 𝑏ℎ)

+ 𝛾 (𝑂𝑚)3

√
𝜖𝑂 −

(
𝛾 (𝑂𝑚)𝐾𝐿(𝑏𝑚 | | 𝑏ℎ)

√
2 log

1

𝜇

)
2

,

where 𝛾 (𝑂𝑚) > 0 is the induced HMM’s value of observation, the
𝛼(T𝑎𝑐 ) is its minimal mixing rate, and 𝜇 is a constant such that
𝑏ℎ(𝑠), 𝑏𝑚(𝑠) ≥ 𝜇 for all 𝑠 .

Theorem 6.4 shows that if the dynamics are deterministic and

the 𝑂𝑚 is unobservable, the beliefs will not expand. When the 𝑂𝑚

is fully observable, the contraction of beliefs depend on how bad the

human’s approximate observation model is (i.e. 𝜖𝑂 ). If the minimal

mixing rate cannot be influenced (e.g. deterministic dynamics), the

only thing machine can do to align beliefs is to increase 𝛾 (𝑂𝑚). In

RockSample, this means choosing a 𝜋𝑚 that gets moremeasurement

actions executed. However, the measurement actions cost time, and

this trade-off can make it infeasible for the machine to align the

human’s beliefs with its beliefs sufficiently.

7 RELATEDWORKS
Models and problems related to HuMaCe. Hybrid intelligence

has emerged as a paradigm for designing AI systems that amplify

human intelligence and decision-making [2]. Here, we see two

main directions of research: (I) Autonomous AI agents that try
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to influence the collective behaviour of humans positively and

(II) Semi-autonomous AI tries to influence its own user via ad-

vice, negotiation, or other means. In the former, previous works

have shown that self-driving cars can leverage their influence on

other human drivers to improve the traffic conditions for every

one [26, 36, 38, 39, 41]. This line of work is complementary to

ours, which follows the latter direction. Our machine focuses on

improving the outcome for its human user by influencing the deci-

sions, similar to behaviour change support systems [30]. The closest

model to our HuMaCe is the multi-view MDPs and c-intervention

games proposed by Dimitrakakis et al. [5], where the human and

the machine’s MDPs disagree only by transition probabilities and

the human may override the machine’s action. We generalize this

to partially observable environments and other types of disagree-

ments between models. Their interaction protocol is a Stackelberg

competition where the machine commits to a policy for the whole

horizon, and the human observes the machine’s policy and best-

responds. In many cases, it is more realistic to assume the human

will be able to observe the machine’s action, but not know its en-

tire policy, and it may not be possible to make the human act as a

follower. Thus, we designed our interaction protocol as a sequen-

tial game where the human has the advantage of observing the

machine’s action and then respond. Their work assumes the full

knowledge of the human’s 𝑆𝑇𝑀ℎ and the cost of effort 𝑐ℎ . We gen-

eralize this to learning the human’s 𝑆𝑇𝑀ℎ and 𝑐ℎ from interaction.

A similar yet less related model is the Helper Assistant MDP from

Fern et al. [12], which only considers the case when the human’s

goals are unknown and the machine can execute its actions without

permission.

Empirical evidence for our models of interactive human behaviour.
Altshuler and Sarne [3] introduced a sub-optimal decision-making

design for when the humans continuously control the autonomy

of an assistant system. Their human studies indicate that humans

may misjudge the system’s performance because their subjective

view of the world does not account for high stochasticity. Elmalech

et al. [7] have demonstrated that in systems that advise humans,

sometimes dispersing sub-optimal advice can increase the perfor-

mance compared to always dispersing optimal advice, because the

optimal advice may be too difficult for the human to heed. In the

experiments of Grgić-Hlača et al. [18] for legal decision-making, the

machine advice was more accurate than humans’ final decisions,

and humans were more likely to listen to the advice if they are

weakly incentivized. Hyperbolic discounting has been proposed as

a good model for time-inconsistent behaviour, consistent with the

empirical evidence from human studies [1, 8, 9, 17, 23]. Previous

work in behavioural economics investigated the structure of plan-

ning problems where human time-inconsistency may be harmful

[24, 25]. The solutions proposed in these works forbid some op-

tions of the human by removing them, and therefore not suitable

as actions for an AI.

8 CONCLUSION
Designers of collaborative AI agents cannot assume that human

users will share the same view of the world with the AI. We formal-

ized a general multiagent framework for modelling the decision-

making of half-human half-AI agents, centaurs, and showed that

when equipped with an expressive model space for the human

behaviour, the AI can learn how to improve a human’s decisions,

or improve its own decisions with the help of a human. Cognitive

science can provide us with models useful for learning from human

decisions. Sufficient statistics can be drawn from these models and

used in multiagent reinforcement learning for assisting humans.

Finally, we identified a novel trade-off for partially observable cases

which highlights the importance of future work on partial observ-

ability for centaurs.

9 DISCUSSIONS AND FUTUREWORK
The human in a centaur is modelled as a decision-maker who may
be imperfect due to their bounded-rationality. Of course, all models

of humans are wrong, but some are useful. We need not claim

that our method can identify the true model of human decisions,

just that given a good model space it can infer a useful model for

assistance. In our interaction protocol, the AI cannot prohibit any

trajectory. For instance, completely ignoring the AI and committing

to always overriding is an admissible strategy for the human in

the sequential game. We consider the human as an independent,

self-interested agent, and the 𝑐ℎ comes from their own incentives.

This formulation can capture various human factors in automation,

such as automation misuse where the human is over-reliant on

the AI (very high 𝑐ℎ) or automation disuse (very low 𝑐ℎ) [33]. The

STMs allow us to capture a rich set of differences between humans

and AI systems. Since the STMs are surrogates for an objective task

model, the subjective views of agents are not arbitrarily different.

This is both realistic and computationally useful, since it reduces

the size of the model space of humans.

Limitations and future work. BRMs can capture a wide range of

behaviours, including bounded-rationality, and our experiments in-

dicate that even infinite model spaces may lead to finite behavioural

equivalence classes. Our framework is not limited to machine-

optimistic humans, and future work can consider more advanced

models for the human such as learning agents with bounded adap-

tation capabilities to the machine’s behaviour. A richer action space

can allow the machine to explain its reasoning by presenting its pre-

dictions to the human. An adaptive human can also learn a better

𝑂ℎ through interaction, which opens further theoretical questions

such as how the learning rate of the human and the machine affect

the belief contraction. In the most general case, the human would

use a BRM and model the machine just as the machine models

them, which leads to an infinite recursion of beliefs. Previous work

indicates that humans on average do not recurse too deep when rea-

soning about others [6], and a fixed-depth recursion is still tractable

within our framework thanks to Zettlemoyer et al. [42].
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