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ABSTRACT
Two actively researched problem settings in matchings under pref-

erences are popular matchings and the three-dimensional stable

matching problem with cyclic preferences. In this paper, we apply

the optimality notion of the first topic to the input characteristics

of the second one. We investigate the connection between stabil-

ity, popularity, and their strict variants, strong stability and strong

popularity in three-dimensional instances with cyclic preferences.

Furthermore, we also derive results on the complexity of these

problems when the preferences are derived from master lists.
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1 INTRODUCTION
Partitioning agents into desirable groups is one of the core problems

of algorithmic game theory. However, the lines between tractabil-

ity and intractability are often very thin; introducing ties, incom-

plete lists or slight variations to the preference or group structures

can make a previously tractable problem intractable. In this work,

we aim to further draw this line by studying popularity in three-

dimensional matching instances equipped with cyclic preferences.

1.1 Problem Setting
In a three-dimensional (3D) matching instance, we are given three

sets of agents 𝐴, 𝐵, and 𝐶 , representing for example users, data

sources, and servers [13] or as it is commonly referred to in the

literature [32, 36], men, women, and dogs. Each agent in 𝐴, 𝐵, and

𝐶 declares a subset of the agents in 𝐵,𝐶, and𝐴, respectively, accept-

able. A matching𝑀 consists of (𝑎, 𝑏, 𝑐) ∈ 𝐴×𝐵×𝐶 triples such that

𝑎 finds 𝑏 acceptable, 𝑏 finds 𝑐 acceptable, and 𝑐 finds 𝑎 acceptable;

furthermore, each agent appears in at most one triple in𝑀 .

In the problem variant we study, each agent possesses a strictly

ordered preference list. Cyclic preferences mean that agents in 𝐴

have preferences over the acceptable agents in 𝐵, agents in 𝐵 have

preferences over the acceptable agents in 𝐶 , and finally, agents in

𝐶 have preferences over the acceptable agents in 𝐴. The standard

problem is to decide whether such an instance admits a stable

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems

(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9–13,

2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent

Systems (www.ifaamas.org). All rights reserved.

matching. Two intuitive stability notions have been investigated

in the literature: a weakly stable matching does not admit a triple

so that all three agents would improve, while according to strong

stability, a triple already blocks if at least one of its agents improves,

and the others in the triple remain equally satisfied.

The optimality criterion we study in this paper is popularity,

which is a well-studied concept in the context of two-sided match-

ing markets. Given two matchings𝑀 and𝑀 ′
, matching𝑀 is more

popular than 𝑀 ′
if the number of agents preferring 𝑀 to 𝑀 ′

is

larger than the number of agents preferring 𝑀 ′
to 𝑀 . A match-

ing 𝑀 is called popular if there is no matching 𝑀 ′
that is more

popular than 𝑀 . Colloquially speaking, a popular matching is a

matching that would not lose a head-to-head election against any

other matching if the agents were allowed to vote between the

matchings.

1.2 Related Work
Wefirst review existing work onmatchings under preferences in the

three-dimensional setting, and then highlight the most important

improvements on popular matchings.

Stability in 3 Dimensions. After the introduction of stable match-

ings by Gale and Shapley [18] and their celebrated algorithm

to solve the problem in bipartite graphs, the study of three-

dimensional stable matchings was initiated by Knuth [29], who

asked about a generalization of stable matchings to triples. Subse-

quently, Ng and Hirschberg [36] studied a stable matching variant

with three genders, where agents of one gender have a preference

list over pairs of the other two genders. The goal in this model is to

find a set of disjoint triples that is not blocked by any triple outside

of it. Ng and Hirschberg [36] and independently Subramanian [42]

were able to prove that it is NP-complete to decide whether such

a three-dimensional stable matching exists. Their result was then

generalized by Huang [22], who incorporated ties and stronger

notions of stability, as well as restricted preference structures in

this model. He showed that all these variants stay NP-complete

as well. Danilov [14] identified an even further restricted prefer-

ence structure that allows for a polynomial-time algorithm for the

existence problem. Finally, McKay and Manlove [34] studied the

generalization of the three-dimensional stable roommates problem

to additive preferences.

3D-Stable Matchings with Cyclic Preferences. One direction pro-

posed by Ng and Hirschberg [36] was to generalize their work to

cyclic preferences. This question lead to a family of papers. Biró

and McDermid [6] showed that deciding whether a weakly stable

matching exists is NP-complete if preference lists can be incom-

plete, and that the same complexity result holds for strong stability
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even with complete lists. However, the combination of complete

lists and weak stability proved to be extremely challenging to solve.

For this setting, Boros et al. [8] proved that each instance admits

a weakly stable matching for 𝑛 ≤ 3, where 𝑛 is the size of each

agent set in the tripartition. Eriksson et al. [15] later extended this

result to 𝑛 ≤ 4. Additionally, Pashkovich and Poirrier [38] further

proved that not only one, but at least two stable matchings exist for

each instance with 𝑛 = 5. By this time, the conjecture on the guar-

anteed existence of a weakly stable matching in 3D instances with

complete cyclic preferences became one of the most riveting open

questions in the matching under preferences literature [29, 32, 43].

Surprisingly, Lam and Plaxton [30] recently disproved this conjec-

ture by showing that weakly stable matchings need not exist for

an arbitrary 𝑛, moreover, it is NP-complete to determine whether a

given instance with complete lists admits a weakly stable matching.

The problem is relevant to applications as well, as shown by

the papers of Cui and Jia [13], Raveendran et al. [40], and Ma et

al. [31], who all studied 3D-cyclic stable matchings in the context

of computer networks, as well as by the work of Bloch et al. [7],

who applied it to a Paris apartment assignment problem. Addition-

ally, Escamocher and O’Sullivan [16] and Cseh et al. [11] set up

constraint programming models for the problem. They discussed

instances where agents of the same class have identical preference

lists. This type of preference structure is also called a master list.

Besides them, Bredereck et al. [10] also investigated master lists

in the context of 3D stable matchings, and there is a large set of

results on 2D stable or popular matchings with master lists in the

input [24, 25, 27, 35].

Popular Matchings. The concept of a popular matching corre-

sponds to the notion of a weak Condorcet winner in voting. In the

context of matchings it was first introduced by Gärdenfors [19] for

matching markets with two-sided preferences, and then studied

by Abraham et al. [1] in the house allocation problem. Polynomial

time algorithms to find a popular matching were given in both set-

tings. These papers inspired a plethora of work on popularity in the

house allocation problem. Most importantly, Sng and Manlove [41]

extended the model of Abraham et al. [1] with capacities on the

houses, while McDermid and Irving [33] studied a weighted variant.

In the classic two-sided preferences model, it was already noticed

by Gärdenfors [19] that all stable matchings are popular, which im-

plies that in bipartite stable matching instances, popular matchings

always exist. In fact, stable matchings are the smallest size popular

matchings, as shown by Biró et al. [4], while maximum size popular

matchings can be found in polynomial time as well [23, 26].

Only recently, Faenza et al. [17] and Gupta et al. [21] resolved

the long-standing open question that it is NP-complete to find a

popular matching in a roommates instance.

Strongly Popular Matchings. A further concept we study is that

of a strongly popular matching, corresponding to a strong Con-

dorcet winner, i.e., a matching that wins every head-to-head elec-

tion. This concept was introduced by Biró et al. [4], who showed

that a strongly popular matching in roommates instances exists

if and only if it is the unique stable matching. The open question

whether a strongly popular matching in a roommates instance with

ties can be found in polynomial time was recently answered posi-

tively by Brandt and Bullinger [9], who observed that a strongly

popular matching must be the unique mixed popular matching.

Strong popularity was very recently extended to 𝑏-matchings as

well by Király and Mészáros-Karkus [28].

Popularity in 3 Dimensions. Brandt and Bullinger [9] showed that

it is hard to find a popular partition into sets of at most size three,

even if the ranking of all sets by all agents is the same. This however

is different from the 3D-cyclic model in both the structure of the

preferences, since the agents in their model have a preference list

over subsets of size 2 or 3, as well as in the structure of the solution,

since they allow sets of size 2 and 3. Both Brandt and Bullinger [9]

and Lam and Plaxton [30] mentioned the 3D-cyclic popular match-

ing problem as an interesting future research direction.

2 PRELIMINARIES
We now define the notation we use and the problems we investigate.

2.1 Input and Output Formats
Input and Notation. We are given three sets of agents 𝐴, 𝐵, and𝐶 .

We denote by 𝑉 = (𝐴 ∪ 𝐵) ∪𝐶 the set of all agents and call 𝐴, 𝐵,

and 𝐶 the agent classes of our instance. Further we assume that

|𝐴| = |𝐵 | = |𝐶 | = 𝑛. Each agent in 𝐴 has a strict preference list

over a subset of agents in 𝐵, each agent in 𝐵 has a strict preference

list over a subset of agents in 𝐶 , and finally, each agent in 𝐶 has a

strict preference list over a subset of agents in 𝐴. These preference

lists define for each agent 𝑥 a strict order ≻𝑥 , which we call the

preference list of 𝑥 and say that 𝑥 finds the agents in ≻𝑥 acceptable.

For two agents 𝑦, 𝑧 such that 𝑦 ≻𝑥 𝑧, we say that 𝑥 prefers 𝑦 to 𝑧.

Master Lists. When defining master lists, we use the terminology

from the book of Manlove [32]. We say that the preferences of

agents in 𝑋 ⊆ 𝑉 are derived from a master list if there is a master

preference list from which the preferences of each 𝑥 ∈ 𝑋 can be

obtained by deleting some agents. This means that the preferences

might be incomplete, but the relative preferences between accept-

able agents are the same in each ≻𝑥 , where 𝑥 ∈ 𝑋 . We say that

an instance is derived from a 𝑘-master list for 𝑘 ∈ {1, 2, 3} if the
preferences of 𝑘 of the agent classes of our instance are derived

from a master list.

Matchings. A matching 𝑀 is a subset of 𝐴 × 𝐵 × 𝐶 , such that

each agent appears in at most one triple and for each (𝑎, 𝑏, 𝑐) ∈ 𝑀 ,

𝑎 finds 𝑏 acceptable, 𝑏 finds 𝑐 acceptable, and 𝑐 finds 𝑎 acceptable. If

(𝑎, 𝑏, 𝑐) ∈ 𝑀 , we also write𝑀 (𝑎) = 𝑏,𝑀 (𝑏) = 𝑐, and𝑀 (𝑐) = 𝑎. If an

agent 𝑥 does not appear in any triple in𝑀 , we write𝑀 (𝑥) = 𝑥 and

say that the agent 𝑥 is unmatched. For convenience in notation we

assume that for any agent 𝑥 , 𝑥 itself appears at the end of ≻𝑥 , and
prefers being matched to any agent she finds acceptable to staying

unmatched. The preference relation ≻𝑥 naturally extends to the

comparison of two triples by a 𝑥 if she appears in both triples.

2.2 Optimality Concepts
Weak and Strong Stability. A triple 𝑡 = (𝑎, 𝑏, 𝑐) is said to be a

strongly blocking triple to matching𝑀 if each of 𝑎, 𝑏, and 𝑐 prefer 𝑡 to

their respective triples (or to their singleton if they are unmatched)

in 𝑀 . Practically, this means that 𝑎, 𝑏, and 𝑐 could abandon their

triples to form triple 𝑡 on their own, and each of them would be

strictly better off in 𝑡 than in𝑀 . If a matching𝑀 does not admit any
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strongly blocking triple, then𝑀 is called a weakly stable matching.

Similarly, a triple 𝑡 = (𝑎, 𝑏, 𝑐) is called a weakly blocking triple if

at least two agents in the triple prefer 𝑡 to their triple (or to their

singleton if they are unmatched) in𝑀 , while the third agent does

not prefer her triple in𝑀 to 𝑡 . This means that at least two agents

in the triple can improve their situation by switching to 𝑡 , while

the third agent does not mind the change. A matching that does

not admit any weakly blocking triple is referred as strongly stable.

By definition, strongly stable matchings are also weakly stable, but

not the other way round. Observe that it is impossible to construct

a triple 𝑡 that keeps exactly two agents of a triple equally satisfied,

while making the third agent happier, since the earlier two agents

need to keep their partners to reach this, which then already defines

the triple as one already in𝑀 .

Weak and Strong Popularity. Given an agent 𝑥 and twomatchings

𝑀 and𝑀 ′
, we define

vote𝑥 (𝑀 ′, 𝑀) =


1, if𝑀 ′(𝑥) ≻𝑥 𝑀 (𝑥)
0, if𝑀 ′(𝑥) = 𝑀 (𝑥)
−1, if𝑀 (𝑥) ≻𝑥 𝑀 ′(𝑥)

i.e., vote𝑥 (𝑀 ′, 𝑀) represents whether the agent 𝑥 would prefer to

be in𝑀 ′
or in𝑀 . We call𝑀 ′

more popular than𝑀 if

Δ(𝑀 ′, 𝑀) B
∑︁
𝑥 ∈𝑉

vote𝑥 (𝑀 ′, 𝑀) ≥ 1

i.e., if𝑀 ′
would win against𝑀 in a head-to-head election. Match-

ing 𝑀 is called popular if no matching is more popular than 𝑀 .

Using this we can now define the popular matching problem in 3

dimensions.

3d-cyclic popular matching with incomplete lists (3dpmi)

Input: Sets 𝐴, 𝐵,𝐶 with a cyclic preference structure.

Question: Does a popular matching exist?

Further we also study the corresponding verification problem.

3d-cyclic popular matching verification with incomplete

lists (3dpmvi)

Input: Sets 𝐴, 𝐵,𝐶 with a cyclic preference structure and

a matching𝑀 .

Question: Is𝑀 popular?

The notion of popularity can be strengthened even further to

what is commonly referred to as a strongly popular matching. A

matching𝑀 is strongly popular if it is more popular than all other

matchings𝑀 ′
. It is easy to see that each instance can admit at most

one strongly popular matching. Now we can define the problems

of existence and verification for a strongly popular matching.

3d-cyclic strongly popular matching with incomplete

lists (3dspmi)

Input: Sets 𝐴, 𝐵,𝐶 with a cyclic preference structure.

Question: Does a strongly popular matching exist?

3d-cyclic strongly popular matching verification with

incomplete lists (3dspmvi)

Input: Sets 𝐴, 𝐵,𝐶 with a cyclic preference structure and

a matching𝑀 .

Question: Is𝑀 strongly popular?

If we want to indicate that the preference lists are complete, i.e.,

every agent in 𝐴 ranks all agents in 𝐵, every agent in 𝐵 ranks all

Existence Verification

incomplete complete incomplete complete

Popularity NP-h. Thm 4.1 ? NP-c. Thm 4.2 ?

Strong Popularity NP-h. Thm 4.3 ? NP-c. Thm 4.4 ?

(𝐴 ∪ 𝐵)-Popularity NP-h. Thm 4.5 ∈ P Thm 4.6 ? ∈ P Thm 4.6

Table 1: Overview of the complexity results shown in Sec-
tion 4. The columns refer to the cases with incomplete and
complete lists, respectively. Question marks denote open
problems—these are briefly discussed in Section 6.

agents in𝐶 , and every agent in𝐶 ranks all agents in 𝐴, we omit the

i from the end of the problem name.

(𝐴∪𝐵)-Popularity. Our last optimality concept relies on a recent

real application, described by Bloch et al. [7] who analyzed the

Paris public housing market. In their work, 𝐴 consists of various

housing institutions such as the Ministry of Housing, 𝐵 is the set of

households looking for an apartment, and finally,𝐶 contains the so-

cial housing apartments that are to be assigned to these households.

Institutions have preferences over household-apartment pairs, and

households rank the available apartments in their order of prefer-

ence. One characteristic feature of this application is that apart-

ments are treated as objects without preferences, because they

should be matched through the institutions.

Here we will study a restricted variant, listed as one of the three

most typical interpretations of the institutions’ preferences by Bloch

et al. [7]: institutions have preferences directly over the households,

no matter which apartment they are matched to. This problem

setting translates into a 3-dimensional matching instance, where

agents in 𝐶 only have the constraint to be matched to an accept-

able agent from 𝐴, while classes 𝐴 and 𝐵 submit preferences over

acceptable agents in classes 𝐵 and 𝐶 , respectively. While Bloch et

al.[7] focused on the existence of a Pareto optimal solution, here

we define popularity for such instances.

Matching𝑀 ′
is (𝐴 ∪ 𝐵)-more popular than matching𝑀 if∑︁

𝑥 ∈(𝐴∪𝐵)
vote𝑥 (𝑀 ′, 𝑀) ≥ 1,

i.e., if 𝑀 ′
would win against 𝑀 in a head-to-head election where

only agents in (𝐴 ∪ 𝐵) are allowed to vote. Analogously, we call a

matching 𝑀 (𝐴 ∪ 𝐵)-popular if there is no matching that is (𝐴 ∪
𝐵)-more popular than 𝑀 . This definition tallies the votes of each

household and institution, but treats apartments as objects. To

overcome the technical difficulty of one institution handling more

than one apartment and to give a vote to the institution in the

decision over each apartment, we can simply clone the institutions

as many times as many apartments they oversee.

2.3 Our Contribution
We provide structural results and a complexity analysis of the afore-

mentioned popular matching problems. First we show in Section 3

that several implications from the 2-sided matching world do not

hold. In 3 dimensions, stable matchings are not necessarily popular

and strongly popular matchings are not necessarily stable.

Then in Section 4 we turn to the complexity of verifying and

computing a popular, strongly popular, or (𝐴∪𝐵)-popular matching

when lists are complete, and show that the defined verification
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𝑎1 : 𝑏1, 𝒃2, 𝑏3 𝑎2 : 𝒃3, 𝑏2, 𝑏1 𝑎3 : 𝒃1, 𝑏3, 𝑏2

𝑏1 : 𝒄2, 𝑐1, 𝑐3 𝑏2 : 𝒄3, 𝑐2, 𝑐1 𝑏3 : 𝑐3, 𝑐2, 𝒄1

𝑐1 : 𝒂2, 𝑎1, 𝑎3 𝑐2 : 𝑎2, 𝑎1, 𝒂3 𝑐3 : 𝒂1, 𝑎3, 𝑎2

Figure 1: Compact representation of the preferences in
Lemma 3.1. Agent 𝑎1 has the preference list 𝑏1 ≻𝑎1 𝑏2 ≻𝑎1 𝑏3.
The triples in𝑀 are underlined. Bold font denotes the more
popular matching𝑀 ′.

and search problems for all variants except (𝐴 ∪ 𝐵)-popularity
verification areNP-hard.We complement these results with positive

ones for (𝐴∪𝐵)-popularity with complete lists. Table 1 summarizes

our results.

Following this we investigate instances derived from master

lists in Section 5, and show that in general for 3-master lists and

2-master lists popular matchings do not exist. Finally, in Section 6

we list some interesting problems that are left open by this work.

Our hardness proofs have been delegated to the Appendix.

3 STRUCTURAL RESULTS
As a first step, we investigate the relations between stability and

popularity. In the traditional stable marriage and roommates prob-

lems, stable matchings form a subset of popular matchings [19].

Moreover, if a strongly popular matching exists, then it must be the

unique popular matching and also the unique stable matching [4].

First we show that in 3 dimensions, neither kind of stability

implies popularity by presenting an instance with a strongly stable

matching that is not popular.

Lemma 3.1. There is an instance I of 3dpmi with a matching𝑀

such that𝑀 is strongly stable but not popular.

Proof. Consider the preference profiles depicted

in Figure 1. First we prove that the matching 𝑀 =

{(𝑎1, 𝑏1, 𝑐1), (𝑎2, 𝑏2, 𝑐2), (𝑎3, 𝑏3, 𝑐3)} is strongly stable. As we

observed in Section 2.2, at least two agents in a weakly blocking

triple must improve their match. There are only 6 possible

improvements to 𝑀 : 𝑏1 switches to 𝑐2, 𝑐1 switches to 𝑎2, 𝑎2
switches to 𝑏3, 𝑏2 switches to 𝑐3, 𝑎3 switches to 𝑏1, and finally, 𝑐3
switches to 𝑎1. It is easy to check that no two of these will keep the

third agent involved at least as satisfied as she is in𝑀 .

However, matching𝑀 ′ = {(𝑎1, 𝑏2, 𝑐3), (𝑎2, 𝑏3, 𝑐1), (𝑎3, 𝑏1, 𝑐2)} is
more popular, since all agents except {𝑎1, 𝑏3, 𝑐2} prefer it to𝑀 . □

Secondly we show that for 3-dimensional instances, even strong

popularity does not imply weak stability.

Lemma 3.2. There is an instance I of 3dspmi with a matching𝑀

such that𝑀 is strongly popular but not weakly stable.

Proof. Consider the preference profiles depicted in Figure 2 and

the matching𝑀 B {(𝑎1, 𝑏1, 𝑐1), (𝑎2, 𝑏2, 𝑐2), (𝑎3, 𝑏3, 𝑐3)}. As can be

easily seen, 𝑀 is not weakly stable, since (𝑎1, 𝑏2, 𝑐3) is a strongly
blocking triple.

Matching𝑀 is however strongly popular. Assume indirectly that

there is a matching 𝑀 ′
such that 𝑀 is not more popular than 𝑀 ′

.

The only three agents who can possibly improve are 𝑎1, 𝑏2, and 𝑐3,

𝑎1 : 𝒃2, 𝑏1, 𝑏3 𝑎2 : 𝑏2, 𝑏3, 𝑏1 𝑎3 : 𝑏3, 𝑏2, 𝑏1

𝑏1 : 𝑐1, 𝑐2, 𝑐3 𝑏2 : 𝒄3, 𝑐2, 𝑐1 𝑏3 : 𝑐3, 𝑐2, 𝑐1

𝑐1 : 𝑎1, 𝑎2, 𝑎3 𝑐2 : 𝑎2, 𝑎1, 𝑎3 𝑐3 : 𝒂1, 𝑎3, 𝑎2

Figure 2: Representation of the preferences in Lemma 3.2.
The triples in 𝑀 are underlined and the strongly blocking
triple is in bold.

because the remaining 6 agents are matched to their first choice.

If all three of them improve in 𝑀 ′
, then (𝑎1, 𝑏2, 𝑐3) ∈ 𝑀 ′

, and all

possible matchings for the remaining 6 agents match at least 4 of

them to an agent who is not their top choice. The other possibility

is that at least one of 𝑎1, 𝑏2, and 𝑐3 remains in the same triple in

𝑀 ′
as she was in 𝑀 . Due to symmetry, we can assume without

loss of generality that this agent is 𝑎1, and thus, (𝑎1, 𝑏1, 𝑐1) ∈ 𝑀 ′
.

The only agent who can improve from this point on is 𝑏2, and

she must switch to 𝑐3. This 𝑀
′
can be only finished by taking

(𝑎2, 𝑏2, 𝑐3), (𝑎3, 𝑏3, 𝑐2) ∈ 𝑀 ′
or by taking (𝑎3, 𝑏2, 𝑐3), (𝑎2, 𝑏3, 𝑐2) ∈

𝑀 ′
, both of which make only 𝑏2 better off, and exactly 3 out of

these 6 agents worse off than they were in 𝑀 . Thus𝑀 is strongly

popular. □

In the appendix, we also give two examples that these results

also hold for non-cyclic preferences. Our third result shows that in

an instance with complete lists, a strongly popular matching can

only be blocked by strongly blocking triples.

Lemma 3.3. In an instance I of 3dspm, a strongly popular and

weakly stable matching𝑀 is also strongly stable.

Proof. Consider a triple 𝑡 = (𝑎, 𝑏, 𝑐) and assume that 𝑡 weakly

blocks𝑀 . Since𝑀 is weakly stable, one of the three agents needs

to have the same partner in 𝑡 and in𝑀 . Without loss of generality

we assume that this agent is 𝑏, and thus 𝑏 and 𝑐 were matched in

𝑀 as well. Let (𝑎, 𝛽,𝛾), (𝛼,𝑏, 𝑐) ∈ 𝑀 be triples in 𝑀 . Since (𝑎, 𝑏, 𝑐)
is a weakly blocking triple to𝑀 , we know that 𝑎 ≻𝑐 𝛼 and 𝑏 ≻𝑎 𝛽 .

The matching 𝑀 ′ = 𝑀 \ (𝑎, 𝛽,𝛾) \ (𝛼,𝑏, 𝑐) ∪ (𝛼, 𝛽,𝛾) ∪ (𝑎, 𝑏, 𝑐)
leads to at least two agents, 𝑎 and 𝑐 , preferring 𝑀 ′

to 𝑀 , and at

most two agents, 𝛼 and 𝛾 , preferring𝑀 to𝑀 ′
. This contradicts the

assumption that𝑀 was strongly popular. □

4 NP-HARDNESS RESULTS
In this section we prove hardness for all our problems with incom-

plete lists, except (𝐴∪𝐵)-popularity verification. We also show that

(𝐴 ∪ 𝐵)-popularity can be verified and an 𝐴 ∪ 𝐵-popular matching

can be found in polynomial time if preference lists are complete.

For a structured summary of these results, please consult Table 1.

4.1 Popularity
We start by showing that it is NP-hard to determine whether an

instance with incomplete lists admits a popular matching. For this

we use a restricted, but still NP-complete variant of 3sat, known

as (2,2)-e3-sat [3].
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(2,2)-e3-sat

Input: A set 𝑋 of variables and a set C of clauses of size

exactly 3 such that each variable appears in exactly

two clauses in positive form and in exactly two

clauses in negative form.

Question: Is there a satisfying assignment for C?
First, we present an instance of 3dspm and show that it admits

no popular matching. This instance will come handy later, in the

proof of Theorem 4.1.

Observation 4.1. Any instance I of 3dspmi obtained by removing

any positive number of agents from an instance of 3dspmi, which

contains three agents per type and is derived from a 3-master list,

admits a popular matching.

Using this we can now show the NP-hardness of deciding

whether a popular matching exists.

Theorem 4.1. It is NP-hard to decide whether a 3dpmi instance

admits a popular matching, even if each agent finds four other agents

acceptable. This holds even if the preferences are derived from a 2-

master list.

Proof. We reduce from (2,2)-e3-sat.

Construction. Let 𝑋 = {𝑥1, . . . , 𝑥𝑛} be the set of variables and C
be the set of clauses. We first define the sets of agents 𝐴, 𝐵,𝐶 of our

3dmpi instance. For each clause 𝜑 = {𝑥𝑖 , 𝑥 𝑗 , 𝑥𝑘 }, where 𝑥𝑖 might be

in either positive or negative form, we add nine agents

• three clause agents 𝑎
𝜑

𝑖
, 𝑎

𝜑

𝑗
, 𝑎

𝜑

𝑘
in 𝐴;

• three dummy agents 𝑏
𝜑

1
, 𝑏

𝜑

2
, 𝑏

𝜑

3
in 𝐵;

• three dummy agents 𝑐
𝜑

1
, 𝑐
𝜑

2
, 𝑐
𝜑

3
in 𝐶 .

For each variable 𝑥𝑖 ∈ 𝑋 we include twelve variable agents

• two agents 𝑎𝑖
1
, 𝑎𝑖

2
in 𝐴;

• six agents 𝑏𝑖
1
, 𝑏𝑖

2
, 𝑏

𝑖,+
1
, 𝑏

𝑖,−
1

, 𝑏
𝑖,+
2
, 𝑏

𝑖,−
2

in 𝐵;

• four agents 𝑐
𝑖,+
1
, 𝑐
𝑖,−
1

, 𝑐
𝑖,+
2
, 𝑐
𝑖,−
2

in 𝐶 .

Next we define our preference lists.

• For any clause𝜑 and any clause agent𝑎
𝜑

𝑖
such that 𝑥𝑖 appears

is positive form in 𝜑 , we define the preference list to be

𝑏
𝑖,+
1

≻ 𝑏
𝑖,+
2

≻ 𝑏
𝜑

1
≻ 𝑏

𝜑

2
≻ 𝑏

𝜑

3
.

• For any clause𝜑 and any clause agent𝑎
𝜑

𝑖
such that 𝑥𝑖 appears

is negative form in 𝜑 , we define the preference list to be

𝑏
𝑖,−
1

≻ 𝑏
𝑖,−
2

≻ 𝑏
𝜑

1
≻ 𝑏

𝜑

2
≻ 𝑏

𝜑

3
.

• For any 𝑏
𝜑
𝑚 with𝑚 ∈ {1, 2, 3} we add the list 𝑐

𝜑

1
≻ 𝑐

𝜑

2
≻ 𝑐

𝜑

3
.

• Lastly for any 𝑐
𝜑
𝑚 , with 𝑥𝑖 , 𝑥 𝑗 , and 𝑥𝑘 being the variables that

appear either in positive or negative form in 𝜑 such that

𝑖 < 𝑗 < 𝑘 , we add the list 𝑎
𝜑

𝑖
≻ 𝑎

𝜑

𝑗
≻ 𝑎

𝜑

𝑘
.

Note that this implies that all the clause and dummy agents belong-

ing to one clause form a sub-instance derived from a 3-master list.

Thus following Theorem 5.1 and Observation 4.1, in any popular

matching at least one of the clause agents needs to be matched to a

non-dummy agent.

Next for the variable gadget of any variable 𝑥𝑖 we define the

following preference lists.

• Agent 𝑎𝑖
1
receives the preference list 𝑏𝑖

2
≻ 𝑏𝑖

1
.

• Agent 𝑎𝑖
2
receives the preference list 𝑏𝑖

1
≻ 𝑏𝑖

2
.

bi,−1

bi,+1bi,+2

bi,−2

bi2

bi1
ai2

ai1

ci,−1

ci,+1ci,+2

ci,−2

Figure 3: The figure represents the clause gadget in the proof
of Theorem 4.1. The vertices denote the agents, with vertices
of the same color belonging to the same class. Solid edges
leaving a vertex represent the first choice of the correspond-
ing agent, whereas dotted edges represent the second choice.

• Agent 𝑏𝑖
1
receives the preference list 𝑐

𝑖,−
2

≻ 𝑐
𝑖,+
2
.

• Agent 𝑏𝑖
2
receives the preference list 𝑐

𝑖,+
1

≻ 𝑐
𝑖,−
1

.

• Agent 𝑏
𝑖,+
1

receives the preference list 𝑐
𝑖,+
1
.

• Agent 𝑏
𝑖,−
1

receives the preference list 𝑐
𝑖,−
1

.

• Agent 𝑏
𝑖,+
2

receives the preference list 𝑐
𝑖,+
2
.

• Agent 𝑏
𝑖,−
2

receives the preference list 𝑐
𝑖,−
2

.

Furthermore, we call 𝜑+,𝜓+
the clauses where 𝑥𝑖 appears in

positive form, and 𝜑−,𝜓−
the clauses where 𝑥𝑖 appears in negative

form and turn to the preferences of the variable agents in 𝐶 .

• For the agent 𝑐
𝑖,+
1

we add the preference list 𝑎
𝜑+

𝑖
≻ 𝑎

𝜓+

𝑖
≻ 𝑎𝑖

1
.

• For the agent 𝑐
𝑖,−
1

we add the preference list 𝑎
𝜑−

𝑖
≻ 𝑎

𝜓−

𝑖
≻ 𝑎𝑖

2
.

• For the agent 𝑐
𝑖,+
2

we add the preference list 𝑎
𝜑+

𝑖
≻ 𝑎

𝜓+

𝑖
≻ 𝑎𝑖

2
.

• For the agent 𝑐
𝑖,−
2

we add the preference list 𝑎
𝜑−

𝑖
≻ 𝑎

𝜓−

𝑖
≻ 𝑎𝑖

1
.

Note that in this construction the relative order of the preferences in

𝐵 and𝐶 is the same, thus the preferences are subsets of an instance

derived from a 2-master list. For a representation of the construction

in the variable gadget, see Figure 3.

⇒. We first assume that the (2,2)-e3-sat instance is satisfiable

and Φ is a satisfying assignment. We now show how to construct a

popular matching𝑀 .

• For any variable 𝑥𝑖 that is set to true in Φ and appears in

positive form in the clauses 𝜑 and𝜓 we include the triples

(𝑎2, 𝑏2, 𝑐𝑖,−
1

), (𝑎1, 𝑏1, 𝑐𝑖,−
2

), (𝑎𝜑
𝑖
, 𝑏

𝑖,+
2
, 𝑐
𝑖,+
2
), and (𝑎𝜓

𝑖
, 𝑏

𝑖,+
1
, 𝑐
𝑖,+
1
).
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• If 𝑥𝑖 is set to false in Φ and appears in negative

form in the clauses 𝜑 and 𝜓 we include the triples

(𝑎2, 𝑏1, 𝑐𝑖,+
2
), (𝑎1, 𝑏2, 𝑐𝑖,+

1
), (𝑎𝜑

𝑖
, 𝑏

𝑖,−
2

, 𝑐
𝑖,−
2

), and (𝑎𝜓
𝑖
, 𝑏

𝑖,−
1

, 𝑐
𝑖,−
1

).
• For any clause 𝜑 where two variables 𝑥𝑖 , 𝑥 𝑗 are unsatisfied,

we add the triples (𝑎𝜑
𝑖
, 𝑏1, 𝑐1) and (𝑎𝜑

𝑗
, 𝑏2, 𝑐2).

• For any clause 𝜑 with one variable 𝑥𝑖 unsatisfied we add the

triple (𝑎𝜑
𝑖
, 𝑏1, 𝑐1).

Now all we are left to do is to show that 𝑀 is popular. First, we

already know from Lemma 4.1 that each matching in each clause

gadget is popular if one does not match an additional 𝑎
𝜑

𝑖
to some

agent in the clause gadget. If 𝑎
𝜑

𝑖
would get matched to some agent

in the clause gadget, the matching will get worse for 𝑎
𝜑

𝑖
, 𝑏

𝑖,±
1/2, and

𝑐
𝑖,±
1/2 (depending on how the matching is constructed), while at most

three agents in the clause gadget can improve. Furthermore any

perfect matching 𝑀 ′
in the variable gadget is not more popular,

since switching 𝑎𝑖
1
or 𝑏𝑖

1
to 𝑀 ′

increases the rank of one of them,

while it decreases the rank of the other one compared to 𝑀 . If the

matching𝑀 ′
in the variable gadget is not perfect, at least two of the

𝑎𝑖
1/2 or 𝑏

𝑖
1/2 are now unmatched and matching 𝑐

𝑖,±
1/2 to any variable

gadget would also unmatch two of the variable dummies, leading

to 𝑀 being preferred by at least one more agent over 𝑀 ′
. Finally

matching agents 𝑎
𝜑

𝑖
and 𝑎

𝜓

𝑖
to the respective other 𝑏±

1/2 would make

two agents happier and two agents unhappier, thus also not leading

to a more popular matching. Therefore in any matching𝑀 ′
for any

agent who prefers𝑀 ′
to𝑀 there is at least one (unique) agent who

prefers𝑀 to𝑀 ′
, which implies that𝑀 is popular.

⇐. Next assume that we are given a popular matching 𝑀 . Now

we make two observations.

• For any clause 𝜑 , at least one agent 𝑎
𝜑

𝑖
has to be matched to

her variable gadget, since otherwise following Theorem 5.1

the matching could not be popular, because the agents in the

clause gadget are all derived from a master list.

• Now assume that there is a variable gadget where both at

least one of𝑏
𝑖,−
1

and𝑏
𝑖,−
2

as well as at least one of𝑏
𝑖,+
1

and𝑏
𝑖,+
2

are matched to clause gadgets. Then without loss of general-

ity 𝑎𝑖
1
and 𝑏𝑖

1
are unmatched in𝑀 . Since𝑀 is popular, it has

to be maximal and thus 𝑐
𝑖,−
1

is matched to some 𝑎
𝜑

𝑖
and two

agents 𝑏
𝜑

𝑘
, 𝑐
𝜑

𝑘
are unmatched. Taking the triples (𝑎𝑖

1
, 𝑏𝑖

1
, 𝑐
𝑖,−
1

)
and (𝑎𝜑

𝑖
, 𝑏

𝜑

𝑘
, 𝑐
𝜑

𝑘
) improves the matching for 𝑎𝑖

1
, 𝑏𝑖

1
, 𝑏

𝜑

𝑘
, 𝑐
𝜑

𝑘
and

makes it worse for 𝑐
𝑖,−
1

, 𝑏
𝑖,−
1

, 𝑎
𝜑

𝑖
. Thus𝑀 could not have been

popular.

Therefore for each variable, 𝑀 matches either only 𝑏
𝑖,−
1

and 𝑏
𝑖,−
2

or 𝑏
𝑖,+
1

and 𝑏
𝑖,+
2

to their respective clause gadgets and since each

clause gadget has to be matched, this implies that we can construct

a satisfying assignment. □

Further, we can show that 3dpmvi is computationally intractable

as well.

Theorem 4.2. It is NP-complete to decide whether a given 3dpmvi

instance with a matching𝑀 admits a matching that is more popular

than𝑀 . This holds even if the preferences are derived from a 1-master

list.

4.2 Strong Popularity
Next we show that it is also NP-hard to find a strongly popular

matching and to verify whether a given matching is strongly pop-

ular. For this we reduce from the problem of finding a perfect

matching in a 3D-cyclic matching instance without preferences,

shown to be NP-complete by Garey and Johnson [20].

perfect 3d-cyclic matching

Input: Sets 𝐴, 𝐵,𝐶 with cyclic acceptability relations.

Question: Does a perfect matching exist?

Theorem 4.3. It is NP-hard to determine whether a given 3dspmi

instance admits a strongly popular matching. This holds even if the

preferences are derived from a 2-master list.

Proof. We reduce from perfect 3d-cyclic matching.

Construction. Assume we are given a perfect 3d-cyclic match-

ing instance I with sets 𝐴0 = {𝑎1, . . . , 𝑎𝑛}, 𝐵0 = {𝑏1, . . . , 𝑏𝑛}, and
𝐶0 = {𝑐1, . . . , 𝑐𝑛}. For our 3dspmi instance, we create a copy of

each of the three classes, 𝐴′
0
= {𝑎′

1
, . . . , 𝑎′𝑛}, 𝐵′

0
= {𝑏 ′

1
, . . . , 𝑏 ′𝑛},

and 𝐶 ′
0
= {𝑐 ′

1
, . . . , 𝑐 ′𝑛} and we set 𝐴 = 𝐴0 ∪ 𝐴′

0
, 𝐵 = 𝐵0 ∪ 𝐵′

0
, and

𝐶 = 𝐶0 ∪𝐶 ′
0
.

Next we turn to the preferences. For each agent 𝑥 ∈ 𝐴0∪𝐵0∪𝐶0

let 𝑛𝑥
1
, . . . , 𝑛𝑥

𝑘
be her set of acceptable agents in I in an arbitrary

order, such that the relative order between all agents of one class is

the same. We take the indices modulo 𝑛 and as such take 𝑛 + 1 = 1.

• For any 𝑎𝑖 ∈ 𝐴0 we create the preference list 𝑏
′
𝑖
≻𝑎𝑖 𝑛

𝑎𝑖
1

≻𝑎𝑖
· · · ≻𝑎𝑖 𝑛

𝑎𝑖
𝑘
.

• For any 𝑎′
𝑖
∈ 𝐴′

0
we create the preference list only consisting

of 𝑏 ′
𝑖
.

• For any 𝑏𝑖 ∈ 𝐵0 we create the preference list 𝑛
𝑏𝑖
1

≻𝑎𝑖 · · · ≻𝑏𝑖
𝑛
𝑏𝑖
𝑘
.

• For any 𝑏 ′
𝑖
∈ 𝐵′

0
we create the preference list 𝑐 ′

𝑖
≻𝑏′

𝑖
𝑐 ′
𝑖+1.

• For any 𝑐𝑖 ∈ 𝐶0 we create the preference list 𝑛
𝑐𝑖
1

≻𝑐𝑖 · · · ≻𝑐𝑖
𝑛
𝑐𝑖
𝑘
.

• For any 𝑐 ′
𝑖
∈ 𝐶 ′

0
we create the preference list 𝑎𝑖 ≻𝑐′

𝑖
𝑎′
𝑖−1.

⇒. First, assume that I admits no perfect matching. We then

show that the matching 𝑀 = {(𝑎𝑖 , 𝑏 ′𝑖 , 𝑐
′
𝑖
) | 𝑎𝑖 ∈ 𝐴0} is strongly

popular. Let𝑀 ′
be a matching different from𝑀 . For any 𝑖 ∈ [𝑛], we

define the vertex set 𝑋𝑖 = {𝑎𝑖 , 𝑎′𝑖 , 𝑀
′(𝑎𝑖 ), 𝑀 ′(𝑀 ′(𝑎𝑖 )), 𝑏 ′𝑖 , 𝑐

′
𝑖
} and

also vote𝑖 (𝑀 ′) =
∑
𝑥 ∈𝑋𝑖

vote𝑥 (𝑀 ′, 𝑀). By the definition of pop-

ularity it holds that vote(𝑀 ′, 𝑀) = ∑𝑛
𝑖=1 vote𝑖 (𝑀 ′). Now we can

distinguish four cases, based on whether 𝑎𝑖 and 𝑎
′
𝑖
are unmatched

or matched to 𝑏 ′
𝑖
.

• If 𝑀 ′(𝑎𝑖 ) = 𝑏 ′
𝑖
, then it holds that 𝑋𝑖 = {𝑎𝑖 , 𝑎′𝑖 , 𝑏

′
𝑖
, 𝑐 ′
𝑖
}.

Hence, the matching changes for no member of 𝑋𝑖 and thus

vote𝑖 (𝑀 ′) = 0.

• Similarly, if 𝑀 ′(𝑎𝑖 ) = 𝑎𝑖 , then it is easy to see that

vote𝑖 (𝑀 ′) ≤ −2, since 𝑎𝑖 , 𝑏 ′𝑖 , 𝑐
′
𝑖
all get a worse partner (or no

partner at all).

• Otherwise if 𝑀 ′(𝑎𝑖 ) ≠ 𝑏 ′
𝑖
and 𝑀 ′(𝑎′

𝑖
) = 𝑏 ′

𝑖
, then 𝑎′

𝑖
, 𝑀 ′(𝑎𝑖 ),

and𝑀 ′(𝑀 ′(𝑎𝑖 )) prefer𝑀 ′
to𝑀 , while the rest of 𝑋𝑖 prefers

𝑀 to𝑀 ′
, which results in vote𝑖 (𝑀 ′) = 0.

• If 𝑀 ′(𝑎𝑖 ) ≠ 𝑏 ′
𝑖
and 𝑀 ′(𝑎′

𝑖
) = 𝑎′

𝑖
, then 𝑀 ′(𝑎𝑖 ) and

𝑀 ′(𝑀 ′(𝑎𝑖 )) prefer 𝑀 ′
to 𝑀 , while the rest of 𝑋𝑖 prefers

𝑀 to𝑀 ′
, which results in vote𝑖 (𝑀 ′) ≤ −1.
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Since 𝑀 ′ ≠ 𝑀 , 𝑀 ′(𝑎𝑖 ) ≠ 𝑏 ′
𝑖
has to hold for at least one 𝑎𝑖 ∈ 𝐴0.

However, since no perfect matching exists, there has to be an agent

𝑎𝑖 ∈ 𝐴 not matched to an agent in 𝐵0. From this follows that either

𝑀 ′(𝑎𝑖 ) = 𝑎𝑖 or 𝑀 (𝑎′
𝑖
) = 𝑎′

𝑖
has to hold if this 𝑎𝑖 is matched to

𝑏 ′
𝑖
, which would imply that vote𝑖 (𝑀 ′) < 0. Therefore, we get that

vote(𝑀 ′, 𝑀) = ∑𝑛
𝑖=1 vote𝑖 (𝑀 ′) < 0 and thus𝑀 is strongly popular.

⇐. For the other direction, assume thatI admits a perfect match-

ing𝑀 ′
0
and consider the two matchings𝑀 = {(𝑎𝑖 , 𝑏 ′𝑖 , 𝑐

′
𝑖
) | 𝑎𝑖 ∈ 𝐴0}

and 𝑀 ′ = 𝑀 ′
0
∪ {𝑎′

𝑖
, 𝑏 ′

𝑖
, 𝑐 ′
𝑖+1 | 𝑎′

𝑖
∈ 𝐴0}. First, it is easy to see that

for any 𝑖 ∈ [𝑛], all of 𝑎𝑖 , 𝑏 ′𝑖 , 𝑐
′
𝑖
prefer 𝑀 to 𝑀 ′

while 𝑏𝑖 , 𝑐𝑖 , and 𝑎′
𝑖

prefer𝑀 ′
to𝑀 . Thus, neither𝑀 nor𝑀 ′

is strongly popular.

Now assume that𝑀 ′
is a matching different from𝑀 . Let vote𝑖 be

as in the previous case. If𝑀 ′(𝑎𝑖 ) = 𝑏 ′
𝑖
, then nothing changes for the

agents in 𝑋𝑖 and thus vote𝑖 (𝑀 ′) = 0. If 𝑀 ′(𝑎𝑖 ) = 𝑎𝑖 , then we get

vote𝑖 (𝑀 ′) ≤ −2 and if 𝑀 ′(𝑎𝑖 ) ∈ 𝐵0, we get vote𝑖 (𝑀 ′) ≤ 0. Thus,

the matching𝑀 ′
was not strongly popular either and therefore no

strongly popular matching exists. □

A slightly modified version of the proof implies that 3dspmvi is

also computationally intractable.

Theorem 4.4. It isNP-complete to decide whether a given 3dspmvi

instance admits a matching 𝑀 ′
such that 𝑀 is not more popular

than 𝑀 ′
. This holds even if the preferences are derived from a 2-

master list.

4.3 (𝐴 ∪ 𝐵)-Popularity
Finally we turn to the application-motivated variant of our problem

and show that computing a matching that is (𝐴 ∪ 𝐵)-popular, i.e.,
it does not lose any head-to-head election where only agents in

(𝐴 ∪ 𝐵) can vote, is NP-hard as well. We reduce from the problem

of finding a popular matching in a bipartite graph with one side

having strict preferences and the other side either having a tie or

strict preferences, shown to be NP-complete by Cseh et al. [12].

popular matching with one-sided ties

Input: A bipartite graph 𝐺 = (𝑈 ∪𝑊, 𝐸), for each 𝑢 ∈
𝑈 a strict preference list over its neighbors in𝑊 ,

for each 𝑤 ∈ 𝑊 either a strict preference list or

a preference list containing a single tie over its

neighbors in 𝑈 .

Question: Does 𝐺 admit a popular matching?

Theorem 4.5. It is NP-hard to decide whether a 3dpmi instance

admits an (𝐴 ∪ 𝐵)-popular matching.

Interestingly, the problem becomes easy with complete lists.

Theorem 4.6. Both verifying (𝐴 ∪ 𝐵)-popularity and computing

an (𝐴 ∪ 𝐵)-popular matching in a 3dpm instance I can be done in

linear time.

Proof. From I we construct two house allocation instances

with one-sided preferences, I𝐴 := (𝐴, 𝐵, (≻𝑎)𝑎∈𝐴) and I𝐵 :=

(𝐵,𝐶, (≻𝑏 )𝑏∈𝐵). We will show that I admits a popular matching if

and only if both I𝐴 and I𝐵 admit a popular matching.

First assume that I admits a popular matching 𝑀 . Using this

we now construct the two matchings,𝑀𝐴 B {(𝑎,𝑀 (𝑎) | 𝑎 ∈ 𝐴} in
I𝐴 and𝑀𝐵 B {(𝑏,𝑀 (𝑏) | 𝑏 ∈ 𝐵} in I𝐵 . Without loss of generality

assume that𝑀𝐴 is not popular inI𝐴 and let𝑀 ′
𝐴
be the more popular

matching. It is easy to see that the matching {𝑎,𝑀 ′
𝐴
(𝑎), 𝑀 (𝑀 ′

𝐴
(𝑎)) |

𝑎 ∈ 𝐴} is also more popular than𝑀 in I.
If I𝐴 and I𝐵 admit popular matchings𝑀𝐴 and𝑀𝐵 , respectively,

then thematching {𝑎,𝑀𝐴 (𝑎)𝑀𝐵 (𝑀𝐴 (𝑎)) | 𝑎 ∈ 𝐴} is clearly popular
in I.

This immediately yields a linear time algorithm for finding an

(𝐴∪𝐵)-popular matching and verifying whether a matching is (𝐴∪
𝐵)-popular matching, since popular matchings in house allocation

instances can be found and verified in linear time as shown by

Abraham et al. [1]. □

We remark that in the housing application [7], set 𝐴 is the set of

housing institutions, and therefore, it is typically of much smaller

cardinality than 𝐵 and 𝐶 . The agents of 𝐴 thus need to be copied

multiple times to create an instance with |𝐴| = |𝐵 | = |𝐶 |, which
we assume in our model. However, since vertices in 𝐶 do not vote,

their preferences can be set arbitrarily on these copies, while the

preferences of each copy are identical to the preferences of the

housing institution it represents. Even though the instance created

in our hardness reduction does not quite fulfill the property of

having large groups of agents in𝐴with identical preference lists, its

agents can be grouped into pairs and triples so that the preferences

within these smaller groups are similar—they are even identical for

exactly half of the list. This observation follows from the preference

list structure in the hardness proof of Cseh et al. [12] and the fact

that in our reduction the lists of the agents in 𝐴 are copied from

the lists of the agents in 𝑈 .

5 MASTER LISTS
Now we turn to studying popular matchings in instances with pref-

erences derived from master lists. Examples of real-life applications

of master lists occur in resident matching programs [5], dormitory

room assignments [39], cooperative download applications such as

BitTorrent [2], and 3-sided networking services [13]. Even though

the presence of a master list usually simplifies stable matching prob-

lems and warrants that a solution exists and it is easy to find [24, 37],

here we show that for 3-dimensional popular matchings, instances

with master lists tend to admit no popular matching at all. This

observation is aligned with what has already been shown by the

Condorcet paradox, possibly the first example for the non-existence

of a weak majority winner.

5.1 3-Master List
First we show that an instance derived from a 3-master list has no

popular matching if there are at least 3 agents per class.

Theorem 5.1. A 3dpm instance derived from a 3-master list has

no popular matching if 𝑛 ≥ 3.

Proof. Let𝑀 be a maximal matching (otherwise the matching is

trivially not popular) and let (𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 ), (𝑎 𝑗 , 𝑏 𝑗 , 𝑐 𝑗 ), (𝑎𝑘 , 𝑏𝑘 , 𝑐𝑘 ) ∈ 𝑀

be three disjoint triples. Without loss of generality we can assume

that 𝑎𝑖 ≻𝑐 𝑎 𝑗 ≻𝑐 𝑎𝑘 . We will now distinguish two cases. First

assume that one of

• 𝑏𝑖 ≻𝑎 𝑏𝑘 ≻𝑎 𝑏 𝑗 ;

• 𝑏 𝑗 ≻𝑎 𝑏𝑖 ≻𝑎 𝑏𝑘 ;

• 𝑏𝑘 ≻𝑎 𝑏 𝑗 ≻𝑎 𝑏𝑖
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holds, i.e., the ranking of the three agents in 𝐵 is ‘re-

versed’ compared to the ranking of the agents in 𝐴 they

are matched to. Then the matching 𝑀 ′
resulting from replac-

ing the triples {(𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 ), (𝑎 𝑗 , 𝑏 𝑗 , 𝑐 𝑗 ), (𝑎𝑘 , 𝑏𝑘 , 𝑐𝑘 )} by the triples

{(𝑎𝑘 , 𝑏𝑖 , 𝑐𝑖 ), (𝑎𝑖 , 𝑏 𝑗 , 𝑐 𝑗 ), (𝑎 𝑗 , 𝑏𝑘 , 𝑐𝑘 )} in𝑀 is more popular, since two

of𝑎𝑖 , 𝑎 𝑗 , 𝑎𝑘 (as can be seen by the two ≻𝑎) and 𝑐 𝑗 , 𝑐𝑘 prefer𝑀 ′
, while

only two agents are against𝑀 ′
.

For the second case, we can assume that one of

• 𝑏 𝑗 ≻𝑎 𝑏𝑘 ≻𝑎 𝑏𝑖 ;

• 𝑏𝑘 ≻𝑎 𝑏𝑖 ≻𝑎 𝑏 𝑗 ;

• 𝑏𝑖 ≻𝑎 𝑏 𝑗 ≻𝑎 𝑏𝑘

holds, i.e., the ranking of the agents in 𝐵 is cyclically shifted from

the ranking of the agents in 𝐴. Now we construct matching 𝑀 ′

by replacing the triples {(𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 ), (𝑎 𝑗 , 𝑏 𝑗 , 𝑐 𝑗 ), (𝑎𝑘 , 𝑏𝑘 , 𝑐𝑘 )} by the

triples {(𝑎𝑖 , 𝑏𝑘 , 𝑐 𝑗 ), (𝑎 𝑗 , 𝑏𝑖 , 𝑐𝑘 ), (𝑎𝑘 , 𝑏 𝑗 , 𝑐𝑖 )} in𝑀 . Since 𝐵 is derived

from a master list, two agents in 𝐴, 𝑐 𝑗 and 𝑐𝑘 , and the agent in 𝐵

who was previously matched to the worst of the three agents in 𝐶

prefer their partner in𝑀 ′
to their partner in 𝑀 . Thus𝑀 ′

is more

popular than𝑀 , and therefore no popular matching exists. □

For the sake of completeness, we remark that for 𝑛 ≤ 2, all

perfect matchings in a 3dpm instance derived from a 3-master list

are trivially popular.

Interestingly, Escamocher and O’Sullivan [16] were able to show

that instances derived from a 3-master list have exponentially many

stable matchings, so Theorem 5.1 shows a stark contrast between

stability and popularity in three-dimensional cyclic matching.

5.2 2-Master List
In the spirit of Theorem 5.1, we can also show that even if only the

preferences in 𝐴 and 𝐵 are derived from a master list, no popular

matching exists if there are more than four agents in each of the

three classes.

Theorem 5.2. In an instance of 3dpm derived from a 2-master list,

no popular matching exists if 𝑛 ≥ 5.

Proof. Without loss of generality we can assume that classes

𝐴 and 𝐵 each have a master list, and consider a matching 𝑀 . Let

the rankings for 𝐵 and 𝐶 be 𝑏1 ≻𝑎 · · · ≻𝑎 𝑏𝑛 and 𝑐1 ≻𝑏 · · · ≻𝑏
𝑐𝑛 , respectively. For any 𝛾 ∈ {𝑎, 𝑏, 𝑐} let 𝛾𝑖 ⊕ 1 = 𝛾 (𝑖−1 mod 𝑛) .
Intuitively, the ⊕ operation takes one step up on the list of agents

in a class, and if it is applied to the first agent in the class, then

it jumps to the last agent. Now we compare the matching that

consists of triples in the form (𝑎𝑖 , 𝑀 (𝑎𝑖 ) ⊕ 1, 𝑀 (𝑀 (𝑎𝑖 ) ⊕ 1) ⊕ 1),
i.e., we cyclically shift up the agents in 𝐵 and 𝐶 . In this operation,

all agents in 𝐴 except the agent matched to 𝑏1, and all agents in 𝐵

except the agent matched to 𝑐1 improve. Thus at least 2𝑛 − 2 agents

improve and at most 𝑛 + 2 agents receive a worse partner than in𝑀 .

Therefore if 𝑛 ≥ 5, then𝑀 was not popular. □

For the sake of completeness we elaborate on the case of in-

stances with 𝑛 ≤ 4. Firstly, for 𝑛 ≤ 2, it is easy to see that there is

at least one popular matching in each 3dpm instance derived from

a 2-master list. Instances with 𝑛 = 3 and 𝑛 = 4 can be yes- and

no-instances as well. Since the input size is constant, even iterating

through all matchings and checking each of them for popularity

delivers a polynomial-time algorithm to decide whether a given

instance admits a popular matching.

5.3 1-Master List
A result analogous to Theorems 5.1 and 5.2 is unlikely to exist if

only one agent class is equipped with a master list. Instead, we

give a characterization for strongly popular matchings in instances

derived from a 1-master list with complete lists. This characteri-

zation also immediately gives us a linear time algorithm to find

and verify a strongly popular matching in these instances. The

analogous questions for popularity are discussed as open problems

in Section 6.

Theorem 5.3. In an 3dspm instance derived from a 1-master list,

a matching is strongly popular if and only if all agents without a

master list are matched to their top choice.

6 OPEN PROBLEMS
Our work leaves three important questions open. The first, related

to our results in Section 4, is the complexity of our problems with

regard to complete preference lists. The technique of introducing

so-called ‘boundary dummy-agents’ of Lam and Plaxton [30] for

showing hardness with complete lists for the stable matching prob-

lem does not seem to be applicable for popularity, since the presence

of blocking edges if an agent is matched below her ‘boundary’ does

not restrict the set of popular matchings. Thus, in order to reduce

either from the problem with incomplete lists or from a separate

problem altogether, a new technique might be needed.

Related to this is also the complexity of verifying whether a

matching is (𝐴 ∪ 𝐵)-popular with incomplete lists. Due to the

inherent hardness of computing weight-optimal or even perfect

matchings in 3 dimensions, we conjecture that this problem is NP-

complete as well. This problem seems to have an inherent relation

to the NP-complete Multiple Choice Matching problem, see [20],

which might be another indicator for the hardness of the problem.

The third open problem, in case the problem of finding a popular

matching with complete lists turns out to be intractable, is that of

finding a popular matching in a 3dpm derived from a 1-master list.

Here, as opposed to instances derived from 2- and 3-master lists,

popular matchings can exist. Interestingly enough the structure

of these popular matchings seems to be quite limited, since in any

situation the agents with the master list could be ’shifted up’ to

generate a matching that is more popular for at least 𝑛 − 1 agents,

similarly as we argued in the proof of Theorem 5.2. This might

lead to results similar to the classification of popular matchings in

house allocation instances by Abraham et al. [1]—for instance, if

there is a perfect matching𝑀 and agents 𝑏𝑖 , 𝑏𝑘 ∈ 𝐵 and 𝑐 𝑗 , 𝑐𝑙 ∈ 𝐶

with 𝑙 > 𝑘 ≥ 𝑗 > 𝑖 such that 𝑐 𝑗 ≻𝑏𝑖 𝑀 (𝑏𝑖 ) and 𝑐𝑙 ≻𝑏 𝑗
𝑀 (𝑏𝑙 ),

then 𝑀 is not popular. Other results of this type might pave the

path to a full classification of popular matchings in these instances.

We believe that this sub-problem might be the best starting point

for the exploration of tractable subcases of the three-dimensional

matching problem.
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