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Abstract
Multi-agent reinforcement learning (MARL) requires coordination

by some means of interaction between agents to efficiently solve

tasks. Interaction graphs allow reasoning about joint actions based

on the local structure of interactions, but they disregard the po-

tential impact of an agent’s action on its neighbors’ behaviors,

which could rapidly alter in dynamic settings. In this paper, we thus

present a novel perspective on opponent modeling in domains with

only local interactions using (level-1) Graph Probabilistic Recursive
Reasoning (GrPR2). Unlike previous work on recursive reasoning,

each agent iteratively best-responds to other agents’ policies over
all possible local interactions. Agents’ policies are approximated via

a variational Bayes scheme for capturing their uncertainties, and

we prove that an induced variant of Q-learning converges under

self-play when there exists only one Nash equilibrium. In coop-
erative settings, we further devise a variational lower bound on

the likelihood of each agent’s optimality. Opposed to other mod-

els, optimizing the resulting objective prevents each agent from

attaining an unrealistic modelling of others, and yields an exact tab-

ular Q-iteration method that holds convergence guarantees. Then,

we deepen the recursion to level-𝑘 via Cognitive Hierarchy GrPR2
(GrPR2-CH), which lets each level-𝑘 player best-respond to amix-
ture of strictly lower levels in the hierarchy. We prove that: (1)

level-3 reasoning is the optimal hierarchical level, maximiz-

ing each agent’s expected return; and (2) the weak spot of the
classical CH models is that 0-level is uniformly distributed,
as itmay introduce policy bias. Finally, we propose a practical actor-

critic scheme, and illustrate that GrPR2-CH outperforms strong

MARL baselines in the particle environment.
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1 Introduction
Humans are capable of wisely and recursively choosing when to con-
vey latent mental contents (e.g., beliefs, desires, intentions [24, 54])

and whom to interact with. In the progression of multi-agent rein-

forcement learning (MARL) in mimicking such human intelligence,
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a milestone of an agent is its ability to understand and interact

with other agents [40]. Naturally, MARL requires coordination by

some means of interaction between agents to efficiently solve tasks.

Interaction graphs allow reasoning about the joint action based on

the local structure of interactions, yet prior studies disregard the

potential impact of an agent’s action on its neighbors’ behaviors.

In problems where the graph structure is dynamic due to changing

coordination requirements as actions rapidly alter, such reasoning

becomes even more crucial since each agent should dynamically

select which agents to attend for querying relevant information.

In this paper, our main goal is modelling locality of interac-

tions via a graph structure, while regarding the potential impact

of an agent’s action on its neighbors’ behaviors. After augment-

ing decentralized partially observable MDPs (Dec-POMDPs) [52]

to support interaction graphs, and inspired by recursive reason-
ing [11, 18, 19], we thus present a novel perspective on opponent

modeling in domains with only local interactions using (level-1)

Graph Probabilistic Recursive Reasoning (GrPR2), so as to incor-

porate both aspects into each agent’s decision making. Namely,

unlike prior work on adopting recursive reasoning into the MARL

settings [68, 71, 72], according to our model each agent iteratively

best-responds to other agents’ policies over all possible local inter-
actions. Agents’ policies are approximated via a variational Bayes

scheme for capturing their uncertainties, and we prove that an in-

duced variant of Q-learning converges under self-play when there

exists only one Nash equilibrium. In cooperative MARL, we further

devise a variational lower bound on the likelihood of each agent’s

optimality. Opposed to other schemes [3, 28], optimizing the re-

sulting objective prevents each agent from attaining an unrealistic

modelling of others, and yields an exact tabular Q-iteration method

with convergence guarantees.

In humans’ decision making, instead of assuming people are per-

fectly rational, bounded rationality [61] enables to exhibit varying

hierarchical levels of reasoning. Following the cognitive hierarchy
(CH) model [5, 72], we thus deepen the recursion to level-𝑘 using

CH by introducingGrPR2-CH, which lets each level-𝑘 player best-

respond to a mixture of strictly lower levels in the hierarchy. We

prove that level-3 reasoning is the optimal hierarchical level,
maximizing each agent’s expected return. Specifically, it yields
the maximal monotonic improvement in the expected return be-

tween two subsequent levels of reasoning. We also demonstrate the

weak spot of the classical Level-𝑘 [31] CH models: since an agent’s

0-level policy is uniformly distributed, it may be far from the
optimal policy, thus biasing the final policy. Finally, we pro-
pose a practical actor-critic scheme, and illustrate that GrPR2-CH

outperforms strong MARL baselines in the particle environment.



2 Related Work
Many problems in RL [66] (e.g., multi-robot control [48], analysis

of social dilemmas [42]) operate as multi-agent systems. Notorious

successes of RL are mostly restricted to single agent domains (e.g.,

robot manipulation [13, 53], Atari [50]), though transferring these

methods into MARL is challenging. This stems from independent
learning’s lack in information sharing, thus making it difficult to

learn coordinated strategies that depend on interactions between

multiple agents [15]. Such non-stationarity makes it incompatible

with the experience replay memory on which deep RL relies [16].

Multi-agent coordination [4, 21, 22] is one of such challenging

problems. Some works extend variants of actor-critic schemes to

MARL settings and learn decentralized policies via centralized crit-

ics (e.g., DDPG [45], MADDPG [47], COMA [15]). Other studies fo-

cus on function decomposition schemes that gradually increase the

representation ability of the global value function (e.g., QMIX [57],

VDN [64]. Yet, they operate without explicit interactions. In fact,

interactions can lead to increased exploration, higher rewards, and

a higher diversity of solutions in both simulated high-dimensional

optimization problems [1] and human experiments [41].

In contrast, [25] introduced Coordination Graphs (CG), which
allow explicit modeling of the locality of interactions and formal

reasoning about joint actions given the coordination graph struc-

ture. CGs were applied to tabular RL [38], and then extended to

function approximation via neural networks (NNs) [2]. Though

the CG terminology is focused on using a graph structure to de-

compose payoffs and utilities, we regard this structure as means

for controlling when and whom to interact with for querying rel-

evant information. Further, most of these approaches assume a

domain dependent static interaction graph, where we assume it to

be dynamic and state dependent. Another notable line of research is

MARL with communication, which enables agents to communicate

and exchange messages during execution (e.g., DIAL [17], IC3Net

[63], FlowComm [12]). Although our work can be applied to such

studies, we do not pose the restriction that agents have access to

high-dimensional encodings of others’ local information. Instead,

agents learn a binary attention encapsulated by an adjacencymatrix,

which is used for sharing less-sophisticated information.

Despite recent attempts to learn such dynamic structure by do-

main heuristics [30, 37] and NNs [2, 44], all works mentioned so far

disregard the potential impact of an agent’s action on its neighbors’

behaviors. Recently, following human intelligence [5, 6, 23, 55],

recursive reasoning [11, 18, 19] about the potential impacts on all
other agents’ behaviors has become popular in opponent mod-

elling. Studies on Theory of Mind (ToM) [20, 56, 60] are used for

modelling an agent’s belief on opponents’ mental states in RL do-

mains. Interactive POMDP (I-POMDP) [18] implements ToM by

augmenting POMDPs with an extra space for building the beliefs

about opponents’ intentions during planning, and making agents

acting optimally with respect to such predicted intentions. How-

ever, I-POMDP has limitations in its solvability due to its inherent

complexity [59]. GrPR2 differs from I-POMDP as it employs a hier-

archical structure for opponent modeling and does not adjust the

MDP. Instead, the recursive reasoning is implemented via a proba-

bilistic scheme and enables opponents with different hierarchical

levels of thinking. In fact, our method is most related to Gener-

alized Recursive Reasoning (GR2) [72]. Yet, GR2 does not target

modelling locality of interactions, and does not explore the optimal

hierarchical level of reasoning, as well as the drawbacks inherent in

CH models [5, 72]. In this work, we extend GR2 to address locality

of interactions and theoretically answer the later questions.

For modelling optimality, a common approach is casting RL into

an inference problem by introducing a binary random variable

representing “optimality” [43, 58, 70]. In single-agent and Bayesian

RL, maximizing entropy improves the diversity [14], and presents in

the evidence lower bound for the log-likelihood of optimality [7, 26].

In MARL, the existence of other agents increases uncertainties in

the environment, and thus [68] attempt to address this issue by

reformulating theMARL problem into Bayesian inference. However,

local interactions pose an additional challenge. We thus bridge this

gap by embedding the graph structure into the inference problem.

3 Problem Setup
3.1 Graphical Decentralized POMDPs
We consider the MARL problem as a decentralized partially ob-

servable Markov game (Dec-POMDPs) [52], where agents per-

form selective interactions based an interaction graph. Formally,

a Graphical Dec-POMDP (GDec-POMDP) can be described by a

tuple 𝑀 = ⟨S,N , {U𝑖 }𝑖∈N ,P, {𝑟 𝑖 }𝑖∈N , {Ω𝑖 }𝑖∈N , 𝑝0, 𝛾⟩, in which

𝑛 agents N := {1, . . . , 𝑛} perform sequential actions with a state

space S. At time 𝑡 , interactions are restricted to a interaction graph
depicted by an adjacency matrixA𝑡 ∈ B ⊆ {0, 1}𝑛×𝑛 , withA𝑖 𝑗

𝑡 = 1

if and only if agent 𝑗 interacts directly with agent 𝑖 , and A𝑖 𝑗
𝑡 = 0

otherwise. Being in state 𝑠𝑡 ∈ S, each agent 𝑖 ∈ N executes an

action 𝑢𝑖𝑡 ∈ U𝑖
, forming a joint action 𝑢𝑡 ∈ ∏

𝑖∈N U𝑖 =: U
which induces a transition in the environment via the transition

function P : S × U × S → [0, 1], where 𝑝0 is the distribu-

tion of the initial state. Correspondingly, agent 𝑖 determines its

individual reward 𝑟 𝑖𝑡 via 𝑟 𝑖 : S × U → R, and receives a pri-

vate observation 𝜔𝑖𝑡 := 𝑜𝑖 (𝑠𝑡 ,A𝑡 ) ∈ Ω𝑖 correlated with the state

and the interaction graph by 𝑜𝑖 : S × B → Ω𝑖 . Each agent has

a local stochastic policy 𝜋𝑖
𝜃𝑖
(𝑢𝑖𝑡 |𝜔𝑖𝑡 ) with parameters 𝜃𝑖 , specify-

ing the probability of taking an action. Denoting 𝜃−𝑖 = (𝜃𝑖 ) 𝑗≠𝑖 ,
𝑢−𝑖𝑡 = (𝑢 𝑗𝑡 ) 𝑗≠𝑖 , 𝜔−𝑖

𝑡 = (𝜔 𝑗𝑡 ) 𝑗≠𝑖 , we let 𝜋−𝑖
𝜃−𝑖

(𝑢−𝑖𝑡 |𝜔−𝑖
𝑡 ) be a latent

representation of the joint policy of all complementary agents of

𝑖 . Letting 𝑅𝑖𝑡 (𝑠𝑡 , 𝑢𝑖𝑡 , 𝑢−𝑖𝑡 ) =
∑∞
ℓ=0

𝛾 ℓ𝑟 𝑖
𝑡+ℓ (𝑠𝑡 , 𝑢

𝑖
𝑡 , 𝑢

−𝑖
𝑡 ), each agent 𝑖 is

presumed to pursue the maximal cumulative reward [65]:

𝜂𝑖 (𝜋𝑖
𝜃𝑖
, 𝜋−𝑖
𝜃−𝑖 ) = E(𝑠𝑡 ,𝑢𝑖𝑡 ,𝑢−𝑖𝑡 )∼P,𝜋𝑖

𝜃𝑖
,𝜋−𝑖

𝜃−𝑖
[𝑅𝑖𝑡 (𝑠𝑡 , 𝑢𝑖𝑡 , 𝑢−𝑖𝑡 )] (1)

Similarly, let 𝑉 𝑖𝜋𝜃 (𝑠) = E[𝑅𝑖𝑡 |𝑠𝑡 = 𝑠] and 𝑄𝑖𝜋𝜃 (𝑠,𝑢) = E[𝑅𝑖𝑡 |𝑠𝑡 =

𝑠,𝑢𝑡 = 𝑢] be the local state- and action-value (resp.) functions of

agent 𝑖 , where 𝜋𝜃 = (𝜋𝑖
𝜃𝑖
, 𝜋−𝑖
𝜃−𝑖

) denotes the joint policy.

3.2 Correlated Interaction Topology
Let 𝜌 : B × S → [0, 1] be the true posterior distribution over

adjacency matrices conditioned on the agents’ global state. Du et

al. [12] approximate 𝜌 via learning a centralized graph reasoning

policy 𝜌𝜑 with parameters 𝜑 given by a normalizing flow (See

Appendix B [10]), and thus follow the centralized training with
decentralized execution (CTDE) paradigm [39, 52]. Further, instead



of assuming the graph is symmetric and undirected [36, 62], we

build a directed graph to allow each agent to dynamically select

the agents for coordination. As such, [12] factorize the joint policy

while assuming conditional independence of actions from different

agents, i.e., 𝜋𝜃 (𝑢𝑖 , 𝑢−𝑖 ,A|𝜔) = 𝜋𝑖
𝜃𝑖
(𝑢𝑖 |𝜔𝑖 )𝜋−𝑖

𝜃−𝑖
(𝑢−𝑖 |𝜔−𝑖 )𝜌𝜑 (A|𝑠).

In Appendix A [10] we provide the following policy gradient:

∇𝜃𝑖𝜂𝑖 = E[log 𝜌𝜑 (A|𝑠)∇𝜃𝑖 log𝜋𝑖
𝜃𝑖
(𝑢𝑖 |𝑜𝑖 (𝑠,A))·

· ∫
𝑢−𝑖

𝜋−𝑖
𝜃−𝑖 (𝑢

−𝑖 |𝑜−𝑖 (𝑠,A))𝑄𝑖 (𝑠,𝑢𝑖 , 𝑢−𝑖 )d𝑢−𝑖 ] (2)

where 𝑠 ∼ 𝑝,𝑢𝑖 ∼ 𝜋𝑖
𝜃𝑖
,A ∼ 𝜌𝜑 . Opposed to [12], we make the novel

insight that (2) states that each agent should improve its policy

toward the direction of its best response to other agents’ strategies

over all possible interactions. This indicates the vulnerability of 𝜋𝜃 ’s
non-correlated factorization: it ignores impacts of one agent’s action
on others, and their subsequent reactions. For instance, consider a two-
player zero-sum differential game, where two agents act in 𝑥 and 𝑦

with the reward functions defined by (𝑥𝑦,−𝑥𝑦) and 𝜌𝜑 (J2) = 1 (J2

is the all-ones 2 × 2 matrix). Following the non-correlated policy,

both agents are reinforced to trace a cyclic trajectory that never
converges to the equilibrium [49, 71].

4 Graph Probabilistic Recursive Reasoning
As a remedy for the weakness exhibited by a non-correlated joint

policy, we herein extend [71] to graph probabilistic recursive reason-
ing (GrPR2), which applies to GDec-POMDPs. Specifically, unlike

previous works, each agent 𝑖 takes an iterative best response to

other agents’ policies, over all possible interactions induced by the

interaction graph. Thereby, we restate the joint policy at time 𝑡 as:

𝜋𝜃 (𝑢𝑖𝑡 , 𝑢−𝑖𝑡 ,A𝑡 |𝑠𝑡 ) = 𝜋𝑖
𝜃𝑖
(𝑢𝑖𝑡 |𝜔𝑖𝑡 )𝜋−𝑖𝜃−𝑖 (𝑢

−𝑖
𝑡 |𝜔−𝑖

𝑡 , 𝑢𝑖𝑡 )𝜌𝜑 (A𝑡 |𝑠𝑡 ) (3)

where 𝜋−𝑖
𝜃−𝑖

(𝑢−𝑖𝑡 |𝜔−𝑖
𝑡 , 𝑢𝑖𝑡 ) represents other agents’ consideration of

agent 𝑖’s action 𝑢𝑖𝑡 ∼ 𝜋𝑖
𝜃𝑖
(·|𝜔𝑖𝑡 ), provided their own observations

𝜔−𝑖
𝑡 induced by the interaction graph A𝑡 ∼ 𝜌𝜑 (·|𝑠𝑡 ). A level-1

recursive scheme is formed, from both agent 𝑖’s and other agents’

perspectives. Full knowledge regarding the actual conditional policy

𝜋−𝑖
𝜃−𝑖

is impractical, which can be approximated by a best-fit model

𝜓−𝑖
𝜙−𝑖 (𝑢−𝑖𝑡 |𝑠𝑡 ,A𝑡 , 𝑢

𝑖
𝑡 ) with parameters 𝜙−𝑖 . Hence, (3) is estimated

by 𝜋𝑖
𝜃
, after substituting 𝜋−𝑖

𝜃−𝑖
with𝜓−𝑖

𝜙−𝑖 . The learning task can thus

be re-formulated as maximizing (1) with respect to 𝜃𝑖 , 𝜑 and 𝜙−𝑖 .
Under the GrPR2 settings, we provide a new graphical multi-

agent policy gradient theorem (Subsection 4.1). By variational infer-

ence, we then capture the uncertainties of other agents’ conditional

policies for the sake of their approximation (Subsection 4.2).

4.1 GrPR2 – Policy Gradients
In Lemma 4.1, we establish the GrPR2 policy gradient for updating

𝜃𝑖 and 𝜑 , resp. (See Appendix C for a detailed proof [10]).

Lemma 4.1. ∇𝜃𝑖𝜂𝑖 ≈ E[log 𝜌𝜑 (A|𝑠)∇𝜃𝑖 log𝜋𝑖
𝜃𝑖
(𝑢𝑖 |𝑜𝑖 (𝑠,A)) ·

𝑄𝑖
𝜓−𝑖
𝜙−𝑖

(𝑠,𝑢𝑖 )] and ∇𝜑𝜂𝑖 ≈ E𝑠∼𝑝,A∼𝜌𝜑 [∇𝜑 log 𝜌𝜑 (A|𝑠)𝑄𝑖
𝜓−𝑖
𝜙−𝑖

(𝑠)],

where 𝑄𝑖
𝜓−𝑖
𝜙−𝑖

(𝑠,𝑢𝑖 ) :=
∫
𝑢−𝑖 𝜓

−𝑖
𝜙−𝑖 (𝑢−𝑖 |𝑠,A, 𝑢𝑖 )𝑄𝑖 (𝑠,𝑢𝑖 , 𝑢−𝑖 )d𝑢−𝑖 ,

𝑄𝑖
𝜓−𝑖
𝜙−𝑖

(𝑠) :=
∫
𝑢𝑖
𝑄𝑖
𝜓−𝑖
𝜙−𝑖

(𝑠,𝑢𝑖 )d𝑢𝑖 , and 𝑠 ∼ 𝑝,𝑢𝑖 ∼ 𝜋𝑖
𝜃𝑖
,A ∼ 𝜌𝜑 .

Opposed to [12, 71], we note that the direction of the policy up-

dates are guided by terms which shape the reward after considering

the affect upon agent 𝑖’s neighbors over all possible interactions.

4.2 Variational Inference of Agents’ Policies
We infer𝜓−𝑖

𝜙−𝑖 via variational inference (VI) [32]. Let𝜏 = (𝑠𝑡 ,A𝑡 , 𝑢𝑡 )𝑇𝑡=1

be the trajectory of length 𝑇 > 0. Assuming that the agent can-

not influence the environment transition probability, each agent 𝑖

approximates the true distribution 𝑝 (𝜏) of 𝜏 being generated via:

𝑝𝜋
𝜃𝑖
(𝜏) = 𝑝 (𝑠1)

𝑇∏
𝑡=1

𝑝 (𝑠𝑡 |𝑠𝑡 , 𝑢𝑖𝑡 , 𝑢−𝑖𝑡 ,A𝑡 )𝜋𝑖𝜃 (𝑢
𝑖
𝑡 , 𝑢

−𝑖
𝑡 ,A𝑡 |𝑠𝑡 ) (4)

Accordingly, each agent 𝑖 aims to find the best approximation of 𝜋𝑖
𝜃
,

which can be achieved via minimizing the KL-divergence, given as

follows (See Appendix D.1 for details [10]):

𝐷𝐾𝐿 (𝑝𝑖 (𝜏) | |𝑝 (𝜏)) = −
𝑇
∑
𝑡=0

E[𝑟 𝑖 (𝑠𝑡 , 𝑢𝑡 )+H(𝜋𝑖𝜃 (𝑢
𝑖
𝑡 , 𝑢

−𝑖
𝑡 ,A𝑡 |𝑠𝑡 ))] (5)

where 𝑠𝑡 , 𝑢𝑡 ,A𝑡 ∼ 𝑝𝑖 . The entropy term H(·), conditioned on both

the state and agent 𝑖’s action, promotes the explorations for agent

𝑖’s best response, other agents’ estimated policy and interaction

graphs. Minimizing (5) yields the following theorem.

Theorem 4.2. Agent 𝑖’s optimal Q-function, which minimizes (5),
is𝑄𝑖𝜋

𝜃𝑖
(𝑠,𝑢𝑖 ) = log

∫
𝑢−𝑖 exp(𝑄𝑖𝜋𝜃 (𝑠,𝑢

𝑖 , 𝑢−𝑖 ))d𝑢−𝑖 , and the respective
optimal conditional policies of other agents is 𝜓−𝑖

𝜙−𝑖 (𝑢−𝑖 |𝑠,A, 𝑢𝑖 ) =
1

𝑍
exp(𝑄𝑖𝜋𝜃 (𝑠,𝑢

𝑖 , 𝑢−𝑖 ) −𝑄𝑖𝜋
𝜃𝑖
(𝑠,𝑢𝑖 )) (See Appendix D.2 [10]).

Theorem 4.2 yields that𝜓−𝑖
𝜙−𝑖 can be learned by minimizing the

KL-divergence between it and the advantage function exp(𝑄𝑖𝜋𝜃 −
𝑄𝑖𝜋

𝜃𝑖
). We define the GrPR2 soft Bellman evaluation operator by

T𝑄𝑖𝜋𝜃 (𝑠,𝑢
𝑖 , 𝑢−𝑖 ) = 𝑟 𝑖 (𝑠,𝑢𝑖 , 𝑢−𝑖 )+𝛾E[𝑄𝑖𝜋

𝜃𝑖
(𝑠 ′, (𝑢𝑖 )′)], where 𝑠 ′, (𝑢𝑖 )′

∼ 𝑝, 𝜋𝜃𝑖 . In the following theorem, we prove the convergence under

self-play when there is one equilibrium, which leads to a fixed-point

iteration that resembles value iteration.

Theorem 4.3. In a symmetric game with only one equilibrium and
with a Q-function 𝑄★ and a policy 𝜋★, T is a contraction mapping if
the equilibrium is either of the following: (1) the global optimum, i.e.,
E𝜋★ [𝑄𝑖 ] ≥ E𝜋 [𝑄𝑖 ]; (2) a saddle point, i.e., E𝜋★ [𝑄𝑖 ] ≥ E𝜋𝑖E𝜋−𝑖

★
[𝑄𝑖 ]

or E𝜋★ [𝑄𝑖 ] ≥ E𝜋𝑖★E𝜋−𝑖 [𝑄𝑖 ] (See Appendix D.3 [10]).

5 Optimality in Cooperative MARL
In this section, we initially devise a variational lower bound on

the likelihood of each agent’s optimality in the cooperative MARL

(CMARL) version of the GrPR2 settings (Subsection 5.1). Then, we

discuss themanner in which policies are learned for its optimization.

Finally, we propose an exact tabular Q-iteration method that holds

convergence guarantees (Subsection 5.2).

5.1 The Variational Lower Bound of Optimality
Extending [68], we supply a variational lower bound on the likeli-

hood of each agent’s optimality in the cooperative MARL (CMARL)

version of the GDec-POMDP settings. Formally, an optimal behav-
ior in such settings stands for agent 𝑖 best responding to other agents’



Figure 1: At state 𝑠, GrPR2 (3) decomposes the correlated in-
teractions between agents. 1○: agent 𝑖 considers each possi-
ble adjacency matrix, as sampled from its graph reasoning
policy 𝜌𝜑𝑖 , inducing a probability distribution over latent ad-
jacency matrices (See Appendix B [10]). 𝑖’s opponents per-
form the same procedurew.r.t. 𝜌𝜑−𝑖 . 2○: agent 𝑖 best responds,
after accounting all possible topologies and potential im-
pacts on actions executed by its opponents given its own
action 𝑢𝑖 . 3○: agent 𝑖’s behavior is the prior of other agents
for them to learn their own impact on agent 𝑖. 4○- 5○: as in
2○- 3○, from the perspective of agent 𝑖’s opponents. Iterating
over those steps yields the recursive reasoning procedure
compound by GrPR2, while affecting agent 𝑖’s optimality 𝜗𝑖 .
Under the setups of Sections 4–5, the lemmas and theorems
specify how the optimal conditional policies are learned.

policy 𝜋−𝑖
𝜃−𝑖

. Letting 𝑉 𝑖 (𝑠;𝜋𝑖 , 𝜋−𝑖 ) := 𝑉 𝑖𝜋 (𝑠) for any valid joint pol-

icy 𝜋 , it can be defined as the policy 𝜋𝑖★ with 𝑉 𝑖 (𝑠;𝜋𝑖★, 𝜋−𝑖𝜃−𝑖 ) ≥
𝑉 𝑖 (𝑠;𝜋𝑖

𝜃𝑖
, 𝜋𝜃−𝑖 ) for all valid 𝜋𝑖

𝜃𝑖
. Clearly, if all agents act in best

response to others, the game reaches a Nash equilibrium [51].

Since GRP2 is a probabilistic model, we introduce a binary ran-

dom variable 𝜗𝑖𝑡 ∈ {0, 1}, standing for the optimality of agent 𝑖’s pol-

icy at time 𝑡 . Opposed to previous work on recursive reasoning [68,

72], 𝜗𝑖𝑡 is not only dependent on the joint actions, but also on the in-

teraction graph. Accordingly, we assume that given that other play-

ers act optimally, the higher the reward agent 𝑖 receives, the higher

the probability that agent 𝑖’s current policy is optimal, i.e., P(𝜗𝑖𝑡 =
1|𝜗−𝑖𝑡 = 1, 𝑠𝑡 , 𝑢

𝑖
𝑡 , 𝑢

−𝑖
𝑡 ,A𝑖

𝑡 ) ∝ exp(𝑟 𝑖 (𝑠𝑡 , 𝑢𝑖𝑡 , 𝑢−𝑖𝑡 )). In the CMARL, if all

agents play optimally, then agents receive themaximum reward that

is also the Nash equilibrium (NE). Hence, from agent 𝑖’s perspective,

it aims to maximize P(𝜗𝑖
1:𝑇

= 1|𝜗−𝑖
1:𝑇

= 1), which is the probability

of obtaining its maximum cumulative reward (i.e., best response)

towards the NE along a trajectory 𝜏𝑖 := [(𝑠𝑡 , 𝑢𝑖𝑡 , 𝑢−𝑖𝑡 ,A𝑖
𝑡 )]𝑇𝑡=1

. Here-

after, we omit 𝜗𝑡 ’s value for brevity. As we assume no knowledge

of the optimal policies and the model of the environment, we treat

them as latent variables. Thus, we apply VI [32] with an auxiliary

distribution 𝑞𝑖 (𝜏𝑖 |𝜗𝑖
1:𝑇

, 𝜗−𝑖
1:𝑇

). 𝑞𝑖 captures agent 𝑖’s conditional pol-
icy on the current state, its reasoning on the interaction graph, other

agents’ actions and the beliefs regarding their actions. Accordingly,

agent 𝑖 will learn the optimal policy, while modelling its neigh-

bors’ actions. We regard the variational form 𝑞𝑖 (𝜏𝑖 |𝜗𝑖
1:𝑇

, 𝜗−𝑖
1:𝑇

) =

P(𝑠1)
∏𝑇
𝑡=2
P(𝑠𝑡+1 |𝑠𝑡 , 𝑢𝑡 ,A𝑖

𝑡 )𝜋𝜃 (𝑢𝑖𝑡 , 𝑢−𝑖𝑡 ,A𝑡 |𝑠𝑡 ), where we refer to
an alternate decomposition of the joint policy: 𝜋𝜃 (𝑢𝑖𝑡 , 𝑢−𝑖𝑡 ,A𝑡 |𝑠𝑡 ) =
𝜋𝑖
𝜃𝑖
(𝑢𝑖𝑡 |𝜔𝑖𝑡 , 𝑢−𝑖𝑡 )𝜓−𝑖

𝜙−𝑖 (𝑢−𝑖𝑡 |𝑠𝑡 ,A𝑡 )𝜌𝜑𝑖 (A𝑡 |𝑠𝑡 ). Intuitively, this decou-
pling dictates that agent 𝑖 will best respond to all potential actions

of its neighbors. Thereby, agent 𝑖’s modelling𝜓−𝑖
𝜙−𝑖 of other agents’

policies will approach its optimum ahead of agent 𝑖’s own policy,

and thus help agents to establish a mutual trust. We derive the

following objective of agent 𝑖 (where 𝑠𝑡 , 𝑢𝑡 ,A𝑡 ∼ 𝑝𝑖 ):

J 𝑖 (𝜋𝑖
𝜃
) :=

𝑇
∑
𝑡=0

E
[
E𝑢𝑡 [𝑟 𝑖 (𝑠𝑡 , 𝑢𝑖𝑡 , 𝑢−𝑖𝑡 ) + H(𝜋𝑖

𝜃𝑖
(𝑢𝑖𝑡 |𝜔𝑖𝑡 , 𝑢−𝑖𝑡 ))] (6)

−E𝑢−𝑖𝑡 [𝐷𝐾𝐿 (𝜌𝜑𝑖 (A𝑡 |𝑠𝑡 ) | |P(A𝑡 |𝑠𝑡 ))+ (7)

+𝐷𝐾𝐿 (𝜓−𝑖
𝜙−𝑖 (𝑢−𝑖𝑡 |𝑠𝑡 ,A𝑡 ) | |P(𝑢−𝑖𝑡 |𝑠𝑡 ,A𝑡 , 𝜗

−𝑖
𝑡 ))]

]
(8)

which is a lower bound on the likelihood of logP(𝜗𝑖
1:𝑇

|𝜗−𝑖
1:𝑇

) (The
derivation is deferred to Appendix F [10]). As we are solely focused

on the case where 𝜗𝑖𝑡 = 𝜗−𝑖𝑡 = 1, they are omitted hereafter.

We make the observation that (6)-(8) resemble the maximum

entropy objective in single-agent RL [26, 33, 69]. In the context of

CMARL, we note that trajectories generated by policies updated

by optimizing the entropy term in (6) also optimizes both 𝜓−𝑖
𝜙−𝑖 ,

𝑄𝑖𝜋𝜃 and 𝜌𝜑𝑖 . Indeed, without the regularizers (7)-(8), at iteration 𝑑 ,

we: (1) fix 𝜋
𝑖,𝑑

𝜃𝑖
to learn𝜓

−𝑖,𝑑+1

𝜙−𝑖 according to the interaction graphs

generated by 𝜌𝑑
𝜑𝑖 ; (2) learn 𝜋

𝑖,𝑑+1

𝜃𝑖
by the trajectories generated by

𝜓
−𝑖,𝑑+1

𝜙−𝑖 and 𝜌𝑑
𝜑𝑖 ; and (3) fix 𝜋

𝑖,𝑑+1

𝜃𝑖
and𝜓

−𝑖,𝑑+1

𝜙−𝑖 for learning 𝜌𝑑+1

𝜑𝑖 . An

EM-like scheme is induced, whose E-step ((1)-(2)) converges to the

optimal conditional policies as proved in Theorem 5.1. We prove

the convergence of the EM-like algorithm in Appendix H [10].

Yet, it is unrealistic to train such models since other agents have

no access to agent 𝑖’s policy, and thus their learning of agent 𝑖’s

policy might substantially differ from its true conditional policy 𝜋𝑖
𝜃𝑖
.

Hence, best responding to policies that are far from the actual ones

(from either agent 𝑖’s or other agents’ perspective) can lead to poor

performance. Fortunately, (7)-(8) prevent agent 𝑖 from attaining

an unrealistic modelling of other agents’ policies. (8) concerns the

prior P(𝑢−𝑖𝑡 |𝑠𝑡 ,A𝑡 ) of optimal conditional policies of agents other

than agent 𝑖 . Via setting it to be the observed empirical distribution

of other agents’ actions given states, the KL-divergence penalizes

for deviating from the empirical distribution. Similarly, the same

applies to (7) that regards P(A𝑡 |𝑠𝑡 ), which is the prior of adjacency

matrices. We remark that this indicates the vulnerability of (5)

opposed to (6)-(8), which is minimized for merely estimating other

agents’ policies without accounting for any sort of optimality. See
Figure 1 for the established reasoning structure w.r.t. (3).

5.2 Graphical Multi-Agent Soft Q-Learning
As (6) resembles Soft Q-learning [26], we herein derive a GDec-

POMDP version. For this sake, we initially add a weighting factor

of 𝛼 for the entropy term in (6), where (6) can be restored via 𝛼 = 1.

Thus, we define the graphical soft (GS) Q-function and state-value

function (resp.) as follows (where [(𝑠𝑡+ℓ , 𝑢𝑖𝑡+ℓ , 𝑢
−𝑖
𝑡+ℓ ,A

𝑖
𝑡+ℓ )]

∞
ℓ=1

∼ 𝑞𝑖 ):

𝑄𝑖𝐺𝑆 (𝑠𝑡 , 𝑢
𝑖
𝑡 , 𝑢

−𝑖
𝑡 ) = 𝑟 𝑖𝑡 + E

[ ∞
∑
ℓ=1

𝛾 ℓ (𝑟𝑡+ℓ + 𝛼H(𝜋𝑖
𝜃𝑖
(𝑢𝑖𝑡+ℓ |𝜔

𝑖
𝑡+ℓ , 𝑢

−𝑖
𝑡+ℓ ))

(9)

−𝐷𝐾𝐿 (𝜓−𝑖
𝜙−𝑖 (𝑢−𝑖𝑡+ℓ |𝑠𝑡+ℓ ,A𝑡+ℓ ) | |P(𝑢−𝑖𝑡+ℓ |𝑠𝑡+ℓ ,A𝑡+ℓ )) (10)

−𝐷𝐾𝐿 (𝜌𝜑𝑖 (A𝑡+ℓ |𝑠𝑡+ℓ ) | |P(A𝑡+ℓ |𝑠𝑡+ℓ ))
]

(11)

𝑉 𝑖𝐺𝑆 (𝑠) = log ∑
𝑢−𝑖 ,𝑢𝑖 ,A

P(𝑢−𝑖 |𝑠,A)P(A|𝑠) (exp( 1

𝛼
𝑄𝑖𝐺𝑆 (𝑠,𝑢

𝑖 , 𝑢−𝑖 )))𝛼

(12)



In the following theorem, we thus infer the optimal conditional

policies of agent 𝑖 and all complementary agents of 𝑖 , from agent

𝑖’s perspective (See Appendix G.2 for a detailed proof [10]).

Theorem 5.1. From agent 𝑖’s perspective, for (6), the optimal con-
ditional policy of agent 𝑖 is 𝜋𝑖★(𝑢𝑖 |𝜔𝑖 , 𝑢−𝑖 ) ∝ exp( 1

𝛼𝑄
𝑖
𝐺𝑆

(𝑠𝑡 , 𝑢𝑖 , 𝑢−𝑖 ))
and the optimal conditional policies for all complementary agents of 𝑖
are𝜓 𝑖★(𝑢−𝑖 |𝑠,A, 𝑢𝑖 ) ∝ P(𝑢−𝑖 |𝑠,A)P(A|𝑠) (∑𝑢𝑖 exp( 1

𝛼𝑄
𝑖
𝐺𝑆

(𝑠𝑡 , 𝑢𝑖 , 𝑢−𝑖 )))𝛼 .

For learning the GS Q-function, we observe it satisfies the graph-
ical multi-agent soft Bellman equation given by 𝑄𝑖

𝐺𝑆
(𝑠𝑡 , 𝑢𝑖𝑡 , 𝑢−𝑖𝑡 ) =

𝑟 𝑖𝑡 + 𝛾E𝑠𝑡+1
[𝑉 𝑖
𝐺𝑆

(𝑠𝑡+1)]. Subsequently, we prove that the induced
fixed-point iteration converges to the optimal GS action- and state-

value functions under certain circumstances as in Theorem 4.3.

Theorem 5.2. In a symmetric game with only one equilibrium
(meeting one of the conditions in Theorem 4.3), and with a Q-function
𝑄★, a state-value function𝑉★ and a policy𝜋★, assume𝑄𝑖

𝐺𝑆
,𝑉 𝑖
𝐺𝑆

, 𝑄★,𝑉★ <

∞. Then, the fixed-point iteration𝑄𝑖
𝐺𝑆

(𝑠𝑡 , 𝑢𝑖𝑡 , 𝑢−𝑖𝑡 ) = 𝑟 𝑖𝑡+𝛾E𝑠𝑡+1
[𝑉 𝑖
𝐺𝑆

(𝑠𝑡+1)],
where 𝑉 𝑖

𝐺𝑆
(𝑠𝑡+1) is as in (12), converges to 𝑄★ and 𝑉★, respectively.

Proof. For learning𝑄𝑖
𝐺𝑆

, we observe that it satisfies the graphi-

cal multi-agent soft Bellman equation given by𝑄𝜋
𝑖 ,𝜓−𝑖 ,𝜌𝑖

𝐺𝑆
(𝑠𝑡 , 𝑢𝑖𝑡 , 𝑢−𝑖𝑡 ) =

𝑟 𝑖𝑡 + 𝛾E𝑠𝑡+1
[𝑉 𝜋

𝑖 ,𝜓−𝑖 ,𝜌𝑖

𝐺𝑆
(𝑠𝑡+1)]. We define the graphical soft Bellman

evaluation operator as follows: T𝐺𝑆𝑄𝑖 (𝑠,𝑢𝑖 , 𝑢−𝑖 ) = 𝑟 𝑖 (𝑠,𝑢𝑖 , 𝑢−𝑖 ) +
𝛾E𝑠′ [log

∑
�̃�−𝑖 ,�̃�𝑖 ,A P(�̃�−𝑖 |𝑠,A) · P(A|𝑠) (exp( 1

𝛼𝑄
𝑖 (𝑠 ′, �̃�𝑖 , �̃�−𝑖 )))𝛼 ].

The proof follows from arguments similar to Theorem 4.3. □

Remark 1. The EM-like scheme in Subsection 5.1 and Theorems
5.1-5.2 guarantee monotonic increase in the probability that𝜓−𝑖 is
optimal. By acting optimally to the converged opponent model, we
recover agent 𝑖’s optimal policy, but not the optimum in the game.

6 Hierarchical Graph Recursive Reasoning
GrPR2 operates as a level-1 recursive reasoning, without accounting

for different hierarchical levels of rationality. Thus, following [72],

we propose GrPR2-L which deepens the recursion to level-𝑘 (𝑘 ≥
2), and extends the incorporation of Level-𝑘 models into games

with incomplete information [31] to the context of graphical games
[34]. Formally, agent 𝑖 at level 𝑘 assumes that other agents are at

level 𝑘 − 1 and then best responds by integrating over all possible

interactions induced by the interaction graph and best responses

from lower-level agents to agent 𝑖 of level 𝑘 − 2:

𝜋𝑖
𝑘
(𝑢𝑖
𝑘
|𝜔𝑖 ) ∝ ∫

A
𝜌𝜑𝑖 (A|𝑠) ∫

𝑢−𝑖
𝑘−1

𝜋𝑖
𝑘
(𝑢𝑖
𝑘
|𝜔𝑖 , 𝑢−𝑖

𝑘−1
)·

∫
𝑢𝑖
𝑘−2

𝜓−𝑖
𝑘−1

(𝑢−𝑖
𝑘−1

|𝑠,A, 𝑢𝑖
𝑘−2

)𝜋𝑖
𝑘−2

(𝑢𝑖
𝑘−2

|𝜔𝑖 )d𝑢𝑖
𝑘−2

d𝑢𝑖
𝑘−1

dA
(13)

where the subscript stands for the level of thinking and 𝜋𝑖
0
is uni-

formly distributed. Agent 𝑖 perceives that others will best respond

to its own fictitious action 𝑢𝑖
𝑘−2

at level 𝑘 − 2 via𝜓−𝑖
𝑘−1

(𝑢−𝑖
𝑘−1

|𝑠,A) =
∫𝑢𝑖

𝑘−2

𝜓−𝑖
𝑘−1

(𝑢−𝑖
𝑘−1

|𝑠,A, 𝑢𝑖
𝑘−2

)𝜋𝑖
𝑘−2

(𝑢𝑖
𝑘−2

|𝜔𝑖 )d𝑢𝑖
𝑘−2

.

Following the cognitive hierarchy (CH) model [5, 72], we propose

Cognitive Hierarchy GrPR2 (GrPR2-CH), which lets each level-𝑘

player best respond to a mixture of strictly lower levels in the hier-

archy, induced by truncation up to level 𝑘 − 1 from the underlying

level distribution. Formally, let 𝑓 = (𝑓ℎ)ℎ≥0
be a distribution over

N which represents the hierarchy of levels. The probability that a

𝑘-level player assigns independently for each of the other players to

belong to the ℎ-level is 𝑔𝑘 (ℎ) = 𝑓ℎ/(
∑𝑘
𝑚=0

𝑓𝑚). For a 𝑘-level player,
we are now capable of mixing all 𝑘 levels of thinking {𝜋𝑖𝑚}𝑘

𝑚=0

into its belief about other agents at lower levels by 𝜋𝑖
𝑘
(𝑢𝑖

0:𝑘
|𝜔𝑖 ) =

∑𝑘
ℎ=0

𝑔𝑘 (ℎ)𝜋𝑖ℎ (𝑢
𝑖
ℎ
|𝜔𝑖 , 𝑢−𝑖

0:ℎ−1
), where 𝜋𝑖

0
(𝑢𝑖

0
|𝜔𝑖 ) := 𝜋𝑖

ℎ
(𝑢𝑖
ℎ
|𝜔𝑖 , 𝑢−𝑖

0:−1
).

As in [72], we deduce GrPR2-M by choosing 𝑓ℎ = 𝑒−𝜆𝜆ℎ

ℎ!
to be a

Poisson distribution, with a mean of 𝜆. As in TD-𝜆 [67], 𝜆 acts as a

hyperparameter.

6.1 Optimal Hierarchical Level of Reasoning
In this section, we prove that level-3 reasoning is the optimal hier-

archical level, maximizing each agent’s expected return. See Ap-
pendix I for extensive details [10]. From the perspective of each

𝑘1-level agent 𝑖 and a lower level 2 ≤ 𝑘2 < 𝑘1, we seek to find an

upper bound𝐶 ≥ 0 on the discrepancy between the expected return

𝜂𝑖 (𝜋𝑖
𝑘1

, ¯𝜓−𝑖
𝑘1−1

), incurred by executing agent 𝑖’s 𝑘1-level reasoning,

and the expected return 𝜂𝑖 (𝜋𝑖
𝑘2

, ¯𝜓−𝑖
𝑘2−1

) resulting from executing

agent 𝑖’s 𝑘2-level reasoning, i.e., |𝜂𝑖 (𝜋𝑖𝑘1

, ¯𝜓−𝑖
𝑘1−1

) − 𝜂𝑖 (𝜋𝑖
𝑘2

, ¯𝜓−𝑖
𝑘2−1

) | ≤
𝐶 . If the model is improved by at least 𝐶 , we can guarantee im-

provement for varying cognitive levels. Thus, the following lemma

depicts a general discrepancy bound on the expected returns using

policies of different cognitive levels of reasoning by agent 𝑖 .

Lemma 6.1. Assume that the agent 𝑖’s reward is bounded by 𝑟 𝑖
max

=

max𝑠,𝑢𝑖 ,𝑢−𝑖 𝑟
𝑖 (𝑠,𝑢𝑖 , 𝑢−𝑖 ), and let the expected transition distribution

be bounded by𝑀 ≥ 0. Then, the discrepancy bound on the expected
returns is expressed by 𝑟 𝑖

max
𝑀

∑𝑘1

ℎ1=𝑘2+1

∑𝑘1−1

ℎ2=𝑘2

|𝑔𝑘1
(ℎ1)𝑔𝑘1−1

(ℎ2) −
𝑔𝑘2

(ℎ1)𝑔𝑘2−1
(ℎ2) | =: 𝑟 𝑖

max
𝑀 ·𝐶 (𝑘1, 𝑘2, 𝜆) (See Appendix I.2 [10]).

Lemma 6.1 indicates that the key influence on the monotonic

improvement in expected returns between an agent’s cognitive

levels is the difference between the beliefs they induce regarding the
distribution of other agents over all lower level in the hierarchy. Under
GrPR2-CH, in the following theorem we deal with maximizing the

discrepancy bounds ratio 𝐶 (𝑘, 𝑘 − 1, 𝜆) :=
𝐶 (𝑘+1,𝑘,𝜆)
𝐶 (𝑘,𝑘−1,𝜆) w.r.t. 𝜆 (𝑘 ≥ 2),

as it will illustrate the best monotonic improvement that can be

guaranteed under a specific choice of parameters.

Theorem 6.2. 𝑘 = 3, 4 maximize𝐶 (𝑘, 𝑘−1, 𝜆) w.r.t. 𝜆, i.e., achieve
themaximal discrepancy bounds ratios (See Appendix I.3 [10]).

A natural question is: which one is the optimal level - 3 or 4?
Intuitively, for 𝑘 = 4, the approximated conditional policy of other

agents is used twice, thus amplifying the variance of each agent’s

𝑘-level policy. Further, as illustrated by the following theorem, the

mixing of hierarchical policies may introduce a bias into the learned

policy that depends on 𝜆 and 𝑘 . Formally, the bias is induced by the

difference between the mixed policy and the (potentially locally)

optimal policy at convergence (See Appendix I.3.2 [10]).

Theorem 6.3. Let 𝜋𝑖
𝑘,(𝑑) and {𝜋𝑖

𝑚,(𝑑) }
𝑘
𝑚=0

be the 𝑑𝑡ℎ updated
𝑘-level conditional policies of agent 𝑖 under GrPR2-M and GrPR2-L
(resp.), where 𝜋𝑖

𝑘,★
and {𝜋𝑖𝑚,★}𝑘𝑚=0

denote the optimal policies at con-

vergence (resp.). Let 𝜋𝑖
0,(𝑑) ≡ 𝜋𝑖

0
be uniformly distributed. Letting

𝐷𝑇𝑉 (·, ·) denote the total variational distance between two proba-
bility measures (i.e., policies), agent 𝑖’s 𝑘-level policy bias (𝑘 ≥ 2),



given by 𝐷𝑇𝑉 (𝜋𝑖𝑘,(𝑑) , 𝜋
𝑖
★), is bounded as by: 𝐷𝑇𝑉 (𝜋𝑖𝑘,(𝑑) , 𝜋

𝑖
𝑘,★

) ≥
𝐷𝑇𝑉 (𝜋𝑖

0
, 𝜋𝑖
𝑘,★

) − ∑𝑘
ℎ=1

𝑔𝑘 (ℎ)𝐷𝑇𝑉 (𝜋𝑖0, 𝜋
𝑖
ℎ,(𝑑) ), and: ∀𝜀 > 0∃ ˜𝑑 ∈ N :

𝐷𝑇𝑉 (𝜋𝑖𝑘,(𝑑) , 𝜋
𝑖
𝑘,★

) < 𝜀
∑𝑘
ℎ=0

𝑔𝑘 (ℎ)∀𝑑 ≥ ˜𝑑 . Then, the mixture intro-

duces a bias which increases with 𝜆 and 𝐷𝑇𝑉 (𝜋𝑖
0
, 𝜋𝑖
𝑘,★

).

As observed in the proof of Theorem 6.2, a higher value of 𝜆

is required for attaining the maximal value of 𝐶 (𝑘, 𝑘 − 1, 𝜆) as 𝑘
increases, and thus we summarize that level-3 reasoning is the
optimal hierarchical level. We remark that this result is empiri-

cally supported: in Appendix F of [72], we observe that convergence

to an equilibrium in Keynes Beauty Contest [35] occurs when the

level of reasoning 𝑘 ranges between 1 to 3, yet for 𝑘 = 4 it fails.

6.1.1 On the Intuition behind Theorem 6.3. By Theorem 6.3,

each agent’s explorable region of the state space grows with the

decrease in 𝜆, 𝑘 (and vice versa). Thus, a higher value of both 𝜆, 𝑘

constrains policy search near the optimal policy more heavily. Fur-

ther, the difference between 𝜋𝑖
0
and the optimal 𝑘-level policy at

convergence 𝜋𝑖
𝑘,★

(𝐷𝑇𝑉 (𝜋𝑖
0
, 𝜋𝑖
𝑘,★

))may bias the final policy, depend-
ing on 𝜆, 𝑘 . This implies the weak spot of the classical Level-𝑘 and

CH models: as 𝜋𝑖
0
is uniformly distributed, itmay be far from

the optimal policy, thus biasing the final policy, depending
on the explorable region, which grows as 𝜆, 𝑘 decrease. We

conclude that the choice of the underlying 0-level reasoning 𝜋𝑖
0

plays a critical role in the learning of the optimal policy. That is,

the bias incurred by the 0-level reasoning is reduced as 𝜋𝑖
0
is closer

to the optimal policy. Additionally, if the optimal trajectory resides

within the explorable region, then the corresponding optimal pol-

icy can be learned. Otherwise, the policy will remain suboptimal.

Hence, smaller 𝜆 and 𝑘 (and thus a larger explorable region)
will increase the possibility of reaching the optimal policy.

7 Graphical Multi-Agent Soft Actor-Critic
For practical implementation in complex domains, we propose the

GrPR2 Actor-Critic (GrPR2-AC), consisting a model-free approxi-

mation of the tabular algorithm proposed earlier in Subsection 5.2

that follows the learning scheme presented in Subsection 5 and

[72]. See Appendix J for extensive details and pseudo-codes
[10]. As function estimators, we use neural networks (NNs). As

in [12], 𝜌𝜑𝑖 is represented by a normalizing flow (See Appendix B

[10]). For policy evaluation, each agent rolls both its graph reason-

ing policy and approximated conditional policies recursively up

to level 𝑘 following Section 6. Soft learning [27] is then applied to

maximize J 𝑖 (𝜋𝑖
𝜃
) in (6): 𝜉𝑖 is updated via minimizing the soft Bell-

man residual J𝑄𝑖 (𝜉𝑖 ) = ED𝑖 [ 1

2
(𝑄𝑖
𝜉𝑖
(𝑠𝑡 , 𝑢𝑖𝑡 , 𝑢−𝑖𝑡 ) − 𝑟 𝑖 (𝑠𝑡 , 𝑢𝑖𝑡 , 𝑢−𝑖𝑡 ) −

𝛾E𝑠𝑡+1
[𝑉 𝑖 (𝑠𝑡+1)])2], where D𝑖

is the replay buffer. Noting that the

entropy and KL-divergence terms in (6)-(8) are the expansion of

H(𝜋𝑖
𝜃
(𝑢𝑖𝑡 , 𝑢−𝑖𝑡 ,A𝑡 |𝑠𝑡 )), we infer J 𝑖 (𝜋𝑖

𝜃
) = −𝐷𝐾𝐿 (𝑝𝑖 (𝜏) | |𝑝 (𝜏)) by

(5). Thus, letting 𝑄𝑖
𝜉𝑖
(𝑠,𝑢𝑖 ) = log ∫A 𝜌𝑖 (A|𝑠) ∫𝑢−𝑖 𝜓−𝑖

𝜙−𝑖 (𝑢−𝑖 |𝑠,𝑢−𝑖 ) ·
exp(𝑄𝑖

𝜉𝑖
(𝑠,𝑢𝑖 , 𝑢−𝑖 ))d𝑢−𝑖dA, whichmarginalizes the joint Q-function

via the estimated opponent model, the value function of the 𝑘-

level policy 𝜋𝑖
𝑘
is 𝑉 𝑖 (𝑠𝑡+1) = E𝑢𝑖

𝑘
∼𝜋𝑖

𝑘
[𝑄𝑖
𝜉𝑖
(𝑠𝑡 , 𝑢𝑖𝑡 ) − log𝜋𝑖

𝑘
(𝑢𝑖
𝑘
|𝜔𝑖 )].

Further, the optimal opponent model 𝜓−𝑖
𝜙−𝑖 follows Theorem 4.2,

which yields that 𝜙−𝑖 can be updated by minimizing J𝜓−𝑖 (𝜙−𝑖 ) :=

E𝑠,𝑢𝑖∼D𝑖 [𝐷𝐾𝐿 (𝜓−𝑖
𝜙−𝑖 (·|𝑠,𝑢𝑖 ) | | exp(𝑄𝑖

𝜉𝑖
(𝑠,𝑢𝑖 , ·) −𝑄𝑖

𝜉𝑖
(𝑠𝑡 , 𝑢𝑖𝑡 )))]. Esti-

mation of𝑄𝑖
𝜉𝑖
(𝑠𝑡 , 𝑢𝑖𝑡 , 𝑢−𝑖 ) and𝑄𝑖𝜉𝑖 (𝑠𝑡 , 𝑢

𝑖
𝑡 ) are maintained separately

for robust training, and 𝜙−𝑖 ’s gradient is computed by SVGD [46].

Thereby, 𝜃𝑖 can be learned by improving towards the current soft

Q-function𝑄𝑖
𝜉𝑖
(𝑠𝑡 , 𝑢𝑖𝑡 ) by minimizing the KL-divergence J𝜋𝑖

𝑘
(𝜃𝑖 ) =

E

[
𝐷𝐾𝐿

(
𝜋𝑖
𝑘
(·|𝜔𝑖 )

�����
����� exp(𝑄𝑖

𝜉𝑖
(𝑠, ·,𝑢−𝑖 ))∑

�̃�𝑖
𝑄𝑖

𝜉𝑖
(𝑠𝑡 ,�̃�𝑖 ,𝑢−𝑖 ))

)]
, with 𝑠𝑡 ,A𝑡 ∼ D𝑖 , 𝑢−𝑖

𝑡+1
∼

𝜓−𝑖
. The optimal 𝜋𝑖

𝜃𝑖
and𝜓−𝑖

𝜙−𝑖 are thus recovered as in [27], avoid-

ing the intractable inferences in (48)-(49). By the reparameterization

trick 𝑢𝑖𝑡 = 𝑓𝜃𝑖 (𝜖𝑖 ;𝜔𝑖 ) (𝜖 ∼ N(0, I)), J𝜋𝑖
𝑘
(𝜃𝑖 ) = E𝑠,A,𝑢𝑖

𝑘
,𝜖 [log𝜋𝑖

𝜃𝑖 ,𝑘

(𝑓𝜃𝑖 (𝜖𝑖 ;𝜔𝑖 ) |𝜔𝑖 ) − 𝑄𝑖
𝜉𝑖
(𝑠, 𝑓𝜃𝑖 (𝜖𝑖 ;𝜔𝑖 ))]. Hence, agent 𝑖 learns the

best response policy by considering all possible actions of oppo-

nents at lower levels over all possible interactions, as compound

by 𝑄𝑖
𝜉𝑖
(𝑠𝑡 , 𝑢𝑖𝑡 ), and 𝜕J𝜋𝑖

𝑘
/𝜕𝜃𝑖 thus propagates from all higher lev-

els during training. To afford the implementation, we follow the

compromises made by [72], as detailed in Appendix J.2 [10]. For

reducing the variance of the stochastic gradient in Lemma 4.1 (used

for improving 𝜌𝜑𝑖 ) and its inconsistency w.r.t other policies’ update,

it is estimated by off-policy importance sampling [12].

8 Experiments
In this section, we evaluate GrPR2 on the high-dimensional task

of Cooperative Navigation in the Particle World environment [47],

with 𝑛 agents of size 0.05 and 𝑛 landmarks. In this task, 𝑛 agents

must cooperate through physical actions to reach a set of 𝑛 land-

marks. Agents observe the relative positions of nearest agents and

landmarks, and are collectively rewarded based on the proximity of

any agent to each landmark, i.e., the agents have to "cover" all of the

landmarks. Further, the agents occupy significant physical space

and are penalized when colliding with each other. Our agents learn

to infer the landmark they must cover, and move there while avoid-

ing other agents. Though the environment holds a continuous state

space, agents’ actions space is discrete, and given by all possible

directions of movement for each agent {up, down, left, right, stay}.

Given an interaction graph, we augment this task for enabling local

information sharing between neighbors, as outlined subsequently.

8.1 Experimental Setup
GrPR2-CH [9]. Each agent queries its neighbors about their

observations, and incorporates that information into its choice of

actions and estimated critic. Such basic paradigm was chosen for

depicting that our methods are effective in combining local obser-

vations into the learning process in environments where the global

state may not be available, without any additional information.

Attentive GrPR2 (GrPR2-A) [8]. We further implement an ex-

tension of FlowComm [12], supporting level-1 recursive reasoning

with communication. FlowCommembeds 𝜌𝜑 intoMAAC [29], which

trains decentralized policies in multiagent settings, using centrally
computed critics that share an attention mechanism, selecting rel-

evant information for each agent. At state 𝑠 , letting A ∼ 𝜌𝜑 (·|𝑠)
and 𝑣𝑖 be the encoding of agent 𝑖’s observations,𝑚𝑖 =

∑𝑛
𝑗=1

A𝑖 𝑗𝑣
𝑗

is the message 𝑖 can receive and 𝜔𝑖 =𝑚𝑖 ∪ 𝑣𝑖 . The above methods

can easily be extended to include additional information.



Table 1: Maximum return at the end of the training phase.

𝑛 GrPR2-CH (𝑘 = 2) GrPR2-CH (𝑘 = 3) GrPR2-L (𝑘 = 2)

4 -47.803 -60.737 -58.77

8 4046.613 4035.438 4033.093

𝑛 GrPR2-L (𝑘 = 3) DDPG OM ToM MADDPG

4 -57.421 -61.404 -57.631 -58.649 -56.75412

8 4030.009 4031.2 4034.01 4037.029 4038.256

Hyperparameter Settings. UnderGrPR2-CH , let𝑘 be the high-

est level of reasoning. As it was previously mentioned, under their

GR2-L framework, Wen et al. [72] empirically observe in their abla-

tion study that convergence to an equilibrium occurs when the level

of reasoning 𝑘 ranges between 1 to 3, yet for 𝑘 = 4 it fails. Thus, we

adopt 𝑘 ∈ {2, 3}. Further, they demonstrate that a Poisson mean of

𝜆 = 1.5 leads to the best performance in the cooperative navigation

task, and we thereby follow their empirical results. The Q-values

are updated using an Adam optimizer with learning rate 10
−4
. The

DDPG policy also utilizes an Adam optimizer with a learning rate

of 10
−4
. The methods use a replay pool of size 100𝑘 . Training does

not start until the replay buffer has at least 1𝑘 samples. A batch size

of 64 is used. All the policies and Q-functions are modeled by an

MLP with 2 hidden layers followed by 𝑅𝑒𝐿𝑈 activation. Through

the actor-critic scheme GrPR2-AC, we set the exploration noise

to 0.1 in the first 1𝑘 steps. The annealing parameter is decayed

in linear scheme with training step grows to balance the explo-

ration. Deterministic policies are implemented with an additional

OU Noise to improve exploration with parameters 𝜃 = 0.15 and

𝜎 = 0.3. We update the target parameters softly by setting the target

smoothing coefficient to 0.001. We train with 6 random seeds for all

environments. For the cooperative navigation task, all the models

are trained up to 300𝑘 steps with a maximum episode length of 30.

All hidden layers have 100 hidden units. The update interval is 4.

Under GrPR2-A, agents’ local observations are first encoded,
and then concatenated with the received message. An LSTM layer

encodes the message and observations before feeding them into two

fully-connected NNs, producing policies. Critics use three-layered

fully-connected NNs. All hidden layers have 64 hidden units. Unlike

GrPR2-CH, we use a replay buffer size of 10
6
. The learning rate for

actor and critic are 10
−3
. Other hyperparameters are as above.

For the graph reasoning policy, we follow [12] by choosing 𝐿

in Eq.(7) of Appendix B [10] to be a logical gate for reversible

additions and subtractions, where 𝑔𝜑𝑖 is implemented by three fully

connected layers followed by a tanh activation. Further, we use four
coupling layers to make sure the elements in A are dependent on

each other and we allow parameter sharing across coupling layers.

8.2 Results – GrPR2-CH
We compare GrPR2withDDPG independent learner [45],MADDPG

[47], which we regard as level-0 reasoning. For fair comparison, we

also include the level-0 model of opponent modeling [28] by aug-

menting DDPGwith an opponent module (DDPG-OM) that predicts

opponents’ behaviors in future states, and a level-1 Theory-of-Mind

model [56] that captures the dependency of an agent’s policy on

(a) Max Path Return – 𝑛 = 4

(b) Max Path Return – 𝑛 = 8

Figure 2: Figures 2a and 2b report maximum return attained
up to each episode for 𝑛 = 4 and 8 (respectively).

opponents’ mental states (DDPG-ToM). Unless stated otherwise,

each method conducts centralized training with decentralized execu-
tion (CTDE) [39, 52], with a centralized graph reasoning policy, but

decentralized policies and critics. GrPR2-CH can employ a decen-
tralized 𝜌𝜑𝑖 , yet this choice was made for fair comparison.

Figure 2a illustrates themaximum return attained by eachmethod

along the training phase for a set of 𝑛 = 4 agents. It can be clearly

observed that GrPR2-CH with a hierarchical level of 𝑘 = 2 sub-

stantially outperforms all other methods. Specifically, during the

very first episode, it already reaches a remarkably higher reward

of −69.462 compared to the other baselines, whose rewards range

from −162.969 to −141.898. Further, not only that GrPR2-CH with

𝑘 = 2 converges faster than all other methods, it also reaches the

highest maximum return at the end of the training phase. As further

emphasized by Table 1, it is worthy of noting that GrPR2-CH with

𝑘 = 2 exhibits a higher maximum reward across the learning phase

than GrPR2-CH with 𝑘 = 3. This can be theoretically justified by

the intuition behind Theorem 6.3 provided in Subsection 6.1.1: a
smaller value of 𝑘 will induce a larger explorable region, thus in-
creasing the possibility of reaching the optimal policy. Further, one
may argue that this empirical result inconsistent with Theorem

6.2. Yet, recall that the expected transition distribution is assumed

to be bounded by Lemma 6.1, whose implication is Theorem 6.2.

Such an assumption is not necessarily satisfied in high-dimensional

domains such as the Particle World, which thus explains the men-

tioned empirical result. However, aligned with Theorem 6.2, we

note that GrPR2-L with 𝑘 = 3 overtakes all other models while

being competitive with DDPG-OM, where GrPR2-CH with 𝑘 = 2

and MADDPG are the exceptions. GrPR2-CH and GrPR2-L with



Figure 3: The average episode reward along the training
phase with 𝑛 = 8 and heterogeneous graphs.

Table 2: Mean rewards with their standard deviations.

GrPR2-A FlowComm DDPG+SAC MADDPG+SAC

-2.698 ± 0.412 -3.601 ± 0.653 -4.747 ± 1.002 -4.419 ± 0.795

(a) Attentive GrPR2 (b) FlowComm

Figure 4: Heatmaps of the average adjacency matrix gener-
ated across 3𝑘 episodes via (4a)GrPR2-A and (4b) FlowComm.

𝑘 = 3 differ due to Theorem 6.3, as the mixture of polices under

GrPR2-CH may introduce policy bias, whereas GrPR2-L does not.

For the comparison of GrPR2-L with 𝑘 = 3 relative to DDPG-OM

and MADDPG, both algorithms account for the opponents, and

can thus converge to some local optima, which is not necessarily

optimal as exhibited by GrPR2-CH with 𝑘 = 2. However, DDPG

fails due to its inherent defect as an independent learning approach.

To illustrate the scalabiltiy of our methods with the growth in

the number of agents, Figure 2b provides an additional comparison

for 𝑛 = 8. Note that even after the number of agents in doubled,
our methods preserve their performance attributes. That is, GrPR2-

CH with 𝑘 = 2 still significantly surpasses all other baselines, and

attains the highest reward of −106.156 during the learning phase’s

inception, which is followed with the fastest convergence rate to

the best maximum return as seen in Table 1.

8.3 Results – Attentive GrPR2
We compare GrPR2-A with FlowComm [12], as well as DDPG

and MADDPG with a Soft Actor-Critic (SAC) for fair comparison.

Clearly, they are all regarded as level-0 reasoning. For amplifying

the superiority of GrPR2-A, we evaluate these methods on [12]’s

extension of the cooperative navigation task to a heterogeneous com-

munication task. That is, for 𝑛 = 8, the third agent has a larger field

of vision compared to the other agents. This allows us to simulate

heterogeneity in hierarchical level of thinking, as agent 3 becomes

more sophisticated compared to other agents.

Figure 3 compares the average episode reward incurred by each

model during the training phase. We stress the remarkable perfor-

mance of GrPR2-A opposed to other baselines, in terms of attaining

a better average reward. Additionally, GrPR2-A exhibits the best

consistency in the average episode reward. Table 2 emphasizes this

result, as GrPR2-A holds both the highest mean reward and the

lowest standard deviation. Theoretically, an agent operating with

a hierarchical recursive reasoning process enables it to selectively

interact with opponents of varying and less-sophisticated levels of

reasoning and best respond to their actions. Thus, collisions are

avoided at maximum. Such abilities are of vital importance, espe-

cially in heterogeneous communication tasks as the one we regard.

This also amplifies the superiority of GrPR2-A compared to the

other models, which do not employ such an ability. For stressing

the above, for 𝑛 = 4, Figures 4a and 4b supply heatmaps of the av-

erage adjacency matrix generated across 3𝑘 episodes via GrPR2-A

and FlowComm (resp.). We note the higher sparsity of the GrPR2-

A’s heatmap compared to FlowComm’s heatmap. We compute the

sparsity of the adjacency matrix throughout the learning phase by

reporting its mean and standard deviation. For GrPR2-A, we have a

value of 0.1875 ± 0.3903, compared to a value of 0.375 ± 0.4841 for

FlowComm. GrPR2-A thus learns a more selective prioritization of

interactions with other agents, which treats agents’ need to avoid

collisions by adapting their communication targets dynamically

due to the constant change of their physical locations.

9 Conclusion and Future Work
Following humans’ inborn recursive reasoning ability, we presented

a novel perspective on opponent modeling in domains with only

local interactions via GrPR2-CH, which enables modelling agents

with different hierarchical levels of thinking. Unlike previous work
on recursive reasoning, level-1 agents iteratively best-respond to

other agents’ policies over all possible local interactions. Agents’ poli-
cies are approximated via variational inference for capturing their

uncertainties, and we proved that an induced variant of Q-learning

converges under self-play when there exists only one Nash equilib-

rium. In cooperative MARL, we further devised a variational lower

bound on the likelihood of each agent’s optimality. We observed

that optimizing the resulting objective prevents each agent from

attaining an unrealistic modelling of others, and yields an exact tab-

ular Q-iteration method that holds convergence guarantees. After

deepening the recursion to level-𝑘 , we then proved that: (1) level-3
reasoning is the optimal hierarchical level, maximizing each agent’s

expected return; and (2) the weak spot of the classical CH models is
that 0-level is uniformly distributed, as it may introduce policy bias.

Finally, we proposed a practical actor-critic scheme, and illustrated

it superiority compared to strong MARL baselines. Naturally, one

may argue about the existence of a Perfect Bayesian Equilibrium in

the dynamic game induced by GrPR2. Unlike GR2 [72], the dynamic

graph imposed by our framework poses an additional challenge,

for which future work requires further deepening.
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