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ABSTRACT
We develop a formal model of multiwinner facility location with

approval preferences in one dimension: there is a set of facilities,

a set of potential locations, and the goal is to build k facilities at

these locations. Agents have approval preferences over ‘facility,

location’ pairs, and may misreport their preferences if they can

benefit from doing so. We consider both unit-demand agents and

agents with additive demands, and the social objectives of coverage

and utilitarian welfare. We ask whether these social objectives can

be satisfied in a computationally efficient and strategyproof way.

We also initiate the study of proportional representation in the

context of facility location. We show that the axiom of justified

representation, which is used to capture proportionality in multi-

winner voting with approval preferences, is not well-suited for the

facility location setting, and provide a relaxation of this axiom that

can handle incompatibilities and may be of broader interest.
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1 INTRODUCTION
Consider a residential community that is planning to offer addi-

tional amenities to its residents. Several new facilities have been

proposed: a playground, an outdoor gym, a fountain, and a secure

bicycle parking. There are a few potential locations for these facili-

ties, and a decision has been made to build exactly two facilities.

Now, each resident’s preferences over these new facilities may de-

pend on where they will be built: a bicycle parking is only useful if

it is very close to one’s house, and a playground should be within a

toddler’s walking distance, whereas one may benefit from a foun-

tain even if it is a bit further away. On the other hand, for those

who do not have children, a playground is of no use no matter how

close it is. A simple way to model this setting is to assume that each

resident has an approval radius for each facility: that is, for each

resident i and facility fj there is a value ri j such that i benefits from
fj (i.e., derives a unit of utility) if and only if the distance between

the location of i and the location of fj is at most ri j . How should a

central planner decide which facilities to build, given the agents’
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reports about their preferences, so as to come up with a plan that

benefits the residents, and encourages truthful reporting?

This scenario shares important features with two settings that

are well-studied in algorithmic game theory: facility location and

multiwinner voting. Indeed, in facility location problems, the goal

is typically to place one or more facilities so as to serve a network of

agents. There are many variants of this basic model, and in recent

years this research area has received a lot of attention from the

multiagent systems and algorithmic game theory communities [6].

However, in the facility location problem it is typically assumed

that all of the facilities will be built, so the only decision to be

made is where to place them (see, however, [7]). In contrast, in

multiwinner voting [11], the goal is to select k candidates from a

given set, based on voters’ ballots. While this task is similar to ours,

in that we, too, need to select a subset of facilities, we then also

need to decide where to build them. Perhaps a more useful way to

conceptualize our problem as a multiwinner voting problem would

be to think of pairs ‘facility, location’ as candidates. However, the

resulting instance of multiwinner voting has some unusual features:

for instance, some pairs of candidates are incompatible, and if the

set of potential locations is infinite, then so is the set of candidates.

Thus, neither the facility location problem nor the multiwinner

voting problem fully capture the challenge that we face.

One may be tempted to separate our decision-making into two

steps: first, we decide which facilities to build (using existing multi-

winner voting procedures), and then we decide how to place them

(using mechanisms developed for the facility location problem).

However, it is easy to see that this approach may fail to produce a

good allocation: the agents’ preferences over facilities depend on

where these facilities will be placed, so if we ask the agents to vote

for a set of facilities, we may then be unable to choose locations

for the selected facilities so as to benefit the voters who supported

them in the first round. We face a similar problem if we first decide

on locations for the facilities, and then select which facilities are to

be placed there. Thus, we need an integrated procedure that can

properly account for agents’ preferences over the possible solutions.

Our desiderata for such a procedure are as follows:

• Solution Quality. We are interested in optimizing some mea-

sure of collective agent utility, such as coverage (the number

of agents who obtain positive utility in a given solution) or

social welfare (the sum of agents’ utilities).

• Incentives.Wewould like the agents to truthfully report their

locations and their approval radii for all facilities, i.e., we are

interested in designing mechanisms that are strategyproof.
• Computational complexity. For our procedures to be practi-
cally useful, they should be implementable by polynomial-

time algorithms.
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• Fairness. All agents and groups of agents should be treated

fairly. In particular, if a large group of agents can be served

by placing a single facility at a particular location, this group

should not remain unrepresented.

1.1 Our Contribution
We develop a formal model of multiwinner facility location with ap-

proval preferences in one dimension. Our model is flexible enough

to capture both (1) settings where facilities can be co-located and

(2) settings where there can be at most one facility at each location.

Further, it can handle both (a) the case where there is a finite set

of possible locations and (b) the case where each facility can be

placed anywhere on the line. We consider two types of agents: unit-

demand agents, who are satisfied as long as one of their approved

options is selected, and additive agents, whose utility scales linearly

with the number of approved options. From the social planner’s

perspective, we consider two natural objectives, namely, coverage

and social welfare maximization.

We show that, in general, maximizing coverage is NP-hard,

but identify a few natural special cases where this problem is

polynomial-time solvable. We also propose a mechanism for maxi-

mizing coverage that is strategyproof for unit-demand agents. For

additive agents, the social welfare can be maximized in polynomial

time. Moreover, if co-location is allowed, a welfare-maximizing out-

come can be implemented in a strategyproof manner. In contrast, if

co-location is not allowed, no mechanism that maximizes the social

welfare is strategyproof. Further, if the social planner’s goal and

the agents’ objectives are not aligned, in the sense that the planner

wants to maximize coverage, while the agents are additive and each

agent would like to maximize her own utility, strategyproof mecha-

nisms do not exist either. We then focus on the study of fairness. As

our starting point, we use the axiom of justified representation from

the multiwinner voting literature [2]. We establish that a natural

adaptation of this axiom to the facility location setting cannot be

satisfied, because of incompatibilities between different options.

Moreover, it is NP-hard to decide whether it can be satisfied in a

given instance of our problem. We then propose a more general

representation axiom, which is suitable for a setting with incom-

patibilities, and show that it can always be satisfied.

1.2 Related Work
In what follows, we briefly discuss relevant work on multiwinner

voting and multiple facility location problems.

Multiwinner voting. In multiwinner voting, voters report their

preferences over a set of candidates (which may be rankings of can-

didates or approval ballots, indicating which candidates they find

acceptable), and the goal is to choose a fixed-size set of candidates,

known as a committee [8, 11]. In Section 2 we show that our model

generalizes multiwinner voting with approval ballots. An important

concern in our context is strategyproofness, and Peters [18] and,

subsequently, Lackner and Skowron [15] consider the problem of

designing strategyproof multiwinner voting rules.

The justified representation (JR) axiom and its variants (such as

proportional and extended justified representation) aim to capture

a basic notion of fairness in multiwinner voting with approval bal-

lots [2, 3, 20]. In this setting every instance admits a committee that

satisfies this axiom, so the major research focus is on determining

which of the existing voting rules provide JR. In contrast, we prove

that, in our setting, a committee that provides JR need not exist.

Facility location problem. In the facility location problem, the

goal is to understand how to locate one or more facilities in a metric

space (typically, a line). Moulin [17] first characterizes the strate-

gyproof mechanisms in the facility location problem where agents

have single-peaked preferences. Procaccia and Tennenholtz [19]

study how to approximately optimize certain social objectives in a

strategyproof manner; for extensions, see [13, 22]. The problem of

placing multiple facilities has been considered by several groups of

authors [4, 14, 16, 21]. It is typically assumed that all facilities will

be built (the only exception we are aware of is the work of Deligkas

et al. [7]; however, they focus on the case of selecting one facility

out of two), while we are interested in the case where only a subset

of facilities will be built. Furthermore, most of the works study

the facility location problem from a perspective of strategyproof

mechanism design, while in our setting even the basic optimization

problem turns out to be challenging; moreover, we are also inter-

ested in fairness. For further discussion, we point the reader to the

survey of Chan et al. [6].

2 PRELIMINARIES
There is a set F = { f1, . . . , fm } ofm facilities and a setY of potential
locations. We will primarily focus on the discrete model, where Y =
{y1, . . . ,ys }, with y1, . . . ,ys ∈ R; when considering computational

problems, we assume that all real parameters, such as y1, . . . ,ys ,
are rational numbers represented as fractions, with numerators and

denominators given in binary. In Section 5, we will also consider

the continuous model, where Y = R. The goal is to build k of the

facilities in F , where 1 ≤ k ≤ m. Facilities can only be built at

locations in Y . We distinguish between the setting with co-location,
where several facilities can be placed at the same point, and the

setting without co-location, where this is not allowed.
There is a set of agents N = [n]. Each agent i ∈ N is described

by her profile pi = ⟨xi , ri ⟩, where xi ∈ R is her location and ri =
(ri1, . . . , rim ) ∈ (R≥0 ∪ {−∞})m is a vector of approval radii: agent
i derives utility 1 from facility fj if fj is located at distance at most

ri j from i , and utility 0 otherwise. Note that ri j = 0 means that

agent i benefits from fj if and only if fj is placed at xi , and ri j = −∞

if agent i receives no benefit from fj no matter where fj is located.
Let C = F × Y ; we will refer to elements of C as candidates.

We will denote an element (fj ,yℓ) of C by c jℓ . The preferences of
each agent i ∈ N can then be described by her approval ballot Ai ,
i.e., the set of candidates that she approves: an agent i approves
candidate (fj ,y) if and only if |xi − y | ≤ ri j . Our problem, then,

can be phrased as selecting k candidates from C , where selecting a

candidate (fj ,y) means building facility fj at location y. We note

that we cannot build the same facility at two distinct locations, i.e.,

we cannot select both (fj ,y) and (fj ,y
′) if y , y′. To capture this,

we introduce the notion of compatibility between candidates: if co-

location is allowed, we say that two distinct candidates (f ,y) and
(f ′,y′) are compatible if f , f ′, and if co-location is not allowed,

we additionally require that y , y′.
A committee is a set of k candidatesW ⊆ C such that all can-

didates inW are pairwise compatible. We will now describe how
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agents evaluate committees. Specifically, we consider unit-demand
agents, which are satisfied byW as long as they approve at least one

candidate inW , and additive agents, whose utility is the number

of candidates inW that they approve. Formally, for a unit-demand

agent i with approval ballot Ai , her utility from a committeeW
is given by ui (W ) = 1 if Ai ∩W , � and ui (W ) = 0 otherwise,

whereas for an additive agent i with approval ballot Ai her utility
from a committeeW is given by ui (W ) = |Ai ∩W |.

The (utilitarian) social welfare of a committeeW is the sum of

agents’ utilities, i.e.,

∑
i ∈N ui (W ). The coverage ofW is the number

of agents who derive positive utility fromW , i.e., |{i ∈ N : ui (W ) >

0}|. From the designer’s perspective, a natural objective is to maxi-

mize the social welfare or coverage. For unit-demand agents these

two objectives coincide, but for additive agents this is not the case.

Example 1. Suppose there are 5 agents located at 0, 3 agents
located at 2 and 1 agent located at 10. There is a set of three facilities
F = { f1, f2, f3}. For each agent, their approval radius for f1 and f2 is
1. For two of the agents at 0 and two of the agents at 2, their approval
radius for f3 is 3. All other approval radii are −∞. Let k = 2.

Suppose that Y = {1, 2, 9}. To maximize coverage, we can place
f1 at 1 and f2 at 9, to cover all agents. Now, suppose the agents are
additive and we want to maximize the social welfare. Then the answer
depends on whether co-location is allowed. If yes, we can place f1 and
f2 at 1, so the social welfare is 2 · 8 = 16. If not, we can place f1 at 1
and f3 at 2, so the social welfare is 8 + 4 = 12.

Multiwinner Voting. Our setting can be viewed as a generaliza-

tion of the well-studied setting of multiwinner voting with approval

ballots. Formally, an instance of the multiwinner voting problem

is a set of candidates C, a set of voters N , a list of approval ballots

(Ai )i ∈N , where Ai ⊆ C for each i ∈ N , and an integer κ ≤ |C|;

the goal is to output a subset of C of size exactly κ. We can trans-

form any such instance ⟨C,N , (Ai )i ∈N ,κ⟩ into an instance of our

problem as follows. Assume for convenience that C = {1, . . . ,m}.

We set N = N , F = { f1, . . . , fm }, and Y = {1, . . . ,κ}. For each
i ∈ N we let xi = 0, and set ri j = κ if j ∈ Ai and ri j = −∞ other-

wise. Finally, we set k = κ. The resulting instance has the property

that, once we decide to build a facility, its location does not matter,

so the decision boils down to selecting k facilities to build, which

is equivalent to selecting κ candidates in ⟨C,N , (Ai )i ∈N ,κ⟩. We

will use this observation to derive some of our complexity results.

Mechanism Design. We aim to design mechanisms that take as

input the set of facilities, the set of potential locations, and agents’

locations and approval radii, and output a size-k committee. We

would like these mechanisms to optimize (exactly or approximately)

the designer’s objectives, as well as to enjoy additional desirable

properties. We focus on three such properties: (1) computational

tractability, (2) strategyproofness and (3) fairness. We will formally

define strategyproofness now, and postpone the discussion of fair-

ness till Section 6. For readability, we assume that the set of facilities

and possible locations as well as the committee size are fixed, so

that the input to the mechanism is the list of agents’ profiles.

Definition 1. (Strategyproofness) A facility location mechanism
M is strategyproof if for every agent i ∈ N , every list of agents’
profiles (pi )i ∈N , and every profile p′i , we have

ui (M(p1, . . . ,pi , . . . ,pn )) ≥ ui (M(p1, . . . ,p
′
i , . . . ,pn )).

We will be interested in mechanisms that aim to maximize some

quantity, such as social welfare or coverage. However, there are

often multiple optimal outcomes, so it is important to specify how

our mechanisms break ties. To illustrate, we will now consider two

mechanisms for k = 1 that both maximize coverage, but break

ties differently. Note that for k = 1 there is no difference between

unit-demand agents and additive agents, and maximizing coverage

is equivalent to maximizing the social welfare.

Theorem 1. Let k = 1. Consider a mechanism that selects a
candidate with the highest number of approvals, with ties broken lexi-
cographically: if (fj ,y) and (fj′ ,y′) both have the maximum number
of approvals, then (fj ,y) is chosen over (fj′ ,y′) if j < j ′ or j = j ′,
y < y′. The resulting mechanism is strategyproof.

Proof. Consider an agent i . If i has utility 1 when reporting

truthfully, she has no incentive to misreport. Now, suppose that i’s
utility is 0, and, by misreporting, i changes the outcome from (f ,y)
to (f ′,y′) and increases her utility to 1. Then i approves (f ′,y′) and
does not approve (f ,y). Hence, by misreporting, i cannot decrease
the number of approvals received by (f ,y) or increase the number

of approvals received by (f ′,y′). But then she cannot change the

outcome from (f ,y) to (f ′,y′), a contradiction. □

We will now present a different coverage-maximizing mecha-

nism for k = 1 that is not strategyproof.

Example 2. Consider the mechanism for k = 1 that selects a
candidate with the highest number of approvals, but, to break ties, it
favors facilities with a larger sum of approval radii. Specifically, given
a set of tied candidates C ′ ⊆ F × Y , it computes the set of facilities
F ′ = { fj : (fj ,y) ∈ C ′ for some y ∈ Y }, sets R(fj ) =

∑
i ∈N :ri j>0 ri j

for each fj ∈ F ′, chooses f ∈ argmaxfj ∈F ′ R(fj ) (breaking ties
according to a fixed order over F ), picks the smallest y ∈ Y such
that (f ,y) ∈ C ′, and finally outputs (f ,y). By construction, this
mechanism maximizes coverage. However, it is manipulable.

To see this, consider an instance with two agents and two facilities,
where Y = {0, 7}. Agent 1 is located at 0 and has approval radius 0
for f1 and −∞ for f2. Agent 2 is located at 8 and has approval radius
1 for f2 and −∞ for f1. Then (f1, 0) and (f2, 7) receive one approval
each, and our tie-breaking rule sets F ′ = { f1, f2}, establishes that
R(f2) > R(f1), and outputs (f2, 7). However, agent 1 can misreport
her location as 2 and her approval radius for f1 as 2, in which case the
tie-breaking rule establishes that R(f1) > R(f2) and outputs (f1, 0).

In what follows, we focus on the case k ≥ 2 and pay close attention

to tie-breaking rules.

3 UNIT-DEMAND AGENTS
In this section, we focus on unit-demand agents. Note that for such

agents maximizing the utilitarian social welfare is equivalent to

maximizing coverage.

3.1 Complexity
We start by formally defining the coverage maximization problem.

An instance of FL-Coverage is given by a set of agents

N , a set of facilities F , a set of locations Y , a list of
agent profiles (pi )i ∈N , a committee size k and a pa-

rameter λ. It is a yes-instance if there is a committee
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of size k such that at least λ agents approve at least

one candidate in the committee, and a no-instance

otherwise.

In the multiwinner setting, the problem of computing a coverage-

maximizing committee corresponds to computing the outcome of

a well-known multiwinner voting rule, namely, the Chamberlin–

Courant rule with approval preferences (CCAV). This rules selects a

committee so as to maximize the number of voters who approve at

least one candidate in the committee. An instance of the associated

CCAV-Score problem is a tuple ⟨C,N , (Ai )i ∈N ,κ⟩ and a positive

integer λ; it is a yes-instance if there exists a committee W ⊆ C,

|W| = κ, such that |{i ∈ N : Ai ∩ W , �}| ≥ λ, and a no-

instance otherwise. This problem is known to be equivalent to

MaxCoverage and hence NP-complete [12]. We will now show

that this implies NP-hardness of FL-Coverage.

Theorem 2. FL-Coverage is NP-complete both with and without
co-location.

Proof. To see that FL-Coverage is in NP, note that, given a

set of candidatesW , we can check if all candidates inW are pair-

wise compatible, and compute the resulting coverage. To prove

NP-hardness, consider the mapping from an instance of multiwin-

ner voting to an instance of our problem described in Section 2. A

committee that provides a coverage of at least λ in the resulting in-

stance of the facility location problem (with or without co-location)

corresponds to a committee that satisfies at least λ voters. Thus, this
mapping is a reduction from CCAV-Score to FL-Coverage. □

The proof of Theorem 2 implies that FL-Coverage remains hard

if each agent has the same approval radius for all facilities she

approves (i.e., there is a value R such that ri j ∈ {−∞,R} for all
i ∈ N and fj ∈ F ), and even if all agents are co-located. We will

now discuss several settings where this hardness result can be

circumvented.

First, maximizing coverage is easy if all facilities are of the same

‘type’: e.g., the goal is to build k identical playgrounds, and the only

decision to be made is where to locate them.

Proposition 3. Suppose that all facilities are identical, i.e., for
each agent i ∈ N there is a value ri such that ri j = ri for all fj ∈ F .
Then FL-Coverage is in P, both with and without co-location.

Proof. We associate each agent with an interval of length 2ri
centered at xi . We can then think of our problem as voting over

locations: we would like to select k locations to ‘stab’ as many agent

intervals as possible. This problem then reduces to computing a

winning committee under the Chamberlin–Courant rule when vot-

ers have candidate interval preferences, i.e., the candidates can be

placed on a line so that each voter approves a contiguous segment

of candidates. This problem is known to be polynomial-time solv-

able by dynamic programming [5, 9]. Note that there is no benefit

to co-locating several facilities, so the setting with co-location is

equivalent to the setting without co-location. □

Next, suppose that agents can only benefit from the facilities if

these facilities are placed at their exact location: e.g., each location is

a neighborhood, and the neighborhoods are so far from each other

that it is impractical to use a facility if it is located in a different

neighborhood. Then, maximizing coverage is easy if co-location is

not allowed, but the latter condition is essential.

Proposition 4. Suppose that each agent has approval radius −∞
or 0 for each facility. Then FL-Coverage is in P if co-location is not
allowed, but remains NP-hard if co-location is allowed.

Proof. In the settingwithout co-location, we reduce FL-Covera-

ge to a bipartite matching problem. We construct a complete bipar-

tite graph with parts F and Y , where the weight of the edge { fj ,yℓ}
is set to w jℓ = |{i ∈ N : xi = yℓ , ri j = 0}|, i.e., the number of

agents who approve facility fj if they are co-located with it. Then

FL-Coverage reduces to finding a maximum-weight matching of

size k in this graph. This problem, in turn, can be reduced to min-

cost maximum flow problem
1
. Specifically, we create a graph with

vertex set F ∪Y ∪{x ,x ′, z}, which contains the edges of the original
bipartite graph as well as {x ′,x}, {x , fj } for each fj in F , and {yℓ , z}
for eachyℓ in Y . All edges except {x

′,x} have unit capacities, while
{x ′,x} has capacity k ; this ensures that the maximum flow in this

graph is of size k , and an integer flow of this size corresponds to a

size-k matching in the original graph. Further, we set the cost of the

edge { fj ,yℓ} to Z −w jℓ , where Z = max{w jℓ : fj ∈ F ,yℓ ∈ Y }+ 1;
this ensures that all costs are positive, and an integer minimum-cost

flow of size k corresponds to a maximum-weight matching of size

k . It remains to observe that an integer min-cost max flow can be

computed in polynomial time [1].

However, this approach no longer works for settings with co-

location: indeed, in this case, we can again reduce CCAV-Score

to our problem (e.g., we can place all agents at 0, and say that an

agent has approval radius 0 for a facility if and only if she approves

the respective candidate in the multiwinner instance). □

We also get an easiness result if each agent cares about at most one

facility.

Proposition 5. Suppose that each agent has a non-negative ap-
proval radius for at most one facility. Then FL-Coverage is in P both
with and without co-location.

Proof. If co-location is allowed, there is no dependence among

facilities, so we can find an optimal location for each facility in-

dependently: for each facility f we consider a sub-instance of our

problem that consists of agents whose approval radius for f is non-

negative, and select a location that satisfies the maximum number

of such agents. In the setting without co-location, we can reduce

FL-Coverage to finding a maximum-weight k-matching, as in the

proof of Proposition 4: the weight of the edge { fj ,yℓ} is set to the

number of agents who approve c jℓ (note that, in a matching, each

agent contributes to the weight of at most one edge). □

3.2 Strategyproofness
For the unit-demand setting, we can extend the strategyproofness

result for k = 1 (Theorem 1) to all values of k .

Theorem 6. Suppose all agents are unit-demand. Then the mech-
anism that maximizes coverage and breaks ties lexicographically is
strategyproof.

1
For an alternative proof, see Question 121353 on MathOverflow.
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Proof. Consider a winning committeeW and an agent i ∈ N . If

ui (W ) = 1, then i has no incentive to misreport. Now, suppose that

ui (W ) = 0. By misreporting her profile, agent i cannot decrease
the number of agents covered byW . Further, if ui (W

′) = 1, then i
cannot increase the number of agents covered byW ′

by changing

her report. Hence, i cannot change the outcome fromW toW ′
. □

Remark 1. An alternative proof of Theorem 6 can be obtained
by observing that the unit-demand setting can be conceptualized
as single-winner approval voting setting, with each agent implicitly
indicating which committees they approve. As approval voting with
deterministic tie-breaking is strategyproof in the single-winner setting
(see, e.g., [10]), the result follows.

While the mechanism described in Theorem 6 is strategyproof

and provides optimal coverage, computing its output is NP-hard.

Onemay ask if there exists a strategyproof mechanism that achieves

approximately optimal coverage and runs in polynomial time. If we

make a mild assumption that each agent approves at least one candi-

date inC , then the dictatorship mechanism (where we ask one agent

to choose the winning committee) provides a 1/n approximation to

the optimal coverage, is strategyproof and runs in polynomial time.

We can also obtain a 1/k approximation by asking the agents to re-

port their approvals, choosing a single candidate with the maximum

number of approvals, and selecting the remaining k − 1 candidates

in a way that is independent of the agents’ reports. This mechanism

(together with lexicographic tie-breaking) is strategyproof (because

it reduces to single-winner approval voting) and polynomial-time

computable. However, designing a polynomial-time strategyproof

mechanism that provides a constant-factor approximation to opti-

mal coverage remains an open problem.

4 ADDITIVE AGENTS: SOCIAL WELFARE
In this section, we consider the setting where the agents have

additive utilities and the goal is to maximize the social welfare.

4.1 Complexity
We first show that the associated computational problem is in P,

both with or without co-location.

Proposition 7. We can compute an outcome that maximizes the
social welfare in polynomial time, both with and without co-location.

Proof. If co-location is allowed, we can place each facility inde-

pendently, choosing its location so that as many agents as possible

approve placing that facility in that location.

If co-location is not allowed, we create a complete bipartite graph

with parts F and Y ; the weight of the edge { fj ,yℓ} is equal to the

number of agents who approve c jℓ . Then a maximum weight size-k
matching in this graph corresponds to a committee of size k that

maximizes the social welfare. Such a matching can be found in

polynomial time, as argued in the proof of Proposition 4. □

4.2 Strategyproofness
When considering strategyproofness, an important consideration

is whether facilities can be co-located. Indeed, in the scenario with

co-location, we can optimize the social welfare in a strategyproof

fashion, because we can place each facility independently. However,

if co-location is not allowed, the resulting dependencies provide an

incentive to act strategically.

Theorem 8. For additive agents, there is a polynomial-time com-
putable mechanism that maximizes the social welfare and is strate-
gyproof if co-location is allowed.

Proof. Suppose that co-location is allowed. We can efficiently

compute the score of each facility fj as σ (fj ) = maxy∈Y |{i ∈ N :

|xi − y | ≤ ri j }|, i.e., the maximum number of agents who approve

a candidate (fj ,y), where the maximum is taken over all y ∈ Y .
We can then select k facilities with the highest scores, breaking

ties in favor of lower-indexed facilities. We place each selected

facility fj at a point where it is approved by σ (fj ) agents; among all

such points, we pick the leftmost point. The resulting mechanism

maximizes the social welfare; we claim that it is strategyproof.

Let G be the set of facilities selected by our mechanism, and let

W be the respective committee. Consider an agent i , and suppose

that i can benefit from misreporting a profile p′i , pi , so that the

mechanism selects a set of facilities G ′
, whereW ′

is the respective

committee. We will say that i downvotes (respectively, upvotes) f
if the score of f decreases (respectively, increases) when i reports
p′i instead of pi . If G

′ = G, then i’s misreport only changes the

placement of the selected facilities. Suppose a facility f was moved

from location y to a location y′. This move only improves i’s utility
if i approves (f ,y′) and disapproves (f ,y). But in this case i cannot
misreport her preferences so as to move f from y to y′.

We now consider the case G ′ , G. We claim that there is a

matching between G \ G ′
and G ′ \ G such that if a ∈ G \ G ′

is

matched to b ∈ G ′ \ G then i downvotes a or upvotes b. To see

this, imagine that i proceeds in two stages: first, she downvotes

some set of facilities A and then she upvotes some set of facilities B.
After each stage, form a directed matching, with arcs pointing from

the facilities that move out of the set of top k facilities (where the

facilities are ordered by score, with ties broken lexicographically)

to those that move into this set. Let these matchings beM andM ′
,

respectively. To create the final matching M∗
, consider a graph

on vertex set F that hasM ∪M ′
as its set of arcs. One can check

that this graph is a collection of pairwise disjoint directed arcs and

two-arc paths; we replace each such path a → b → c with an arc

a → c . The resulting directed matching pairs facilities in G \ G ′

with those in G ′ \G and has the desired property.

Now, consider candidate (f ,y) ∈W with f in G \G ′
, such that

f is downvoted. This means that i approves (f ,y). On the other

hand, consider a candidate (f ′,y′) ∈W ′
with f ′ ∈ G ′ \G such that

f ′ is upvoted. This means that i does not approve (f ′,y′). Thus, no
edge of our matching makes a positive contribution to the utility

of i , and hence i does not benefit from the manipulation.

We note that the continuous version of this problem (see Sec-

tion 5) can be seen as a facility location problem with a threshold,

where each agent’s utility is 0 or 1 [23], and the optimal mechanism

has been shown to be strategyproof in this setting. □

The tie-breaking rule plays an important role in our proof.

Example 3. Suppose there are two additive agents located at 0 and
four facilities a,b, c,d , and the set Y contains 0. Agent 1’s approval
radius fora, c , andd is 0, and her approval radius forb is−∞. Agent 2’s
approval radius for b is 0, and her approval radius for other facilities
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is −∞. Suppose k = 2, and co-location is allowed. Note that all selected
facilities will be placed at 0. Choosing any pair of facilities maximizes
the social welfare. Suppose the tie-breaking rule selects {a,b} in this
case. Further, suppose that agent 1 misreports her approval radius
for a as −∞. Any size-2 subset of {b, c,d} would then maximize the
social welfare. If this tie is broken in favor of {c,d}, then agent 1 has
an incentive to misreport.

Next, we consider settings without co-location. It turns out that,

for additive agents, no welfare-maximizing mechanism is strate-

gyproof if co-location is not allowed.

Proposition 9. For additive agents, if co-location is not allowed,
no welfare-maximizing mechanism is strategyproof. This holds even
if each agent’s approval radius for each facility is −∞, 0 or 1, and
even if agents cannot misreport their locations.

Proof. We construct an instance with F = { f1, f2},Y = {1, 2, 3}

and k = 2. There are 10 agents: 2 agents at 1, 6 agents at 2, and 2

agents at 3. For all agents, their approval radius for each facility is

−∞ or 0. We specify the profiles of agents 1 and 2; all other agents

approve a single candidate, so we will simply list their approval

ballots. We have p1 = ⟨1, (0, 0)⟩, p2 = ⟨3, (0, 0)⟩. The remaining

agents at 1 and 3 approve (f1, 1) and (f2, 3) respectively. The 6

candidates at 2 are split into two equal groups: one group approves

(f1, 2), and the other group approves (f2, 2).
If co-location is not allowed, there are two optimal solutions,

with social welfare 5 each: {(f1, 1), (f2, 2)} and {(f1, 2), (f2, 3)}. If
the first solution is selected, the utility of agent 2 is 0. She can benefit

by changing her approval radius for f1 to 1. Then the social wel-

fare of the second solution becomes 6, so any welfare-maximizing

mechanism has to select it, and the utility of agent 2 becomes 1.

Symmetrically, if in the original instance the second solution is

selected, agent 1 can benefit by changing his approval radius for f2
to 1, so that the mechanism is forced to select the first solution. □

4.3 Coverage
Wewill also briefly discuss what happens when the designer aims to

cover as many agents as possible, but the agents themselves are ad-

ditive. That is, we ask whether a coverage-maximizing mechanism

can be strategyproof for additive agents. Perhaps unsurprisingly,

the answer is ‘no’.

Theorem 10. For additive agents, no coverage-maximizing mech-
anism is strategyproof, both with and without co-location.

Proof. Let F = { f1, f2}, Y = {1, 2}, k = 2. We have four agents

with the following locations and approval radii: p1 = ⟨1, (1, 0)⟩,

p2 = ⟨2, (1, 0)⟩, p3 = ⟨1, (0, 1)⟩, p4 = ⟨2, (0, 1)⟩.

Suppose that co-location is allowed. There are four possible

committees, W1 = {c11, c22}, W2 = {c12, c21}, W3 = {c11, c21},
W4 = {c12, c22}, which cover all four agents. If W1 or W4 is se-

lected, agent 1 can misreport her profile as ⟨1, (−∞, 0)⟩, so that

she only approves c21 and is therefore not covered by the chosen

committee. A coverage-maximizing rule then has to selectW2 or

W3, so the utility of agent 1 improves from 1 to 2. Symmetrically, if

W2 orW3 is selected, agent 2 can misreport her profile to change

the outcome so that f2 is placed at 2.

If co-location is not allowed, we can simplify this argument by

only considering the committeesW1 andW2. □

5 CONTINUOUS MODEL
So far, we assumed that the set of possible locationsY is finite. Alter-

natively, we can assume that each facility can be located anywhere

on the real line. In this case, depending on whether co-location is

allowed, we distinguish between two variants of the model: contin-

uous without co-location, and continuous with co-location. Note

that in the continuous setting the set of candidates F ×Y is infinite.

Example 4. Suppose that agents 1 and 2 are located at 0, agents
3 and 4 are located at 2, F = { f1, f2}, we have r11 = r31 = 1,
r22 = r42 = 1, and all other approval radii are −∞. If co-location
is allowed, we can cover all agents by placing both facilities at 1. If
co-location is not allowed, at most three agents can be covered: e.g.,
we can place f1 at 1 and f2 at 0, covering agents 1, 2, and 3.

The continuous model may appear to be harder to work with

than the discrete model: e.g., as the set of candidates is infinite, we

cannot consider all candidates one by one, or explicitly list all size-k
committees. Nevertheless, it turns out that we can extend all of our

positive results to the continuous setting by discretizing Y .

Proposition 11. Consider an instance with a set of agents N , a
set of facilities F , a set of locations Y = R, a list of agent profiles
(pi )i ∈N and committee size k . Let

Y0 = {xi + ri j ,xi − ri j : i ∈ N , fj ∈ F , ri j , −∞}.

Number the points in Y0 as y1, . . .yt , with y1 < · · · < yt . Form Y ′

by starting with Y0 and, for each q ∈ [t − 1], adding k points from
the interior of the interval [yq ,yq+1] to Y ′. Then for every size-k
committeeW ⊆ F × Y there is a size-k committeeW ′ ⊆ F × Y ′

such that for each i ∈ N and each ℓ ∈ Z it holds that if i approves ℓ
candidates inW then she approves at least ℓ candidates inW ′.

Proof. Suppose that inW there are ℓ facilities located strictly

between yq and yq+1; note that ℓ ≤ |W | = k . We can shift these

facilities to ℓ distinct points in Y ′
that are located strictly between

yq and yq+1: by construction, an agent who approves (f ,y) also
approves (f ,y′) for each yq < y′ < yq+1. We do not change the

positions of facilities that are placed in points in Y0. Thus, we can
move all facilities to points in Y ′

so that no agent is negatively

affected. □

If co-location is allowed, we can simplify the construction in

Proposition 11, by simply using the set Y0; in the proof, we sim-

ply shift each facility to the nearest point in Y0. In this case, our

discretization does not depend on k .
The construction in Proposition 11 enables us to extend, e.g.,

Theorem 1 to the continuous setting: to select a candidate with the

highest number of approvals, it suffices to consider candidates in

F×Y ′
. Importantly, the size of the setY ′

is polynomial in |N | and |F |,
so this mechanism still runs in polynomial time. More broadly, if a

problem admits a polynomial-time algorithm in the discrete model

(with or without co-location), it also admits a polynomial-time al-

gorithm in the continuous model (with or without co-location): we

reduce the continuous problem to a discrete problem by replacing

Y = R with Y ′
. This argument also shows that FL-Coverage re-

mains in NP in the continuous setting (the reader can verify that

the hardness proof goes through for the continuous case as well,

so FL-Coverage is NP-complete in the continuous model).
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6 JUSTIFIED REPRESENTATION
In this section, we study fairness in multiwinner facility location

settings, as captured by the notion of justified representtion and

its variants. To simplify the presentation, we focus on the discrete

model without co-location.

The notion of justified representation has been proposed by Aziz

et al. [2]. We will now adapt this definition to our setting.

Definition 2. Consider an instance ⟨F ,Y ,N , (pi )i ∈N ,k⟩ of the
multiwinner facility location problem with |N | = n. We say that a
committeeW ⊆ F × Y , |W | = k , provides justified representation

(JR) for this instance if there is no set of agents N ′ of size at least n/k
such that there is a candidate in F × Y that is approved by all agents
in N ′, but no agent in N ′ approves any of the candidates inW .

It is well-known that in the context of multiwinner voting with

approval ballots, every instance admits a committee that provides

justified representation [2]. However, in our setting this is not the

case, because of incompatibilities between candidates.

Example 5. Suppose F = { f1, f2}, Y = {y1,y2}, k = 2, and
there are two agents, located at y1 and y2, with r11 = r21 = 0,
r12 = r22 = −∞. Then n/k = 1, agent 1 approves c11, agent 2
approves c12, but we can only build f1 at one of the two locations.

Further, we can show that it is NP-hard to decide whether a

given instance admits a committee that provides JR.

Theorem 12. Given an instance ⟨F ,Y ,N , (pi )i ∈N ,k⟩ of the mul-
tiwinner facility location problem with |N | = n, it is NP-complete to
decide whether there exists a size-k committee that provides JR. The
hardness result holds even if there is a value r such that each agent’s
approval radius for each facility is either r or −∞.

Proof sketch. The problem is clearly in NP: given a committee

W , for each candidateC\W we can check howmany agents approve

that candidate, and then verify that fewer than n/k of them do not

approve any candidate inW .

To prove NP-hardness, we reduce from the variant of 3-SAT in

which each clause has exactly three variables. Consider an instance

of 3-SAT with variables ξ1, . . . , ξq and clauses K1, . . . ,Kt . We will

construct an instance of the multiwinner facility location problem

with n = 3(q + t) + 6 agents and committee size k = q + t + 2 (so
that n/k = 3) as follows.

We create facilities h0, . . . ,hq , f0, . . . , ft . If q ≥ t , we create

potential locations {−2q, . . . ,−q− 1} ∪ {0} ∪ {1+q, . . . 2q} ∪ {10q}.
If q < t , we create potential locations {−2q, . . . ,−q − 1} ∪ {0} ∪

{1 + q, . . . 2q} ∪ {10q} ∪ {100q + 1, . . . , 100q + t}. Each agent has

approval radius q or −∞ for each facility. Note that the total number

of facilities is q + t + 2 = k , so all facilities need to be placed, and it

is just a matter of choosing locations for them.

For f0, we create a group N ∗
containing 3q + 3 agents at 0 who

approve f0 with radius q, so f0 should be placed at 0 to satisfy JR.

For h0, we create a group N0 containing 3 agents at 10q who

approve h0 with radius q, so h0 should be placed at 10q to satisfy JR.

For each clause Kj , we create a group Nj containing n/k = 3

agents. Suppose clause Kj contains literals ℓ1, ℓ2 and ℓ3. There

is one agent in Nj for each of these literals. All of these agents

approve h0 with approval radius q. Further, if ℓi is positive, i.e.,
ℓi = ξu for some u ∈ [q], then the respective agent is located at −q,

and approves hu with radius q, and if ℓi is negative, i.e, ℓi = ¬ξu
for some u ∈ [q], then the respective agent is located at q and

approves hu with radius q. Note that Nj can be satisfied in two

ways: either by placing h0 at a location between −2q and 2q (but

this conflicts with the demand of N0, which wants h0 to be placed

at 10q), or by ensuring that at least one of the three agents in Nj is

located within a distance q from the respective h-facility. Facilities
f1, . . . , ft receive no approvals.

One can verify that a placement of facilities that provides JR

corresponds to a truth assignment, and vice versa; we omit the

details due to space constraints. □

6.1 Maximal Justified Representation
We have seen that the JR axiom is inappropriate for settings with

conflicts. We now put forward a new axiom, which we callMaximal
Justified Representation, which waives representation requirements

in case of unavoidable conflicts. We formulate this axiom in terms

of approval ballots rather than agent profiles; note that, if the set

of potential locations is finite, we can easily construct an approval

ballot for each agent from her profile.

First, we need a formal definition of multiwinner approval voting

with conflicts.

Definition 3. An instance of the multiwinner approval vot-

ing with conflicts problem is a tuple ⟨C,N , (Ai )i ∈N ,G,k⟩, where
C = {c1, . . . , cm } is a set of candidates, N = {1, . . . ,n} is a set of
agents, (Ai )i ∈N is a profile of approval ballots over C , G is an undi-
rected graph with vertex setC such that an edge {c, c ′} indicates that
candidates c and c ′ are incompatible, and k is the target committee
size. A subset of candidatesW ⊂ C is called a committee if |W | = k
and all candidates inW are pairwise compatible.

Wenote that, in general, it is NP-hard to decide if a given instance

with conflicts admits any committees, as this requires finding an

independent set of size k in the graph G. However, for instances
that arise from the multiwinner facility location problem this task

is easy: if co-location is allowed, it suffices to check that k ≤ |F |,
and otherwise we need to check that k ≤ min{|F |, |Y |}.

To define the axiom of maximal justified representation, we

introduce the notions of cohesive group and group-representing set.

Definition 4. (Cohesive group and group-representing set) Fix
an instance of multiwinner approval voting with conflicts, i.e., a tuple
⟨C,N , (Ai )i ∈N ,G,k⟩. We say that N ∗ is a cohesive group if |N ∗ | ≥
n
k and ∩i ∈N ∗Ai , �. Let N = {N ∗

: |N ∗ | ≥ n
k ,∩i ∈N ∗Ai , �} be

the set of cohesive groups. Then the group-representing set of candidate
c j is Nj = {N ∗ ∈ N : c j ∈ ∪i ∈N ∗Ai }.

In words,Nj is a collection of cohesive groups that cannot ‘com-

plain’ about a committee that contains c j : each group inNj includes

a member that approves c j . We are now ready to state the maximal

justified representation axiom.

Definition 5. (Maximal Justified Representation (MJR)) Fix an
instance of multiwinner approval voting with conflicts, i.e., a tu-
ple ⟨C,N , (Ai )i ∈N ,G,k⟩. For each i ∈ [m], let Nj be the group-
representing set of candidate c j . We say that a committeeW of size k
provides maximal justified representation (MJR) for this instance if
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there does not exist another committeeW ∗ of size k such that⋃
c j ∈W

Nj ⊂
⋃

c j ∈W ∗

Nj . (1)

We say that an algorithm satisfies MJR if for every instance it outputs
a committee that provides MJR.

That is, a committeeW provides MJR if there is no other com-

mitteeW ′
such that the set of cohesive groups represented byW ′

is a strict superset of those represented byW .

Of course, in the absence of conflicts MJR coincides with JR since

both JR and MJR committees need to represent all cohesive groups.

Proposition 13. For any instance of multiwinner approval voting
without conflicts, a committee provides JR if and only if it provides
MJR.

However, in the presence of conflicts, there may exist a cohesive

group such that no member of this group is represented by an MJR

committee. For instance, in Example 5 each agent forms a cohesive

group, so, in every feasible solution at least one of these groups

will remain unsatisfied.

By construction, every instance of multiwinner voting with con-

flicts admits at least one committee that provides MJR: indeed,

one can simply choose a committee that represents the maximum

number of cohesive groups.

Proposition 14. For any instance of multiwinner approval voting
with conflicts, there is at least one committee that provides MJR.

However, finding a committee that provides MJR is NP-hard

even for instances of multiwinner voting with conflicts that are

derived from multiwinner facility location problems: this follows

from our observation about the relationship between MJR and JR

and Theorem 12.

Proposition 15. Given an instance of multiwinner approval vot-
ing with conflicts, it is NP-complete to find a size-k committee pro-
viding MJR.

In the definition of MJR we focus on inclusion-maximality. Al-

ternatively, one may be interested in committees that satisfy as

many cohesive groups as possible. This approach can be captured

by replacing condition (1) with������ ⋃c j ∈W Nj

������ <
������ ⋃
c j ∈W ∗

Nj

������ ; (2)

we will refer to the resulting notion as maximum justified represen-
tation (MMJR).

Clearly, the MMJR condition is more demanding than MJR: every

committee that provides MMJR provides MJR, but the converse is

not true.

Example 6. Suppose F = { f1, f2, f3}, Y = {y1,y2,y3}, k = 3,
and there are four agents at y1 and five agents at y2. All agents have
approval radius 0 for f1 and approval radius −∞ for f2 and f3. Then
n/k = 3, and there are 5 cohesive groups formed by agents at y1 (four
groups of size 3 and one group of size 4) and 16 cohesive groups formed
by agents at y2 (ten groups of size 3, five groups of size 4 and one
group of size 1). Thus, a solution that places f1 at y1 provides MJR

but not MMJR, whereas a solution that places f2 at y1 provides MMJR
(and hence MMR).

The reader can verify that all of our results for MJR, such as the

ones concerning existence (Proposition 14), NP-hardness (Proposi-

tion 15) and relationship with JR (Proposition 13) extend to MMJR.

7 CONCLUSION
We introduce the setting of multiwinner facility location with ap-

proval preferences, which combines facility location and multi-

winner voting with approval ballots. We consider several vari-

ants of the model, which differ in whether the facilities can be

co-located, whether the number of potential locations is finite or in-

finite, whether the agents are unit-demand or additive, and whether

the social planner aims to maximize coverage or social welfare. For

each setting, we explore the complexity of the associated opti-

mization problem and whether the optimization objective can be

implemented in a strategyproof way. We also propose a new repre-

sentation axiom for settings where there may be incompatibilities

among the candidates.

Interestingly, it turns out that in the approval-based model the

continuous case can be reduced to the discrete case. In contrast, the

settings with and without co-location appear to be very different,

both from the computational and from the strategic perspective;

as a rule, settings with co-location are easier to work with, but

Proposition 4 illustrates that this is not always the case.

There are many open problems suggested by our analysis. For

strategyproofness, we focused on the performance of mechanisms

that implement specific optimization objectives. A natural extension

of this idea is to explore the existence of (deterministic or random-

ized) strategyproof mechanisms that implement these objectives

approximately. Another interesting direction is to explore what

happens if the agents are limited in their ability to misreport, i.e.,

they can only misreport their locations, but not the approval radii,

or vice versa (see Proposition 9 for the first step in this direction).

In our analysis of representation, we proposed a justified rep-

resentation axiom that can be satisfied in any instance. However,

finding the respective committee is computationally hard. It would

be interesting to identify restrictions on agents’ preferences under

which this problem is tractable.

While our model is quite general, it could be extended further

to capture additional real-life scenarios. In particular, one could

specify the list of available locations for each facility, rather than a

single list for all facilities: indeed, some facilities may require larger

plots or special infrastructure, while others can be placed on any

available plot. One can also investigate what happens if agents’

preferences are expressed via ranked ballots rather than approval

ballots.
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