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ABSTRACT
As autonomous systems are deployed at a large scale in both public
and private spaces, robots owned and operated by competing organ-
isationswill be required to interact. Interactions in such settings will
be inherently non-cooperative. In this paper, we address the problem
of non-cooperative multi-agent path finding. We design an auction
mechanism that allows a group of agents to reach their goals whilst
minimising the total cost of the system. In particular, we aim to
design a mechanism such that rational agents are incentivised to
participate. Our privileged knowledge auction consists of amodified
combinatorial Vickrey-Clarke-Groves auction. Our approach limits
the initial number of bids in the Vickrey-Clarke-Groves auction,
then uses the privileged knowledge of the auctioneer to identify
and solve path conflicts. In order to maintain agent autonomy in
the non-cooperative system, individual agents are provided with
final say over paths. The mechanism provides a heuristic method to
maximise social welfare whilst remaining computationally efficient.
We also consider single-agent bid generation and propose a simi-
larity metric to use in dissimilar shortest path generation. We then
show this bid generation method increases the success likelihood
of both the limited-bid VCG auction and our novel approach on
synthetic data. Our experiments with synthetic data outperform
existing work on the non-cooperative problem.

CCS CONCEPTS
• Computing methodologies→Multi-agent planning; • The-
ory of computation → Algorithmic mechanism design.
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1 INTRODUCTION
When multiple autonomous systems interact in shared spaces, the
systems can act individually and risk disrupting one another, or they
can negotiate to avoid conflict. Any interface designed to negotiate
between them must allow each system to achieve as many of their
goals as possible, but must still respect their autonomy. Consider a
superstore, with aisles of groceries, clothing, and electronics. The
store does not have the technology to build a fleet of robots, so
they contract out individual tasks. One company might be hired to
deploy a robot to move around the store examining shelves to track
inventory. Another company might be hired to deploy cleaning
robots. These robots have misaligned incentives; while they both
have to interact in the space, they only care about their own contract
with the store, and so their only goal is to complete their own task.
Theymay be penalised for failing to complete their tasks either with
a built-in monetary penalty or the eventual loss of their contract.
As a result, this system is non-cooperative. This situation is ill-suited
to centralisation, because agents need autonomy over their own
decision making and path planning.

But without a centralised system to direct agents to coordinate
while they complete their goals, conflicts are likely. Conflicts occur
when multiple robots try to traverse the same area at the same time.
Multi-agent path finding (MAPF) focuses on preventing these types
of conflicts. Though these robots have collision avoidance for non-
stationary objects (like humans), relying on collision avoidance for
robot-robot interaction places an unnecessary burden on low-level
controllers and can cause significant delays or even collisions [32].
In this paper we consider MAPF where all agents have the ability to
make their own choices and are not controlled by a central system.
Agents could be indifferent to the success of other agents or may
even want to stop other agents from achieving their own goals.
Additionally, we assume all agents are rational: all agents are inter-
ested in maximising their own value given imposed constraints.

While multi-robot path finding problems [31] are well studied,
very little research to date has considered the non-cooperative case.
One notable exception is the work of Amir et al. [1], which in-
troduced a mapping between MAPF and combinatorial auctions.
Furthermore, they discuss how the use of combinatorial Vickrey-
Clarke-Groves (VCG) auctions [5, 11, 34] can provide a mecha-
nism robust to manipulation attempts by strategic, possibly self-
interested agents. They then propose the use of iBundle [26] to find

Main Track AAMAS 2022, May 9–13, 2022, Online

472



solutions to the MAPF problem. iBundle is an iterative combinato-
rial auction algorithm which, under certain conditions, provides
equivalent solutions to VCG. However, iBundle has a number of
limitations. First, iBundle relies on decentralised conflict resolution
such that agents must continue to submit and value more paths if
the price of their high value paths become too large due to conflicts.
As a result, iBundle requires agents to have access to an ordered list
of all possible single solutions ranked by descending value. Depend-
ing on how agents assign value to different solutions, this could
require agents to evaluate all possible solutions, or in the case where
value functions are tied to shortest paths, this requires the agents to
have the ability to access the next shortest path at any given time.
Second, the bidding strategy that agents are expected to take will
slow down iBundle in the MAPF setting. An agent’s myopic best
response strategy to the iBundle auction, i.e., the bidding strategy
which makes the most sense for them to execute, requires them to
submit all paths of equal length at the same time. Because there
can be many paths with the same value, agents are incentivised to
submit a large set of bids at once, and this detracts from the itera-
tive advantage of iBundle and can lead to a high computation time.
Finally, because iBundle finds the optimal allocation, and because
the winner determination subproblem of VCG is NP-complete [8],
iBundle is also NP-complete. All three of these issues taken together
result in a prohibitively large worst-case computation time.

In this paper, we build on [1] and tackle the limitations listed
above. We do this by designing a mechanism for non-cooperative
path planning that exploits centralised conflict resolution via the
privileged knowledge it obtains from the initial agent bids. This
heuristic mechanism is designed to optimise for social welfare
while incentivising agents to participate. Our mechanism is tailored
for the MAPF problem, allowing agents to submit a smaller number
of paths to the auction, which helps us overcome the limitations of
iBundle. The auctioneer takes on the burden of removing conflicts,
and uses a method specific to MAPF to do so. We also consider
the problem of single-agent bid generation, and propose an adapta-
tion of the dissimilar path search algorithm from Jeong and Kim
[15]. Our adaptation modifies the similarity metric to better suit a
MAPF context by considering both spatial and temporal similarity.
Because agents submit a smaller number of bids, using a dissimi-
lar path algorithm allows agents to provide the auctioneer with a
wider range of possibilities, which makes a conflict-free solution in
the initial stage of the auction more likely. We analyse our mecha-
nism and single-agent bid generation on two synthetic domains: a
model of a warehouse and maps from Dragon Age: Origins [31]. Be-
cause our mechanism relaxes guarantees and optimality to improve
computation time, it outperforms iBundle in almost all cases.

2 RELATEDWORK
Cooperative MAPF is widely studied, and several algorithms have
been proposed for it, e.g. [29, 30]. The problem has been extended
in a variety of ways, for example to consider uncertainty [28, 35]
or kinematic constraints [13, 36]. For more details on cooperative
MAPF, see [31].

Auctions are a class of mechanisms by which resources are dis-
tributed among agents. Auctioning approaches have been widely
used in robotics, particularly for cooperative coordination of teams

of robots. Agents request resources from the auctioneer and an
auctioneer distributes resources based on those requests, often for
a price. Early work on this topic used combinatorial auctions [14]
and first-price one-round auctions [10] to distribute tasks across a
set of agents. Later, in [19], a sequential single item (SSI) auctioning
mechanism was proposed for multi-robot routing and task alloca-
tion. This approach combines the advantages of parallel single-item
auctions and combinatorial auctions, achieving good quality task al-
location with low computational effort [17]. SSI auctioning has also
been extended in [25] to handle temporal constraints and in [22] to
handle precedence constraints. From the perspective of the agents
participating in SSI auctions, [33] investigated the problem of gen-
erating different bids taking into account different global objectives
to be achieved. There has also been work on using auctions to dis-
tribute parts of a global task across a team of robots, in the context
of planning under uncertainty. [4] does this considering role poli-
cies for partially observable Markov decision processes, whilst [27]
considers auctioning subtasks such that a global linear temporal
logic task is achieved by the team. In contrast to these works, we use
auctioning to allocate a set of shared resources (more specifically,
points in time and space) across a set robots. Furthermore, in our
work the robots are competing for the use of these resources rather
than cooperating to achieve a set of tasks.

There are examples of game theoretic non-cooperative planning
algorithms, but they are ill-suited to our scenario. [2] presents a
market-based approach for the management of shared resources
for a multi-robot team. However, they assume loosely-coupled
problems, i.e., problems that can be modelled using few interactions
between agents. This is not the case in our work, where all locations
yield a potential conflict between the robots. Stochastic games are
a model for non-cooperative multi-agent interaction, and have
been applied to reinforcement learning [20] and planning [16, 24].
Stochastic games have been adapted to deal with a wide array of
scenarios, but rely on a large amount of shared knowledge. This
can not be assumed in our scenario. [3] introduce a game theoretic
model that can be adopted to path planning via STRIPS, but it
assumes that agents are willing to form coalitions.

The closest related work to ours is Amir et al. [1]. This was the
first application of mechanism design to non-cooperative path plan-
ning. In particular, they reduce MAPF to a combinatorial auction.
They then demonstrate how the VCG auction mechanism (see Sec-
tion 3.2) can be used in MAPF with strategic agents. They provide
experimental results using iBundle, an iterative combinatorial auc-
tion with equivalent solutions to VCG [26]. We build on this work,
introducing a mechanism that allows us to find solutions with less
computational effort, as shown in Section 6.

In order to carry out an auction with space as a resource, agents
need to be able to submit bids on paths to the auctioneer, and doing
so requires that they evaluate how much they value certain paths.
One way agents can find and evaluate multiple path options is
through a k-shortest path algorithm. k-shortest path algorithms
can search for simple paths, i.e those without loops, as in [37].
Alternatively, they can search for all paths, including ones with
loops and self-loops as in [9]. However, doing so is often very time
consuming as it greatly increases the number of possible paths.
Agents can also generate paths with some specific attribute, e.g.
[15] aims to generate a class of spatially dissimilar paths.
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3 PRELIMINARIES

MAPF. In MAPF, agents act on a graph G = (V , E), where V is a
set of vertices and E ⊆ V × V is a set of edges. We assume each
vertex x ∈ V represents coordinates in an environment, i.e., x ∈ R2.
Each of n agents starts at their own unique start vertex, and at
each discrete timestep agents can wait in their current vertex or
travel to another vertex that is connected to their current position
by some edge in E. Each agent has a unique goal location, and
MAPF aims to find paths for each agent to get to their required goal,
such that no agents are in conflict. We denote the set of all finite
sequences of elements of V as V ∗, and define a path for an agent
as a sequence of vertices x1x2 . . . xℓ ∈ V ∗ where (xd , xd+1) ∈ E for
all d ∈ {1, . . . , ℓ − 1}. While many different types of conflict have
been explored in the MAPF literature, in this paper we consider
vertex conflicts. A vertex conflict occurs when two agents are at the
same vertex at the same time. We consider the MAPF problem of
optimising for flowtime or sum-of-costs, i.e., the sum of the arrival
times of all agents at their goal locations.

Combinatorial Auctions. A combinatorial auction contains a set
of agents I = {1, 2, . . . ,n} and a set of items Z = {z1, z2, . . . , zm }.
Each subset of items A ∈ 2Z is known as a bundle. Each agent i
is rational, so they are assumed to have a well-defined value for
every bundle A ∈ 2Z , determined by function vi : 2Z → R. The
agents are asked to report a bid bi (A) ∈ R to the auctioneer for
every subset A ∈ 2Z . Ideally, this would be their value for that
bundle, but rational agents are not necessarily truthful; if it is in
their best interest to lie, they will. More specifically, each agent
has a strategy σi : R → R that transforms their values to bids.
Each agent’s bid is uniquely defined by bi (A) := σi (vi (A)) for all
A ∈ 2Z . The auctioneer must use these bids to decide which items
are distributed to which agent. We call a set {Sj }j ∈I an allocation,
where each Sj ∈ 2Z represents the bundles allocated to agent j.
In the remainder of the paper, we will use {Sj } as shorthand for
{Sj }j ∈I . A feasible allocation {Sj } is one where each agent i is
allocated a bundle of items Si ∈ 2Z such that Si ∩ Sk = ∅ for
all agents k , i . We denote the set of all feasible allocations by Γ.
The job of the auctioneer is to define a function that maps bids to
outcomes. An outcome consists of a feasible allocation {Sj } and a
set of prices {pj }, which each agent must pay to the auctioneer. The
auctioneer chooses some optimisation function to consider while
determining the allocation, such as maximising utility or revenue.

3.1 MAPF as a Combinatorial Auction
We now describe how a MAPF problem can be solved using a com-
binatorial auction. The overall idea is considering paths as bundles.
We start by noting that a pathw = x1x2 . . . xℓ can be interpreted as
a bundle of vertex-timestep pairs, i.e., {(x1, 1), (x2, 2), . . . , (xℓ, l)} ⊆
V × N. Thus, for notational convenience, for the remainder of the
paper we will denote paths interchangeably as either bundles or
sequences, i.e., we will denote a l-length path for agent i as Si =
{(x1, 1), (x2, 2), . . . , (xℓ, l)} ⊆ V × N or as wi = x1x2 . . . xℓ ∈ V ∗.
Agents value these bundles based on how effective the correspond-
ing path is in achieving their goal and what cost it takes them
to traverse that path. When optimising for flowtime, path cost is
equivalent to path length if agents are moving at a constant speed.

Table 1: A high level overview of the parallel betweenMAPF
and combinatorial auctions (CA) adapted from [1].

MAPF CA
Vertex-time pair Item
Path (set of items) Bundle

Path cost Valuation function
Minimal sum of path costs Maximal social welfare

We define the best MAPF solution as one in which the sum of
agents’ costs is as low as possible. The minimum cost allocation of
a MAPF problem is equivalent to the maximum value allocation of
a combinatorial auction. Thus, maximising the sum of all values
over all agents, known as the social welfare, results in a solution
to the MAPF problem in which as many agents reach their goals
with as little cost as possible. A high-level overview of the parallel
between MAPF and combinatorial auctions can be seen in Table 1.
Determining feasible allocations via a combinatorial auction en-
sures that agents do not enter into conflicts. If two agents’ bundles
Si and Sk have no intersection, then they will never be at the same
vertex at the same time.

3.2 Combinatorial VCG Auction
Framing non-cooperative path planning as a combinatorial auc-
tion leads us to the problem of designing an auction mechanism
that maximises social welfare, i.e., the sum of all valuations. How-
ever the auctioneer only has access to the bids the agents report,
not their true valuation for the items. Therefore the auctioneer
cannot naively sum up the bids of agents to determine the social
welfare of an allocation. Doing so is highly susceptible to manip-
ulation by agents. Incentive compatible mechanisms are a class of
auctions that solve this problem. A mechanism is incentive compat-
ible if every agent cannot benefit from misreporting their valuation.
More formally, this means that all agents’ strategies are defined
by σi (vi ) = vi . Because, by definition, bi := σi (vi ) in incentive
compatible auctions, the auctioneer can assume that each agent’s
valuation for a bundle is equivalent to their bid.Then, maximising
the total utility becomes equivalent to maximising the total of the
bids. In combinatorial auctions, only optimal solvers can be incen-
tive compatible [23]. Heuristic methods like the one we present in
Section 4 cannot be incentive compatible, though can be difficult to
manipulate. One combinatorial auction that satisfies the property of
incentive compatibility is the combinatorial VCG auction, named af-
ter ideas combined from [5, 11, 34]. The descriptions in this section
are based on [6]. In VCG the auctioneer allocates bundles based on
the welfare maximising outcome. An allocation {Sj } ∈ Γ is welfare
maximising if, for every feasible allocation {Tj } ∈ Γ,∑

i ∈I

bi (Si ) ≥
∑
i ∈I

bi (Ti ). (1)

In VCG, prices pi are set as follows. Let {Sj } ∈ Γ be the welfare
maximising outcome and {S−ij } ∈ Γ be the welfare maximising
outcome if agent i was not involved in the auction, i.e., agent i is
allocated the empty set. Then,

pi =
∑

k ∈I\{i }

bk (S
−i
k ) −

∑
k ∈I\{i }

bk (Sk ). (2)
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This payment represents the amount that agent i has perturbed the
system, as agent i pays the difference between the total welfare of all
other agents if they had not been in the auction minus the welfare
of all other agents when they are included in the auction. Note that
if an agent’s presence in the system does not change anyone else’s
path, or only changes another agent’s path to one of equal value,
they pay nothing. This can be thought of as a way to ensure agents
don’t take up desirable space in the map (like vertices with many
edges, or vertices that connect otherwise unconnected portions of
the graph) unless it has high value to them. Finally, combinatorial
VCG auctions are individually rational, which ensures that agents
are willing to participate. A mechanism is individually rational if
each agent is better off participating in the auction than they would
be otherwise [18].

Unfortunately, determining the welfare maximising outcome
for VCG is NP-complete [8], so solving this problem optimally is
time consuming. Additionally, using combinatorial VCG auctions
for MAPF require agents to give a value for every possible path
(O(2 |V |×h for |V | vertices and h timesteps). This puts an unrealistic
computational burden on the agents. The iterative algorithm iBun-
dle allows agents to value less paths, but requires the ability to list
paths in value order. Another limitation comes from the strategy
that agents are expected to use in the iBundle auction. In an iter-
ative auction like iBundle, agents’ strategies determine what bids
to make at each iteration of the auction. Parkes [26] show that the
myopic best response strategy for iBundle (i.e., the strategy agents
use when considering only the outcome of the current iteration)
requires agents to submit all bids with equivalent value at the same
time. But the nature of the MAPF problem means that many paths
will have the same value, and thus in practice agents bidding in
iBundle will still be required to submit a large number of bids at
each iteration of the iBundle algorithm.

4 PRIVILEGED KNOWLEDGE AUCTION
We now introduce a new mechanism called the privileged knowl-
edge auction (PKA) which removes the problem of enumerating so
many bids, by allowing agents to place a fixed number of bids. Our
aim is to create a mechanism to solve the non-cooperative MAPF
problem. To be a MAPF solution, a set of paths must avoid con-
flicts and allow agents to reach their goals. To be a non-cooperative
solution, agents must have autonomy over their own paths and
the system should be difficult to manipulate by strategic agents.
Figure 1 provides an overview of our proposed mechanism. Agents
submit bids and the auctioneer carries out a modified VCG auction
(Section 4.1). Then the auctioneer uses knowledge from the VCG
auction, which we refer to as privileged knowledge, to find a solution
outside of the submitted proposals if necessary (Section 4.2). Finally,
the auctioneer gives agents autonomy over what bids are chosen
through a descending auction (Section 4.3).

4.1 Initial Bidding and VCG Auctioning
Agents propose timed bundles in the form {(x1, 1), (x2, 2), ...(xℓ, ℓ)}.
In the first step of the mechanism, each agent proposes a fixed num-
ber of paths to the auctioneer. In practice, this number will typically
be small to cope with the scalability issues of VCG and is chosen as
a design parameter. The auctioneer then searches for a potential

Submit a fixed number of paths

Look for a VCG solution

Auction 
terminates

Use PK to find multiple solutions

Estimate agents’ values for all 
solutions with PK

Order solutions by estimated social 
welfare  and propose the first

Y

N

Decrease value of bid 
by 𝛿 for any agent 

who rejects the offer 
If any agent has value 
less than 𝜀,  remove 

the solution

Auction 
terminates

Y

N

Agent Action 

Auctioneer Action

Found?

All agents accept?

Se
ct

io
n 

4.
1

Se
ct

io
n 

4.
2

Se
ct

io
n 

4.
3

Figure 1: A high level overview of our PKA protocol.

feasible allocation using the same winner determination and pric-
ing as combinatorial VCG. At this stage of the auction, agents can
only be allocated bundles which they themselves proposed. As a
result, all allocations will correspond to actual paths. If no solution
is found in which every agent is allocated a path, we move into the
second part of our protocol.

4.2 Deconflicting
In the second part of PKA, the auctioneer uses the privileged knowl-
edge gained in the bidding stage to find a better solution. If the
auctioneer cannot find a solution given the proposed paths supplied
by the agents, they must instead generate their own, conflict-free
solution. In order to preserve the agents’ autonomy, the auctioneer
generates multiple alternate conflict-free solutions from which the
agents can choose. Before we discuss the incentive-aware process
that the auctioneer uses to choose between possible solutions, we
address how those solutions can be generated. Our mechanism is
agnostic to the method used to find such solutions, the suitability of
each possible method being tied with the particular environment. In
situations where the auctioneer believes value is closely tied to the
shortest path to the goal, classical cooperative MAPF algorithms
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are a good choice. Any MAPF algorithm (or set of MAPF algo-
rithms) which can be designed to return multiple possible solutions
is suitable. In our experiments, we used hierarchical cooperative
A* (HCA*) [30]. HCA* is a quick, suboptimal, solution algorithm
where agents plan their paths sequentially in a graph extended
to include both space and time. After each agent plans their path,
the locations they pass through on the graph are removed from
the graph at that particular time, and the next agent is allowed to
plan their path. Agents are allowed to plan their paths in different
orders to produce different solutions. We leave comparing different
solution methods to future work. Ideally, we desire at least two
solutions from the MAPF solver but if there is only one possible
solution, the auctioneer will proceed with only that one solution.

Assuming that the auctioneer has a set of alternate solutions
AS = {{S1j }, ..., {S

m
j }}, it is necessary to order them from most

desirable to least desirable. The goal of the mechanism is to elicit
truthful values, so while we are unable to extrapolate the exact
social welfare of these solutions with the partial value information
obtained in the first stage of the mechanism, we can develop a
heuristic, and then use that to elicit true preferences by asking the
agents for more information (Section 4.3). To approximate the social
welfare of a specific alternate solution {Sj }, we need to approximate
the value of each path Si ∈ {Sj } allocated to each agent i . We define
the approximate value of a path by how different it is from a path
that we know agent i’s true value of, i.e., a path that agent i bid
on in the first stage of the mechanism. In particular we choose the
path S̃i to be the ‘closest’ path to our solution path Si out of all
the paths that agent i bid on in the first stage of the mechanism.
Our heuristic for ‘closeness’ is defined by the following distance
function between two bundles S,T ∈ 2Z :

d(S,T ) = λ | |S −T | | + (1 − λ)|tS − tT |. (3)

tS and tT are the times at which paths S and T reach the goal
of agent i respectively. For paths S,T , which can each be rep-
resented by a set of points x1, x2, ...., xℓ ∈ R2, we define norm
| |S | | = | |x1, x2, · · · , xℓ | | =

∑m
e=0 | |xℓ | |2. In short, | |S − T | | is the

sum of the Euclidean distances between the points on each path
at each timestep. This distance function measures two important
factors that would change an agent’s value as a path changes. The
first term accounts for physical locations (like rough terrain that
is difficult to traverse or an area with a high number of humans
that may get in the way). Paths that cross through these locations
would have a higher cost. The second term accounts for a differ-
ence in flowtime for the individual agent. 0 ≤ λ ≤ 1 is thus a
parameter that allows us to trade off between these two factors.
With this distance function in mind, we formally define the path
S̃i which is the ‘closest’ path to our solution path Si (among the
paths that agent i submitted as bids) as S̃i = argminS ∈Bidsi d(Si , S).
Finally, we define the approximate value of solution {Sj } to agent i
as ṽi ({Sj }) = bi (S̃i ).

4.3 Descending Auction
Once we have an approximation for the social welfare of each
proposed solution in AS, we sort AS in decreasing order of ap-
proximate social welfare. Then, we carry out a simultaneous de-
scending auction to elicit the true values of each solution to each

agent. Specifically, the auctioneer first offers the solution which
best approximates social welfare, {S1j }, to each agent at ṽi ({S1j }).
ṽi ({S

1
j }) is the maximum possible price agent i could be charged

for being allocated {S1j } at the end of the auction. If all agents
accept the offer, this solution is chosen. Otherwise, the approxi-
mate value for any agent i that did not accept the offer is reset to
ṽi ({S

1
j }) = ṽi ({S

1
j })−ϵ , for some value ϵ > 0, andAS is reordered.

For large ϵ , the auction will execute quicker, but agents are likely
to be proposed offers below their value for the item. For small ϵ ,
the descending auction will occur in shorter intervals, thus taking
longer but gaining a more accurate representation of agent valua-
tions. If at any point an agent accepted a solution, they are assumed
to have accepted it in the future and are not offered a new value. If
at any point an agent rejects an offer with value ṽi ({S1j }) < ϵ , the
offer is reset to ṽi ({S1j }) = 0. If an agent rejects an offer with value
ṽi ({S

1
j }) = 0, this solution is assumed to be infeasible and removed

from the set.
This process is repeated until all agents accept the same solution

or all solutions have been made infeasible. If all agents accept the
same solution {S̃j } ∈ AS, then this becomes the implemented
solution and the payment for agent i is

pi = max(0,
∑

k ∈I\{i }

bk (S
−i
k ) −

∑
k ∈I\{i }

ṽj (S̃k )), (4)

where {S−ij } ∈ Γ is the hypothetical solution described in Section 4.1
that results from a traditional VCG auction with the originally
proposed bids, but without agent i . If all solutions have been deemed
infeasible, the mechanism terminates with no solution.

4.4 Analysis
We now discuss how our modifications affect the important prop-
erties of individual rationality and incentive compatibility, and
present arguments on how these are preserved by our approach.

Individual Rationality. We argue that each agent will take their
assigned path. Suppose that an agent is considering deviating from
their assigned pathw , because there is some other pathw ′ that has
higher value for them. Ifw ′ was a path submitted to the auctioneer,
they know that if it did not conflict with the other agents, they
would have been allocated it. Thus, if they choose to follow w ′

instead of w , they are guaranteed to be in conflict with at least
one other agent, which will cause w ′ to be infeasible. Otherwise,
agents would not have determined the value ofw ′, since there are
prohibitively too many paths to value all of them. As a result, the
agent would not be incentivised to deviate to it.

Incentive Compatibility. While our mechanism is not incentive
compatible due to its sub-optimality [23], our design decisions
prevent easy manipulation. If the algorithm does not enter the priv-
ileged knowledge sub-protocol then it remains in a VCG auction
which is incentive compatible. If it does enter the sub-protocol,
truthtelling means accepting the first value that is lower than your
actual value for a path. Clearly, agents are not incentivised to accept
a path that is higher than their value because they may be charged
for it, netting a negative utility from the process. It is also important
to show they will never turn down a price that is equal to or over-
estimates their value. Suppose they do not, then there is a chance

Main Track AAMAS 2022, May 9–13, 2022, Online

476



they will instead get offered a deal next which underestimates their
value less, or a deal in which they have lower value. In the both
cases, they would end up with either a worse utility solution or no
solution.

5 SINGLE-AGENT DECISION MAKING
Our mechanism assumes agents have the ability to submit a fixed
(but small) number of bids to the auctioneer. Each bid is on a bundle
of items, and it is important that an agent understands what value
to assign each bundle. To better describe the MAPF problem, for
the remainder of the paper we refer to minimising the total cost,
instead of maximising value, as the two problems are equivalent. If
a bundle of items is not a path then it will cost an agent∞ as it is
impossible to execute. The cost of any path that eventually reaches
the goal should be defined for each agent by the distance travelled
and the time it takes. This will depend on the specifications of the
agent, but an increase in both distance and time will be assumed to
increase costs. While these costs and paths can be derived in any
number of ways, and do not affect the properties of the mechanism,
we outline a bidding strategy specific to the case where cost is
directly linked to path length, as in a traditional MAPF setting. As
we will show in Section 6, this method allows for a better overall
result for the auction.

5.1 Agent Planning
We propose a method for each agent to quickly generatem sub-
optimal paths {P1rд, . . . , Pmrд} from a start r to a goal д, adapting
the dissimilar path search algorithm from Jeong and Kim [15]
for the MAPF context. The dissimilar path search algorithm first
computes the all-to-one shortest paths to д from each other ver-
tex using Dijkstra’s algorithm [7]. It then takes the shortest path
from r to д as its first selected path P1rд . We denote this path as
w = rx1x2 . . . xℓд. The new candidate paths are generated at each
xd ∈ {xe }e ∈{0, ...,ℓ } (where x0 = r ), by branching off onto a neigh-
bouring vertex x̃ < W \ {xd }, whereW is the set of vertices in
pathw . Let x̃x̃1x̃2...x̃ℓ′д be the shortest path between x̃ and д. Then
the new candidate path is w̃ = rx1x2...xd x̃x̃1x̃2...x̃ℓ′д. The special
case x̃ = xd , which was disallowed in the original algorithm but is
included here, effectively incorporates wait actions into the agents’
path bids, thereby providing additional flexibility to the auctioneer.

After adding the newly generated paths to the candidate setCrд ,
a new path is selected from the set of candidates based on minimi-
sation of a similarity metric with the currently selected paths. We
introduce a novel similarity metric that considers both spatial and
temporal similarity of two paths. This metric measures the overlap
of a candidate path with existing paths in both space and time:

Pb+1rд = argmin
P ∈Crд

b∑
a=1

C
[
Parд

⋂t P
]

C
[
Parд

⋃t P
] (5)

Here C[·] denotes the number of vertex-timestep pairs, and
⋂t

is a temporal intersection of two paths – for two paths p and q,
p
⋂t q contains all vertex-time pairs which appear in both paths,

and the temporal union
⋃t contains all vertex-time pairs which

appear in either path. The similarity metric is designed to generate
paths which do not have the agent occupying the same vertex at the

same time, thereby providing the auctioneer with greater flexibility
and improving its chances of finding a feasible allocation. The path
found by Equation 5 is then removed fromCrд and used to generate
new candidates, a process that is repeated until them required paths
have been selected.

6 EVALUATION
To analyse the performance of PKA, we simulated its performance
on two synthetic domains fromDragon Age: Origins [31] and a ware-
house domain, and compared its performance to baseline methods.

6.1 Methods
PKA, as described in Section 4, is implemented to request 10 bids
from each agent. During the second phase of the auction, 3 possible
solutions are generated with HCA* [30]. Because we consider MAPF
scenarios where cost is equivalent to the path length, the auctioneer
sets λ = 0 in Equation 3, i.e., it only considers time in the distance
metric d . In the third stage of the auction, the price update amount
ϵ is set to 1, as all edges in the simulated domain take time 1.

The primary method we compare to PKA is iBundle [26]. iBun-
dle is an optimal iterative combinatorial auction. iBundle is imple-
mented with anonymous prices, but because the start location of
each robot is unique, discriminatory prices would reach the same
result. As in PKA, the price update amount ϵ = 1. Agents’ bidding
strategies are implemented as myopic best-responses to the auction.
At the first stage of the auction, agents bid all simple paths with
length equal to their shortest path. As prices increase when agents
are unhappy after any iteration, agents then bid the paths from
the previous rounds (updated to reflect the new prices) along with
new paths, which comprise of all simple paths equal to the next
best path length. This bidding strategy is implemented using Yen’s
algorithm [37] through NetworkX [12]. We also compare PKA to
the concatenated bid version of VCG, where agents submit only 10
paths instead of bidding their entire list of possible paths, and then
a traditional VCG auction is carried out. This method is equivalent
to the first stage of PKA.

We simulate two different methods that allow each agent to
generate and submit 10 bids to the auctioneer for both VCG and
PKA. In the first method, simple path generation, agents submit 10
bids corresponding to their 10 shortest paths. As in iBundle bidding,
these are generated with Yen’s algorithm through NetworkX. In the
second method, dissimilar path generation, agents submit 10 bids
through the algorithm described in Section 5.1, which is based on
[15] with a novel similarity metric that diversifies the spread of
bids from each agent over the map.

We directly analyse the average path costs (as opposed to social
welfare) because we were evaluating on MAPF benchmarks. Note
that, in this context, maximising social welfare is equivalent to
minimising the sum of path costs, as shown in [1] and mentioned
in Table 1.

All methods are implemented in Python, and Mixed-Integer
Linear Programs (e.g., solving the winner determination problem
and calculating prices for VCG and for each iBundle iteration) are
solved using Gurobi. All methods generate paths as a list of vertices
at a given timestep. All experiments were conducted on an AWS
C5a.large EC2 instance, with 2 CPUs and 4GB of memory. We
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Traversable Unpassable Out of bounds

Figure 2: Dragon Age: Origins maps lak108d (left) and
lak110d (right). Each pixel represents a vertex.

set a timeout of 300 seconds for all methods. Data points were
calculated over 100 trials. Full distributional data can be found in
the supplementary materials.

6.2 Dragon Age

Domain Description. Agents interact on two maps from Dragon
Age: Origins, lak108d and lak110d, as shown in Figure 2. Both maps
are drawn from a set of path finding baselines as described in [31].
In these baseline domains, agents value paths exclusively based on
the time it takes to reach their goal location. Agents can move left,
right, up, and down, which all take one timestep. Distinct start and
goal vertices for each agent are generated randomly. Map lak108
has 286 vertices and map lak110 has 168 vertices.

Results. For maps lak108d and lak110d, we show the success rates
of all tested methods over 100 trials in Figure 3. The iBundle al-
gorithm consistently performs the worst. This is because in large,
open domains like the two Dragon Age maps, agents have a large
number of bids in the initial stage of the auction, as in open space
there can be many possible best paths. It takes time for each agent
to calculate these bids, but more importantly the large number of
bids in the initial provisional allocation of iBundle can exceed the
timeout of 300 seconds, as seen in Figure 4, and this becomes more
likely as the number of agents increases. Figure 4 shows the time
for each trial for every method, and trials that timed out are repre-
sented in the plot as taking time equal to the timeout. By comparing
VCG (simple paths) and VCG (dissimilar paths), we see the dissimi-
lar paths are much more likely to result in a initial solution than
the simple paths, and this trend persists for all numbers of agents.
Because the dissimilar paths intentionally discourages space/time
overlap in the submitted paths, the VCG auction has a more diverse
set of options to choose from, which results in a higher chance of
finding a non-conflicting solution. PKA (dissimilar paths) is more
frequently successful than VCG (dissimilar paths) and PKA (simple
paths) is more frequently successful than VCG (simple paths) by
consistently finding acceptable solutions in the second and third
stage of PKA. The cost per agent of successful trials can be seen in
Figure 5. A successful trial is defined per method, i.e., the plot repre-
senting iBundle represents all trials where iBundle was successful.

Figure 3: Success probabilities for Dragon Age: Originsmaps
lak108d (top) lak110d (bottom).

Figure 4: Computation time for Dragon Age: Origins maps
lak108d (top) lak110d (bottom).

As a result, iBundle cost is lowest, as it is solving less problems, and
in fact easier problems than the other methods. Similarly, across all
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Figure 5: Average cost for Dragon Age: Originsmaps lak108d
(top) lak110d (bottom).

Figure 6: An example of a warehouse with k = 3 and l = 6.

methods the average cost path decreases as the number of agent
increases as only the easier instances are solved.

6.3 Warehouses

Domain Description. To further analyse PKA, we simulated its
performance on maps designed to mirror warehouses and super-
markets. Warehouse maps consist of aisles of shelves connected
to each other only at the right and left corridors. These corridors
are the most likely points of conflict in the maps. All maps of size
(k, l) are constructed from k aisles of length l units. An example
graph G is shown in Figure 6. Start and goal vertices for each agent
are generated randomly, with no two agents sharing a start or goal
vertex. This domain is similar to warehouse environments used in
MAPF experiments, e.g., [21].

Results. In the warehouse environment, iBundle performs better
because of the topology in the graph. With less connectivity, there
are less valid simple paths that share the same number of edges, and
thus iBundle is able to achieve the optimal solution more often. But
even in these cases, PKA, a heuristic method, is able to achieve al-
most as good of a success probability (Figure 7). The time of iBundle
and PKA are comparable as the warehouse size increases (Figure 8).
The cost per agent of successful trials is similar across all methods,
and can be found in the supplementary material. While simple

Figure 7: Success probabilities for a warehouse domain.

Figure 8: Computation time for a warehouse domain.

path generation is initially very successful for the same reason as
iBundle, as the ratio of possible paths to submitted paths increases,
the success of simple path generation plummets. Dissimilar path
generation, on the other hand, provides a good balance throughout
the warehouse sizes.

7 CONCLUSIONS
We have presented a novel method for non-cooperative multi-agent
path finding. We extend prior work solving MAPF problems as
combinatorial auctions by proposing a heuristic auction protocol
that allows agents to value fewer paths by exploiting the privileged
knowledge of the central planner and the physical layout of the
planning space. Empirical results show that our mechanism outper-
forms the state-of-the-art approach for MAPF as a combinatorial
auction on more general graphs. Future work includes exploring dif-
ferent methods of deconflicting paths and considering uncertainty
over usage of shared resources.
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