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ABSTRACT
Weighted voting games are typically used to model situations where

a number of agents vote against or for a proposal. In such games,

a proposal is accepted if a weighted sum of the votes exceeds a

specified threshold. As the influence of a player over the outcome is

not in general proportional to her assigned weight, various power

indices have been proposed to measure each player’s influence.

The inverse power index problem is the problem of designing a

weighted voting game that achieves a set of desirable influences

as they are measured by a predefined power index. Recent work

has shown that exactly solving the inverse power index problem is

computationally intractable when the power index is in the class of

semivalues — a broad class that includes the popular Shapley value

and Banzhaf index. In this work, we design efficient approximation

algorithms for the inverse semivalue problem. We develop a unified

methodology that leads to computationally efficient algorithms that

solve the inverse semivalue problem to any desired accuracy. We

perform an extensive experimental evaluation of our algorithms

on both synthetic and real inputs. Our experiments show that our

algorithms are scalable and achieve higher accuracy compared to

previous methods in the literature.
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1 INTRODUCTION
1.1 Background and Motivation
Weighted voting games are multiplayer cooperative games mod-

eling the following scenario: There are 𝑛 binary voters, each as-

sociated with a non-negative weight, and the voting outcome is

affirmative if and only if the total weight of the affirmative voters
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exceeds a specified threshold. Weighted voting games have been

extensively studied in cooperative game theory, social choice, and

voting theory over the course of several decades. In addition to

their fundamental importance, these games arise in a number of

practical scenarios, including the voting system of the European

Union, stockholder companies, and resource allocation in multi-

agent systems [5, 8, 14].

Given a weighted voting game, a natural question is how to

measure the power or influence of a player on the result of the

game. Interestingly enough, the power of a player is not always

proportional to her weight. In order to systematically quantify the

influence of a player, a number of power indices have been pro-

posed and studied in the literature, including the Shapley value (or

Shapley-Shubik index) [33, 34], the Banzhaf index [4], the broader

class of semivalues [12, 36], and others. The (forward) problem of

computing the players’ power indices in a given game has received

significant attention and its computational complexity has been

characterized in many settings (see, e.g., [2, 10, 31]).

In this work, we study the inverse power index problem with a

focus on the class of semivalues: Given a set of target semivalues,

design a weighted voting game (i.e., assign appropriate weights

to the players) with this set of semivalues (if such a game exists).

As the proceeding discussion will explain, this problem has been

extensively studied in social choice theory and learning theory.

Recent work [11] established that the exact version of the inverse

semivalue problem – i.e., designing a weighted voting game whose

semivalues are exactly equal to the target ones – is computationally

intractable. Notably, the aforementioned hardness result does not

rule out the existence of efficient approximation algorithms for the

inverse problem.

1.2 Our Contributions
Themain contribution of this paper is a simple and unified approach

that yields computationally efficient approximation algorithms for

the inverse semivalue problem. Prior to this work, no efficient

approximation algorithms were known for this general class of

power indices. We note that efficient approximation algorithms [6,

7] were previously designed for Banzhaf indices and Shapley values,

but it was not clear how to extend these previous algorithms to the

broader class of semivalues. Herewe develop a general methodology

that applies for any semivalue. Moreover, even for the Banzhaf and

Shapley special cases, our algorithms are faster and more accurate
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compared to existing algorithms from the literature. In addition

to their performance guarantees, we show that our algorithms are

scalable to large number of voters 𝑛 and perform very well on a

range of both synthetic and real datasets.

We now provide a high-level overview of our algorithmic ap-

proach. The main difficulty in designing an efficient algorithm for

the inverse semivalues problem is its non-convexity. In fact, given

the hardness result of [11], it is unlikely that there exists an exact

efficient algorithm. Our main insight is that one can obtain efficient

approximation algorithms by considering an appropriate convex

relaxation of the problem. This novel convex relaxation that we

formulate is a key conceptual contribution of our work.

In more detail, we proceed as follows: First, instead of work-

ing with the target semivalues directly, our algorithm works with

an essentially equivalent set of parameters, which we call correla-
tion coefficients (Definition 3). Our goal then becomes to design a

weighted voting game with a given set of correlation coefficients.

This problem is equivalent to the problem we started with, hence

still computationally hard. We instead consider a convex relaxation

of the latter problem, where the goal is to find a Linear Bounded
Function (LBF) (Definition 4) whose vector of correlation coeffi-

cients is equal to the target vector. It turns out that the latter task

can be formulated as a convex optimization problem. While we do

not know how to solve this convex optimization problem exactly

(even evaluating the objective function or its gradient exactly is ♯𝑃-

hard), we can use first-order methods to approximate the optimal

solution to any desired accuracy. Our algorithm for this task runs

in time polynomial in the number of players, 𝑛, and 1/𝜖 , where 𝜖 is
the accuracy parameter. At the end of this process, we output the

weighted voting game with the corresponding weights.

Interestingly, the goal of our convex relaxation is not to find a

solution with near-optimal objective value, but rather an approxi-
mate stationary point, i.e., a point with small gradient. Indeed, the

gradient of our objective is 𝑓𝑤 − 𝑐 , where 𝑐 is the target vector and

𝑓𝑤 is the vector of correlation coefficients of the current hypothe-

sis (Proposition 8). We show that we can use first-order methods,

e.g., (stochastic) gradient descent to find an approximate stationary

point in polynomial time. An issue that arises is that we do not

have access to exact gradients, but we show that an approximate

gradient oracle (or a stochastic gradient) suffices for our purposes.

In general, the smoothness parameter of our objective is quite large

and can be proportional to 𝑛, the number of players. As a result,

the number of iterations of gradient descent will scale with 𝑛. To

overcome this difficulty, we develop a more sophisticated algorithm

with faster runtime. To achieve this, we leverage the fact that the

bad smoothness parameter exists due to a single direction, while in

the orthogonal complement the function is 1-smooth.

1.3 Related Work
Several heuristic algorithms for the inverse Banzhaf index problem

have been proposed in the literature. Aziz, Patterson, and Leech

[3] proposed an algorithm that given target Banzhaf indices and

a desired ℓ2-distance bound, outputs a weighted voting game that

has Banzhaf indices within the desired distance. Their algorithm

starts with an initial real weight vector, and iteratively updates

the weights by interpolating a best fit curve. Unfortunately, no

theoretical guarantees are provided regarding the convergence of

this method. In fact, it is not difficult to construct simple exam-

ples where their algorithm converges to a solution that is far from

the optimal solution (see full version of the paper). Heuristic algo-

rithms for the same problem were also proposed by Laruelle and

Widgren [24] and Leech [28]. The algorithm of [24] was evaluated

on an EU power distribution dataset in [24] and [35]. More recently,

an experimental evaluation was performed by Nijs and Wilmer [9],

where it was shown that there are inputs where the algorithm does

not perform well. The algorithm from [28] was applied on IMF [26]

and EU [25] datasets, again without any performance guarantees.

Fatima, Wooldridge, and Jennings [17] gave an iterative approxi-

mation algorithm for the inverse Shapley value problem that given

target Shapley values, a quota, and a desired average percentage

difference, outputs a weighted voting game with the given quota

that has Shapley values within the desired distance. While it is

shown that each iteration runs in quadratic time and that the al-

gorithm eventually converges, no theoretical guarantees are given

regarding the convergence rate.

We also note that an exact algorithm for both the inverse Banzhaf

index and inverse Shapley value problems was given by Kurz [21].

Unfortunately, the algorithm has runtime exponential in 𝑛, as it

relies on integer linear programming. As expected, the algorithm is

slow in practice even for small weighted voting games: For example,

the algorithm takes 55 minutes even for simple instances with 15

players. Another exact and exponential-time algorithm is given

by Keijzer, Klos, and Zhang [8]. This algorithm is based on an

enumeration of all weighted voting games with 𝑛 players.

The inverse power index problem is of significant interest in

other fields, including computational complexity and learning the-

ory, where the inverse Banzhaf index problem is known as the

“Chow parameters problem”. The Chow parameters of a linear

threshold function are equivalent to the non-normalized Banzhaf

indices [13] of the corresponding weighted voting game, and there-

fore the inverse Banzhaf index problem is tantamount to the Chow

parameters problem. Recent works [6, 7, 30] have obtained poly-

nomial time approximation algorithms with provable performance

guarantees for the inverse problem with respect to the Banzhaf

indices and the Shapley values.

Finally, a number of complexity results have been established

concerning weighted voting games, see, e.g., [2, 10, 14–16]. Most

relevant to this paper is the work of [11] which established that the

exact version of the inverse semivalue problem is computationally

intractable. A related line of work [1, 23] examines which non-

negative vectors can be well approximated by various power index

vectors of simple games.

2 PRELIMINARIES
Notation. We write 𝑤𝑡 (𝑥) to denote the weight of a Boolean

vector 𝑥 ∈ {−1, 1}𝑛 , i.e., the number of 1’s in 𝑥 . We use sign :

R→ R for the function that takes value 1 if 𝑧 ≥ 0 and value −1 if
𝑧 < 0. We will denote by 𝑃1 : R→ [−1, 1] the function defined as

𝑃1 (𝑎) = 𝑎 if |𝑎 | ≤ 1 and 𝑃1 (𝑎) = sign(𝑎), otherwise. We denote by

I : R→ R the function that takes value 1 if −1 ≤ 𝑎 ≤ 1 and value 0

otherwise. We will denote by 𝑞 the function 𝑞 : R → R+ defined
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as 𝑞(𝑎) =
{
|𝑎 | 𝑎 < −1 or 𝑎 > 1

1+𝑎2
2

−1 ≤ 𝑎 ≤ 1

. We use I to denote the identity

matrix and ⪯ to denote the standard Löwner ordering on matrices.

We say a function is 𝛽-smooth if its gradient is 𝛽-Lipschitz.

Our object of study are linear threshold functions (LTFs).

Definition 1 (Linear Threshold Function). A linear threshold func-

tion (LTF) is any function ℎ𝑤,𝜃 : {−1, 1}𝑛 → {−1, 1} such that
ℎ𝑤,𝜃 (𝑥) = sign(𝑤 · 𝑥 − 𝜃 ) for some weight vector 𝑤 ∈ R𝑛 and
threshold 𝜃 ∈ R.

Note that weighted voting games are equivalent to LTFs with

non-negative weights.

Semivalues. We start with the definition of semivalues [32] in

terms of weighting coefficients, as characterized in [12].

Definition 2 (Semivalues). For a positive integer𝑛, a probability vec-
tor 𝑝𝑛 = (𝑝𝑛

0
, . . . , 𝑝𝑛

𝑛−1) ∈ R
𝑛 is a vector such that

∑𝑛−1
𝑡=0

(𝑛−1
𝑡

)
𝑝𝑛𝑡 = 1

and 𝑝𝑛𝑡 ≥ 0, for 𝑡 ∈ {0, . . . , 𝑛 − 1}. The 𝑖-th semivalue, 𝑖 ∈ [𝑛], corre-
sponding to the probability vector 𝑝𝑛 of a function 𝑓 : {−1, 1}𝑛 →
{−1, 1} is

𝑓 𝑝
𝑛

(𝑖) = ∑
𝑥 ∈{−1,1}𝑛 :𝑥𝑖=−1

𝑝𝑛
𝑤𝑡 (𝑥) 𝑓 (𝑥)𝑥𝑖

+ ∑
𝑥 ∈{−1,1}𝑛 :𝑥𝑖=1

𝑝𝑛
𝑤𝑡 (𝑥)−1 𝑓 (𝑥)𝑥𝑖 .

Setting 𝑝𝑛−1 = 𝑝𝑛𝑛 = 0, the vector of semivalues can be reformulated

as follows:

𝑓 𝑝
𝑛

(𝑖) = 1

2

∑
𝑥 ∈{−1,1}𝑛

𝑓 (𝑥)𝑥𝑖
(
𝑝𝑛
𝑤𝑡 (𝑥) + 𝑝𝑛

𝑤𝑡 (𝑥)−1

)
+ 1

2

∑
𝑥 ∈{−1,1}𝑛

𝑓 (𝑥)
(
𝑝𝑛
𝑤𝑡 (𝑥)−1 − 𝑝𝑛

𝑤𝑡 (𝑥)

)
. (1)

Definition 3 (Correlation Coefficient). For a Boolean function 𝑓 :

{−1, 1}𝑛 → {−1, 1}, we will write

𝑓 𝑝
𝑛

(𝑖) :=
∑︁

𝑥 ∈{−1,1}𝑛
𝜇𝑝𝑛 (𝑥) 𝑓 (𝑥)𝑥𝑖

for the normalized first term of (1), where

𝜇𝑝𝑛 (𝑥) :=
𝑝𝑛
𝑤𝑡 (𝑥) + 𝑝𝑛

𝑤𝑡 (𝑥)−1∑
𝑥 ∈{−1,1}𝑛 𝑝

𝑛
𝑤𝑡 (𝑥) + 𝑝𝑛

𝑤𝑡 (𝑥)−1
.

We note that the vector of correlation coefficients of a function 𝑓

is essentially equivalent to its vector of semivalues. It is convenient

for our algorithms toworkwith the vector of correlation coefficients

instead. Correlation coefficients for the special case of Shapley

values were also used in [7].

Special Cases. The Shapley values and Banzhaf indices are the

semivalues defined by 𝑝𝑛𝑡 =
(𝑛−𝑡−1)!𝑡 !

𝑛!
[34] and 𝑝𝑛𝑡 = 1

2
𝑛−1 [13],

respectively. We also study another important family of semivalues,

the binomial semivalues, defined by 𝑝𝑛𝑡 = 𝑝𝑡 (1 − 𝑝)𝑛−𝑡−1 [19],

where 𝑝 ∈ [0, 1].

Inverse Semivalue Problem. Let 𝑛 denote the number of players

and consider the semivalues defined by a known probability vector

𝑝𝑛 . Given a vector 𝑐 = (𝑐1, . . . , 𝑐𝑛) of target semivalues with the

promise that some LTF has these semivalues, the aim is to find such

an LTF.

Name: SV𝑝𝑛 -Inverse Problem

Input: Vector (𝑐1, . . . , 𝑐𝑛) ∈ Q𝑛 and threshold 𝜃 ∈ Q such that

there exists a 𝑣 ∈ Q𝑛 with ℎ̃
𝑝𝑛

𝑣,𝜃
(𝑖) = 𝑐𝑖 , for 𝑖 ∈ [𝑛].

Goal: Output𝑤 ∈ Q𝑛 such that ℎ̃
𝑝𝑛

𝑤,𝜃
(𝑖) = 𝑐𝑖 , for 𝑖 ∈ [𝑛].

For ease of notation, in the rest of the paper, we denote by 𝑓 the

𝑓 𝑝
𝑛
parameters, by 𝑓 the 𝑓 𝑝

𝑛
parameters, and by 𝜇 the distribution

𝜇𝑝𝑛 .

3 WARMUP: INVERSE BANZHAF PROBLEM
We start with the inverse Banzhaf problem – the special case of

the 𝑆𝑉𝑝𝑛 -Inverse problem where 𝑝𝑛 is the uniform distribution on

{±1}𝑛 .

Optimization Formulation. A difficulty which arises when solv-

ing the inverse Banzhaf problem is that LTFs are discontinuous,

which makes them difficult to optimize over. As such, we follow

prior work on this problem, which first relaxes the problem [6] as

follows: Instead of trying to find an LTF with given Banzhaf in-

dices, one instead searches for a linear bounded function with these

Banzhaf indices. Linear bounded functions are a class of functions

that generalize LTFs.

Definition 4 (Linear Bounded Function). A linear bounded func-

tion (LBF) is any function 𝑓𝑤,𝜃 : {−1, 1}𝑛 → [−1, 1] such that
𝑓𝑤,𝜃 (𝑥) = 𝑃1 (𝑤 ·𝑥 −𝜃 ) for some weight vector𝑤 ∈ R𝑛 and threshold
𝜃 ∈ R.

To see that LBFs generalize LTFs, note that any LTF with weight

vector𝑤 can be written as an LBF by taking an LBF with a weight

vector that is a sufficiently large scalar multiple of𝑤 . We now give

the statement of the inverse Banzhaf problem for LBFs.

Inverse Banzhaf Problem for LBFs
Input: Vector 𝑐 = (𝑐1, . . . , 𝑐𝑛) ∈ Q𝑛 and 𝜃 ∈ Q such that there

exists a 𝑣 ∈ Q𝑛 with 𝑓𝑣,𝜃 (𝑖) = 𝑐𝑖 for 𝑖 ∈ [𝑛].
Output: A weight vector𝑤 = (𝑤1, . . . ,𝑤𝑛) ∈ Q𝑛 for an LBF 𝑓 such

that 𝑓𝑤,𝜃 (𝑖) = 𝑐𝑖 for 𝑖 ∈ [𝑛].
We show that this problem can be reformulated as the problem

of minimizing the following convex function. In fact, we show the

stronger result that the ℓ2-norm of the gradient of the function on

theweights𝑤 below is equal to the ℓ2 distance of the Banzhaf indices

𝑓𝑤,𝜃 of the LBF 𝑓 with weights 𝑤 from the desired parameters 𝑐 .

For simplicity, we consider the case where the threshold 𝜃 is set to

0 and we defer the general case to the full version of the paper.

Proposition 5. Given a vector 𝑐 of target Banzhaf indices, consider
the convex and 1-smooth function 𝑔 : R𝑛 → R defined as 𝑔(𝑤) =
E𝑥∼{−1,1}𝑛 [𝑞(𝑤 · 𝑥)] −𝑤 · 𝑐 . Then for the LBF 𝑓𝑤,0 = 𝑃1 (𝑤 · 𝑥), we
have ∥∇𝑔(𝑤)∥2 = ∥ 𝑓𝑤,0 − 𝑐 ∥2.

Proof. For 𝑙 ∈ {1, . . . , 𝑛}, we have:
𝜕𝑔

𝜕𝑤𝑙

= E𝑥∼{−1,1}𝑛 [𝑃1 (𝑤 · 𝑥)𝑥𝑙 ] − 𝑐𝑙 = 𝑓𝑤,0 (𝑙) − 𝑐𝑙 ,

and so ∇𝑔(𝑤) = 𝑓𝑤,0 − 𝑐.

We now prove smoothness. For 𝑙, 𝑗 ∈ {1, .., 𝑛}, we have:
𝜕2𝑔

𝜕𝑤𝑙 𝜕𝑤 𝑗
= E𝑥∼{−1,1}𝑛 [𝐼 (𝑤 · 𝑥)𝑥𝑙𝑥 𝑗 ] .
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Thus, the Hessian matrix of 𝑔 is the following:

H𝑔 (𝑤) = 1

2
𝑛

∑
𝑥 ∈{−1,1}𝑛

𝐼 (𝑤 · 𝑥) 𝑥𝑥⊤ .

Since for any 𝑥 ∈ {−1, 1}𝑛 , it holds that 0 ≤ 𝐼 (𝑤 · 𝑥) ≤ 1, we get

that

H𝑔 (𝑤) ⪯ 1

2
𝑛

∑
𝑥 ∈{−1,1}𝑛

𝑥𝑥⊤ = I.

This implies that 𝑔 is 1-smooth. □

Optimization via (Stochastic) Gradient Descent. Assuming an ex-

act first-order oracle for 𝑔, we may solve the inverse Banzhaf prob-

lem for LBFs by minimizing 𝑔 using the standard gradient descent

method. Specifically, as 𝑔 is 1-smooth, for any 0 < 𝜖 < 1, we can

find a𝑤 ∈ R𝑛 such that ∥∇𝑔(𝑤)∥2 ≤ 𝜖 , i.e., an LBF 𝑓𝑤,0 such that

∥ 𝑓𝑤,0 − 𝑐 ∥2 ≤ 𝜖 , in 𝑂 (1/𝜖2) iterations by the standard analysis of

gradient descent for smooth functions.

However, since computing the Banzhaf indices of an LTF is #P-

hard [31], we cannot have an efficient first-order oracle. Instead, we

can approximately solve the inverse Banzhaf problem in 𝑂 (1/𝜖2)
iterations given access to an approximate first-order oracle via a
folklore analysis (see full version).

Fact 6. For any 𝜖 > 0, given access to 𝜖-additive approximate gradi-

ents, an LBF 𝑓𝑤,0 with weight vector𝑤 ∈ R𝑛 such that ∥ 𝑓𝑤,0−𝑐 ∥2 ≤
𝑂 (𝜖) can be computed with 𝑂 (1/𝜖2) iterations of gradient descent.
One can implement the gradient oracle in time 𝑂 (𝑛2 log(𝑛)/𝜖2).

As shown in the full version, standard gradient descent succeeds

even given access to an 𝜖-additive approximate (as opposed to exact)

gradient oracle, which itself can be implemented using standard

sampling techniques. Specifically, each gradient oracle call uses

𝑂 (𝑛 log(𝑛)/𝜖2) samples and runs in time𝑂 (𝑛2 log(𝑛)/𝜖2). We note

that instead of gradient descentwith approximate gradients, one can

use stochastic gradient descent (SGD). In this case, each stochastic

gradient oracle call uses only one sample and 𝑂 (𝑛/𝜖4) iterations
suffice to get an 𝜖-approximate solution.

The following theorem summarizes themain result of this section

for the inverse Banzhaf problem for LBFs.

Theorem 7. Given a vector of desired Banhzaf indices 𝑐 , we can
efficiently compute a weight vector 𝑤 such that the LBF 𝑓𝑤,0 has
𝑓𝑤,0 parameters that approximate 𝑐 within ℓ2 error 𝜖 . The algorithm
runs in time �̃�

(
𝑛2/𝜖4

)
, where the �̃� () hides logarithmic factors in its

argument.

4 INVERSE SEMIVALUES PROBLEM
In this section, we describe our algorithms for the general inverse

semivalues problem.

Optimization Formulation. We solve the 𝑆𝑉𝑝𝑛 -Inverse problem

by solving an essentially equivalent problem, which we term the

“inverse correlation coefficients problem” or “inverse 𝑓 problem”,

where 𝑓 are the correlation coefficients (Definition 3). For the special

case of Banzhaf indices, the correlation coefficients are equal to the

Banzhaf indices.

For the problem of matching correlation coefficients of LBFs

for distributions other than the uniform distribution, one might

attempt the same approach as in the previous section: Formulate the

same convex optimization problem and approximately minimize

it. Unfortunately, for arbitrary distributions, the resulting convex

optimization is not 1-smooth in general. Indeed, we will see that

the smoothness parameter could potentially be as bad as 𝑂 (𝑛). We

nonetheless obtain the same runtime as before (up to logarithmic

factors). We achieve this by first showing that the problem only

has undesirable smoothness in a single direction. Then, we design

an algorithm whose runtime only depends logarithmically on the

smoothness in this bad direction.

We now define the inverse 𝑓 problem for LBFs and its convex

formulation.

Inverse 𝑓 Parameters Problem for LBFs
Input: Vector 𝑐 = (𝑐1, . . . , 𝑐𝑛) ∈ Q𝑛 and threshold 𝜃 ∈ Q such that

there exists a 𝑣 ∈ Q𝑛 with 𝑓𝑣,𝜃 (𝑖) = 𝑐𝑖 , for 𝑖 ∈ [𝑛].
Output: A weight vector𝑤 = (𝑤1, . . . ,𝑤𝑛) ∈ Q𝑛 for an LBF 𝑓 such

that 𝑓𝑤,𝜃 (𝑖) = 𝑐𝑖 for 𝑖 ∈ [𝑛].
Similarly with the inverse Banzhaf problem, the inverse 𝑓 problem

can be formulated as the problem of minimizing the convex func-

tion 𝑔′, where 𝑔′ is defined in the same way as 𝑔 except that the

expectation term is with respect to the distribution 𝜇 (instead of

the uniform distribution).

Proposition 8. Given a vector 𝑐 of target 𝑓 parameters, consider

the convex and 𝑛-smooth function 𝑔′ : R𝑛 → R defined by 𝑔′(𝑤) =
E𝑥∼𝜇 [𝑞(𝑤 · 𝑥)] − 𝑤 · 𝑐. Then for the LBF 𝑓𝑤,0 with weights 𝑤 ,

∥∇𝑔′(𝑤)∥2 = ∥ 𝑓𝑤,0 − 𝑐 ∥2 .

Proof. The analysis of the gradient is identical to that of the

Banzhaf indices case. For the Hessian, we have that

H𝑔′ (𝑤) = ∑
𝑥 ∈{−1,1}𝑛

𝜇 (𝑥)𝐼 (𝑤 · 𝑥) 𝑥𝑥⊤ .

Observing that trace(H𝑔′ (𝑤)) = 𝑛, we get that 𝜆𝑚𝑎𝑥 (H𝑔′ (𝑤)) ≤ 𝑛,

and therefore H𝑔′ (𝑤) ⪯ 𝑛I. So 𝑔′ is 𝑛-smooth.

□

We can similarly use gradient descent with approximate gradient

oracle to solve the above convex optimization problem. Unfortu-

nately, this leads to runtime Ω(𝑛3/𝜖4) (see full version). In the rest

of this section, we design a more sophisticated and faster algorithm

for this problem.

4.1 Gradient Descent with One Bad Direction
In this subsection, we develop an algorithm for the inverse 𝑓 pa-

rameters problem with running time better than standard gradient

descent. The algorithm takes advantage of the fact that the Hessian

has large eigenvalues in at most one direction. We first formally

state this fact and then we give the algorithm.

Proposition 9. For any distribution 𝜇 on vectors that is sym-

metric with respect to permutations, there exists 𝑎 ∈ R such that

E𝑥∼𝜇 [𝑥𝑥⊤] ⪯ 𝑀 , where 𝑀 = [𝑀𝑖 𝑗 ] with 𝑀𝑖 𝑗 = 𝑎, 𝑖 ≠ 𝑗 , and

𝑀𝑖𝑖 = 1.

See full version for the proof.

Thus, the Hessian of the convex function to be minimized is

bounded above by the Hessian in the above proposition. The all-

ones vector is an eigenvector of this upper bound. Its corresponding
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eigenvalue on this vector is 1 + (𝑛 − 1)𝑎. All other eigenvalues of
the matrix are 1 − 𝑎. Thus, there is only one “bad” direction with a

large eigenvalue.

In the following, we will use 𝑧 to denote the bad direction. We

emphasize that our methods work for any convex function with

any (known) fixed bad direction. We prove the following.

Theorem 10. Consider a function 𝑔 on 𝑛 variables which is 𝛽1-
smooth in every direction orthogonal to some fixed known bad direc-
tion 𝑧 in which it is 𝛽2-smooth, where 𝛽2 ≥ 𝛽1. Suppose we have an
𝜖-additive approximate gradient oracle and 𝜖2/𝛽1-additive approx-
imate function value oracle. Suppose also that we are given a point
𝑤0 and the minimizer of 𝑔 is𝑤∗. Then we can find a point where the
ℓ2 norm of the gradient is 𝑂 (𝜖)-small using

𝑂

(
𝛽1 · [𝑔(𝑤0) − 𝑔(𝑤∗)]

𝜖2
· log

(
𝛽2 · [𝑔(𝑤0) − 𝑔(𝑤∗)]

𝜖2

))
queries to the two oracles plus 𝑂 (𝑛) additional work per query.

Note that this is only a logarithmic factor away from the runtime

one could get if the function were 𝛽1-smooth in every direction.

Applying this theorem to the inverse 𝑓 parameters problem gives

the following corollary:

Theorem 11. Given a vector of desired 𝑓 parameters 𝑐 , we can
efficiently compute a weight vector such that the LBF with this weight
vector has 𝑓 parameters that approximate 𝑐 within ℓ2-error 𝜖 . The
algorithm runs in time �̃� (𝑛2)/poly(𝜖).

Due to space constraints, we provide only an overview in the

main body and defer a full treatment of the algorithm to the full

version of the paper. The algorithm is motivated by the follow-

ing intuition. Suppose one has a convex function 𝑔 which has 𝛽1
smoothness in every orthogonal to the 𝑧 direction, in which it has

𝛽2 smoothness. Suppose we are at some point 𝑥 , then do a search

along the line 𝑥 + 𝛼𝑧 for all values of 𝛼 to minimize 𝑔 along this

line. Call the resulting point 𝑦. The gradient of 𝑔 at 𝑦 is orthogonal

to the 𝑧 direction. Thus, if we take a gradient step for 𝑔 at 𝑦, this

step can also be interpreted as a gradient step for the restriction of

𝑔 to the hyperplane orthogonal to the 𝑧 direction which contains

𝑦. This restricted function has better smoothness 𝛽1, so gradient

descent makes as much progress as if the function were actually

𝛽1-smooth in all directions.

The preceding intuition suggests an algorithm in which we per-

form binary search to approximately minimize 𝑔 in the 𝑧-direction,

take a gradient step orthogonal to the 𝑧 direction, and repeat. Specif-

ically, in each iteration we do the following, given a starting point

𝑥 .

(1) Approximately minimize 𝑔 in the 𝑧-direction starting at 𝑥 .

For technical reasons, we must ensure that both the gradient

and function value are approximately minimized, so this step

has two parts that ensure each of these requirements.

(2) Take the gradient at this new point, orthogonalize it with

respect to the bad direction, and take a step in this orthogo-

nalized direction.

In more detail, the One Bad Direction algorithm builds a solution

𝑤 for the regularized function 𝑔′ through the following iterative

process:

(1) Step 1: Binary Search in 𝑧-Direction. Given a point 𝑤𝑡
,

search in the 𝑧 direction from𝑤𝑡
via binary search to find

a point𝑤𝑡+1 = 𝑤𝑡 + 𝛼𝑧 such that (1) |⟨∇𝑔′(𝑤𝑡+1), 𝑧⟩| ≤ 6𝜖1

and (2) 𝑔′(𝑤𝑡+1) ≤ 𝑔′(𝑤𝑡+1∗) + 8𝜖2, where𝑤
𝑡+1∗

minimizes

𝑔′ in the z-direction, i.e.,𝑤𝑡+1∗ = 𝑤𝑡 + 𝛼∗𝑧 for some 𝛼∗ ∈ R
and 𝑔′(𝑤∗

𝑡+1) ≤ 𝑔′(𝑤𝑡 + 𝛼𝑧) for any 𝛼 ∈ R. The binary

search algorithm to find such a point using only 𝜖1 additively

approximate gradients and 𝜖2 additive approximate access

to the function value first finds an interval 𝑆 of points along

the 𝑧 search direction that contains the optimal point𝑤𝑡+1∗

and for which the derivative in t he 𝑧 direction at each point

in 𝑆 is at most 6𝜖1. Then, we search within this set for a

point which satisfies the function value constraint. That is,

it consists of the two following steps:

(a) Step 1a: Finding 𝑆 . To find 𝑆 we start with some outer

interval 𝑆 ′ that is a superset of 𝑆 . We find the left and

right endpoints of 𝑆 by running two separate instances

of binary search on the derivative of 𝑔′ in the 𝑧 direction.

For the right endpoint, it suffices to search and output

any point in 𝑆 ′ where the approximate derivative in the 𝑧

direction is in [2𝜖1, 5𝜖1]. For the left endpoint, it suffices

to look for an approximate derivative in [−5𝜖1,−2𝜖1].
(b) Step 1b: Satisfying function value nearly minimal

constraint.We use a variant of binary search on function

value to find 𝑤𝑡+1
such that 𝑔′(𝑤𝑡+1) ≤ 𝑔′(𝑤𝑡+1∗) + 8𝜖2.

In each step, we query the value of 𝑔′ at four equally
spaced points starting from the left endpoint and going

to the right endpoint of the interval. Let 𝑎, 𝑏, 𝑐, 𝑑 be the

points ordered by 𝑎 < 𝑏 < 𝑐 < 𝑑 according to their or-

der in the 𝑧 direction, with further left points first. Let

𝑔′′ denote the approximate evaluation oracle for 𝑔′. If
𝑔′′(𝑎), 𝑔′′(𝑏), 𝑔′′(𝑐), 𝑔′′(𝑑) are all within±3𝜖2 of each other,
output theminimumof𝑏 and 𝑐 . Otherwise, we consider the

quantity 𝑔′′(𝑏) −𝑔′′(𝑐). If 𝑔′′(𝑏) −𝑔′′(𝑐) > 2𝜖2, we replace

the endpoint 𝑎 with 𝑏. Similarly, if 𝑔′′(𝑐) − 𝑔′′(𝑏) > 2𝜖2,

we replace the endpoint 𝑑 with 𝑐 . Otherwise, we have

|𝑔′′(𝑏) − 𝑔′′(𝑐) | ≤ 2𝜖2. In this case, we replace 𝑎 with 𝑏

and 𝑑 with 𝑐 , recursing on the subinterval 𝑏, 𝑐 .

(2) Step 2: Gradient Descent in the Orthogonal Direction.
Given𝑤𝑡+1

found in Step 1, we take the step𝑤𝑡+2 = 𝑤𝑡+1 −
𝜂𝑟 , where 𝑟 = ˜∇𝑔′(𝑤𝑡+1) − ⟨ ˜∇𝑔′(𝑤𝑡+1), 𝑧⟩𝑧 is the orthogonal
component to the 𝑧 direction of an approximately computed

gradient
˜∇𝑔′(𝑤𝑡+1) and 0 < 𝜂 < 1.

We prove in the full paper version that Theorem 11 gives an

algorithm for the inverse semivalue problem for LBFs, under some

mild assumptions on the probability distributions defining the semi-

values.

Theorem 12. For any semivalues defined by 𝑝𝑛 such that 𝑝𝑡−1−𝑝𝑡 =
𝑘 (2𝑡 −𝑛) (𝑝𝑡−1+𝑝𝑡 ) for a constant 𝑘 , for all 𝑡 ∈ {1, . . . , 𝑛−1}, for any
𝜖 > 0, 𝛿 > 0, given a vector of desired semivalues 𝑐 , we can compute
a weight vector𝑤 ∈ R𝑛 such that the LBF 𝑓𝑤,0 has ∥ 𝑓𝑤,0 − 𝑐 ∥2 ≤ 𝜖

with probability 1 − 𝛿 , in time poly(𝑛, 1/𝜖).

As discussed earlier, to overcome the fact that LTFs are difficult

to optimize over, we relaxed the inverse semivalue problem by

searching for an LBF. Summarizing our main results for LBFs, we
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have the following: Theorem 7 shows that finding a weight vector

of an LBF 𝑓𝑤,0 that approximately matches some target Banzhaf

indices is solvable in �̃� (𝑛2/𝜖4) time. We then propose in Theorem

10 an algorithm for the inverse 𝑓 parameters problems and we

show that finding an LBF 𝑓𝑤,0 that approximately achieves some

target coordinate coefficients is solvable in �̃� (𝑛2)/poly(𝜖). Finally,
using the proposed algorithm for the inverse 𝑓 problem, we give an

algorithm for the inverse semivalue problem for LBFs, under some

natural assumptions on the probability distributions defining the

semivalues, in Theorem 12.

Recalling that the goal of the inverse semivalue problem is to

output an LTF (weighted voting game), in the end of our processes

we output the corresponding LTF. That is, if the output of our

algorithms for the inverse semivalue problem is the LBF 𝑓𝑤,0 =

𝑃1 (𝑤 · 𝑥), we output the LTF ℎ𝑤,0 = sign(𝑤 · 𝑥).
Although it remains an open question to bound the distance of

the indices of an LBF function and the corresponding LTF function

for general semivalues, using previous structural results [6, 7] about

the Banzhaf index and the Shapley values, we are able to bound

the ℓ2-distance between the target indices and the indices of the

output LTF function for these important semivalue classes. We

expect analogous structural results to hold for all semivalues.

Concretely, for the case of the Banzhaf index, [6] established that

if an LTF 𝑓 and a bounded function 𝑔 : {−1, 1}𝑛 → [−1, 1] have
small Banzhaf distance, i.e., ∥ 𝑓 −𝑔∥2 ≤ 𝑂 (𝜖𝑂 (log2 (1/𝜖)) ), then the ℓ1-
distance of 𝑓 and 𝑔 is at most𝑂 (𝜖), i.e., E𝑥∼{−1,1}𝑛 [|𝑓 (𝑥)−𝑔(𝑥) |] ≤
𝑂 (𝜖) (see full version). Hence, if we solve the inverse Banzhaf index
for LBFs with accuracy 𝜖𝑂 (log2 (1/𝜖))

, we obtain an LBF 𝑔 that is

𝜖-close in ℓ1-distance to the LTF function 𝑓 that matches the target

Banzhaf indices. Combining the above theorem with Theorem 7, we

get the following corollary for the inverse Banzhaf index problem.

Theorem 13. For any 𝜖 > 0 and 𝛿 > 0, given a vector of target
Banzhaf indices 𝑐 , a weight vector𝑤 ∈ R𝑛 such that the LTF ℎ𝑤,0 has
E𝑥 ∈{−1,1}𝑛 [|ℎ𝑤,0 (𝑥) − ℎ𝑣,0 (𝑥) |] ≤ 𝑂 (𝜖) with probability 1 − 𝛿 , can

be computed in �̃� (𝑛2) (1/𝜖)𝑂 (log2 (1/𝜖)) time, where ℎ𝑣,0 is the target
LTF whose Banzhaf indices are equal to 𝑐 .

Qualitatively similar structural results were obtained for the

case of Shapley values [7]. Similarly with the Banzhaf index case,

running our algorithms for the inverse Shapley values problem for

LBFs with appropriate error, guarantees that the corresponding

LTF will be in small distance from the target Shapley values, and

gives an algorithm for the inverse Shapley value problem for LTFs.

Due to space constraints, we give the statement and proof of this

corollary in the full version of the paper.

Our experiments for the Shapley value and the Banzhaf index

indicate that such large accuracy for the inverse problems for LBFs

is not required in practice to achieve small distance between the LBF

and the corresponding LTF: In all test cases, we have found that the

distance achieved by the output LBF and the target is comparable

with the distance of the corresponding LTF and the target. In the

case of the Banzhaf index, we observe that the two distances are

essentially the same (see full version for more details).

Comparing the runtime of our proposed algorithms for LTFs

and the algorithms in [6, 7], we note that they all have runtime

guarantees with polynomial dependence on 𝑛 for any fixed 𝜖 . We

note that the prior algorithms [6, 7] have not been implemented

and evaluated experimentally. For the case of the Banzhaf indices,

we expect that our SGD-based algorithm is significantly faster than

that of [6]. For the case of the Shapley values, our One Bad Direc-

tion algorithm has a significantly better runtime dependence on

𝑛 (namely �̃� (𝑛2)) compared to [7] (where the poly(𝑛) dependence
is unspecified and is certainly at least Ω(𝑛3)) and, importantly,

extends to all semivalues.

5 EXPERIMENTS
We performed an empirical evaluation of practical variants of the

above algorithms for the Banzhaf indices, the Shapley values, and

the binomial semivalues on synthetic and real inputs. All experi-

ments were done on a laptop computer with a 2.7 GHz Intel Core i7

CPU and 16 GB of RAM. Our experiments show that our algorithms

are scalable and achieve high accuracy on both synthetic and real

inputs.

5.1 Implementation Details
Algorithms. We implemented the mini-batch stochastic gradient

descent method (SGD) and a stochastic variant (SBD) of the one

bad direction algorithm. In our implementation, we replaced the

binary search in the 𝑧-direction with a constant-size step in the

𝑧-direction, taking into account only the direction of the gradient.

After each such step, we take a gradient descent step orthogonalized

with respect to the 𝑧-direction. We implemented our SGD and SBD

algorithms for Shapley values, binomial semivalues, and Banzhaf

indices. In our implementation, we used mini-batch size equal to

50. Pseudocode of the SBD algorithm is given in the full version.

Selecting stepsizes for SGD and SBD. We determined the formulas

to use for selecting step size by plotting a data set of hand optimized

step sizes for synthetically generated problems and picking parame-

ters that appeared to fit these plots well. Specifically, we ran each of

the five algorithms (SGD for Banzhaf, Shapley, binomial semivalues,

and SBD for Shapley and binomial) on an initial set of synthetic

inputs with 𝑛 taking various values between 30 and 230. From this,

we obtained initial stepsizes for SGD and SBD of 𝜂init ∼ 0.19·norm
𝑛·norm2

,

where norm = 𝑧 · target is the size of the projection of the input to

the 𝑧 direction and norm2 = ∥target − (𝑧 · target) · 𝑧∥
2
is the size

of the orthogonal projection of the input to 𝑧 direction. We also

observed that the stepsizes for the binomial semivalues fit the value

𝜂init ∼ 0.6·norm
𝑛·norm2

. Regarding the Banzhaf index, we found 𝜂 = 10/11
to be a good fit. For SGD and SBD for the Shapley values, we de-

crease the initial stepsizes by the logarithm of the iteration count.

For the SGD for the Banzhaf indices, we decrease the stepsize by a

factor of 0.9999 in each iteration.

Estimating the Error. We measured the convergence of our algo-

rithms with respect to the ℓ2-distance between the target and the

semivalues achieved by the output weight vectors. Namely, for a

weight vector𝑤 , a threshold 𝜃 , and a target vector 𝑐 , we measured

the following distances:

• Banzhaf distance: ∥ 𝑓 𝐵
𝑤,𝜃

− 𝑐 ∥2
• Shapley distance: ∥ 𝑓 𝑆

𝑤,𝜃
− 𝑐 ∥2

• Correlation Coefficients distance: ∥ 𝑓𝑤,𝜃 − 𝑐 ∥2
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We estimated the aforementioned distances with additive error 𝜖

with high probability 1 − 𝛿 using 𝑚 = ⌈ 2·𝑛·log(
2𝑛
𝛿
)

𝜖2
⌉ samples. In

our experiments, we used 𝜖 = 0.01 for 0 ≤ 𝑛 ≤ 230, 𝜖 = 0.018 for

𝑛 > 230 and 𝛿 = 0.1.

5.2 Synthetic Inputs
Experiments with synthetic target inputs corresponding to various

weighted voting games allow us to examine and verify the con-

vergence of our algorithms. Our experiments validate that high

accuracy is achieved by both SGD and SBD on all inputs.

Generating Target Inputs. We used synthetic Shapley values and

Banzhaf indices targets with the number of variables𝑛 ranging from

30 to 400. To generate a target Shapley values (Banzhaf indices)

vector of a specific size 𝑛, we selected a weight vector of size 𝑛 from

a family of weights and we computed the Shapley values (Banzhaf

index) of the LTF function defined by the sampled weights and

𝜃 = 0. We examined the following families of weights:

• Random weights: We select 𝑛 integer weights uniformly at

random from the interval [1, 10000𝑛].
• Exponential weights: For 1 ≤ 𝑖 ≤ 𝑛,𝑤𝑖 = 1.1𝑖 .

• Polynomial weights (i): For 1 ≤ 𝑖 ≤ 𝑛,𝑤𝑖 = 𝑖 · 𝑛.
• Polynomial weights (ii): For 1 ≤ 𝑖 ≤ 𝑛,𝑤𝑖 = 1 + 0.5𝑖 + 0.2𝑖2 +
0.005𝑖3.

Inputs from three other weight families were also examined. The

definitions of these additional weight families and the correspond-

ing experimental results are given in the full version of the paper

(due to space limitations).

Banzhaf Index. We evaluated the performance of SGD for the

Banzhaf index on 20 synthetic target inputs from eachweight family

with 𝑛 ranging from 30 to 230. For each input, we let SGD run

for 20000 iterations, and we estimated the Banzhaf distance of

the average hypothesis from the target after every 1000 iterations.

For each input, we ran SGD 10 times and we plotted the average

estimated distance of the 10 repeated runs in Figure 1. Overall, we

get that after 20000 iterations very high accuracy is achieved: the

average Banzhaf distance over all inputs of the same size over 10

repeated runs ranges from 0.005 for 𝑛 = 30 to 0.012 for 𝑛 = 230.

Shapley Values. We evaluated the error convergence of SGD and

SBD and compared their performance on 32 synthetic target inputs

from each weight family with 𝑛 ranging from 30 to 390. The results

are given in Figure 2. For each input, we let the algorithms run for

20000 iterations and we estimated the distance between the Shapley

values of the average hypothesis and the Shapley target after every

2500 iterations. Our results indicate that both algorithms achieve

small Shapley distance after 20000 iterations: the Shapley distance

ranges from ∼ 0.02 for 𝑛 = 30 to ∼ 0.07 for 𝑛 = 390. Comparing

the performance of SGD and SBD, we observe that although SGD

outperforms SBD on some of the inputs, SBD outperforms SGD

on a larger fraction of the inputs and achieves smaller average dis-

tance when considering only inputs with large 𝑛 (𝑛 > 150). More

specifically, we have the following results: we get that out of total

224 synthetic targets, SGD outperforms SBD on 123 inputs. If we

consider only the cases where one of the two algorithms outper-

forms the other by at least 10%, we have that SBD outperforms SGD

on 39 inputs and SGD outperforms SBD on 29 inputs. Focusing on

inputs with large 𝑛, we have that SBD outperforms SGD on 91 out

(a) Random weights (b) Exponential weights

(c) Polynomial weights (i) (d) Polynomial weights (ii)

Figure 1: Average performance of SGD for the Banzhaf index
over 10 repeated runs on three inputs with different input
sizes 𝑛 from each of the weight families for 20000 iterations.

of 154 inputs with size at least 130, with SBD outperforming on 37

of them by at least 10% and SGD outperforming on 4.

(a) 𝑛 = 60, random weights (b) 𝑛 = 270, exponential weights

(c) 𝑛 = 50, polynomial weights (i) (d) 𝑛 = 260, polynomial weights (ii)

Figure 2: Average performance with respect to the Shapley
distance of SGD and SBD over 5 repeated runs on one input
from each of the weight families with size 𝑛 for 20000 itera-
tions.

Binomial Semivalues. We note that in addition to the Banzhaf

indices and the Shapley values, we evaluated the performance of our
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algorithms on binomial semivalues. We get the following results:

both SGD and SBD attain small distance from the target after 20000

iterations, but SBD outperforms SGD on inputs with large 𝑛. Due

to space limitations, the results are given in the full version of the

paper.

5.3 Real Inputs
We evaluated our algorithms on a range of real inputs that have

received considerable attention in the literature:

• EU: semivalues of the supermajority weighted voting game

(𝜃 ∼ 73% of the sum of weights) with size 𝑛 = 27 and weights

equal to the weights that were used in the voting procedures

of the European Union Council under the Treaty of Nice

[18].

• USA: semivalues of the majority weighted voting game with

size 𝑛 = 51 and weights equal to the Electoral College votes

allocated to each US state according to the 1990 Census data,

used in the 2000 presidential elections [27].

• IMF, IMF16, IMF15: semivalues of the majority weighted

voting games with sizes 𝑛 = 189, 𝑛 = 188, 𝑛 = 188 and

weights equal to the voting shares of the IMF members in

2019 [20], 2016, and 2015[22, 29].

The results of our experiments for the Banzhaf index and the Shap-

ley values on the real inputs verify that small error is achieved by

our algorithms after 20000 iterations. Specifically, we have that the

average estimated Banzhaf distance over 10 repeated runs is 0.0069

for EU, 0.0075 for USA, and 0.0159 for IMF, 0.0282 for IMF16 and

0.0166 for IMF15. Figure 3 shows the results of SGD on the Banzhaf

index of the five real inputs.

(a) EU and USA (b) IMF, IMF15 and IMF16

Figure 3: Average performance of SGD for the Banzhaf index
over 10 repeated runs on the Banzhaf index of the weighted
majority games of EU, USA and IMF for 20000 iterations.

Comparing the performance of SGD and SBD on the Shapley

values of the real inputs, we observe a similar trend with their

performance on synthetic inputs: SGD outperforms SBD on inputs

with small 𝑛, i.e., the EU and USA, and SBD outperforms SGD on

inputs with large 𝑛, i.e., on the three IMF inputs. Figure 4 shows

that after 20000 iterations, SGD outperforms SBD by ∼ 6.0% and

∼ 10.2% on EU and USA, respectively, whereas SBD outperforms

SGD by ∼ 11.3%, ∼ 9.8% and ∼ 11.1% on IMF, IMF15 and IMF16,

respectively (the results for IMF15 are given in the full version).

(a) EU (b) USA

(c) IMF19 (d) IMF16

Figure 4: Average performance with respect to Shapley dis-
tance of SGD and SBD over 5 repeated runs on EU, USA and
IMF.

Binomial Semivalues. We obtained qualitatively similar results

as in the Shapley values case: SBD outperforms SGD on inputs with

large 𝑛, i.e., on the three IMF inputs; SGD outperforms SBD on

inputs with small 𝑛, i.e., on the EU and USA inputs. Figure 5 shows

that SGD outperforms SBD by ∼ 27.3% on the USA input, whereas

SBD outperforms SGD on IMF by ∼ 2.7%.

(a) USA (b) IMF16

Figure 5: Average performance with respect to binomial semi-
values distance of SGD and SBD for the binomial semivalues
(𝑝 = 0.3) over two repeated runs on USA and IMF.

Runtime. We measured the runtime of SBD and SGD for Shapley

values and binomial semivalues, and the runtime of SGD for the

Banzhaf index, when we let the algorithms run for 20000 iterations

(the measured time does not include the time needed to estimate

the error of the average hypothesis). Our experiments confirm that

our algorithms are scalable. We have that over two repeated runs

the runtime of SGD for the Banzhaf index ranges from ∼ 1.69𝑠 for

𝑛 = 30 to∼ 7.75𝑠 for𝑛 = 390; for Shapley values ranges from∼ 6.48𝑠

to ∼ 85.80𝑠; and for binomial semivalues ranges from ∼ 5.56𝑠 to

∼ 75.52𝑠 . The runtimes of SBD are comparable.
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