
Computing Nash Equilibria for District-based Nominations
Paul Harrenstein
University of Oxford

Oxford, United Kingdom
paul.harrenstein@cs.ox.ac.uk

Paolo Turrini
University of Warwick

Coventry, United Kingdom
p.turrini@warwick.ac.uk

ABSTRACT
We study political parties that strategically place their candidates
in districts so to maximise the number of their nominees that get
elected. In each district, voters rank the nominated candidates and
elect the plurality winners. After studying equilibrium existence in
restricted instances, we show that deciding the existence of pure
Nash equilibria for these games is NP-complete if party size is
bounded by a constant and ΣP2 -complete for the general case. For
the hardness part of the latter result we reduce from ∃∃!-3sat.
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1 INTRODUCTION
In district-based elections, common in the UK and the US, parties
put forward candidates to represent subset of voters belonging to
certain districts or constituencies, with candidates chosen locally by
the voters, typically using plurality-based rules such as First-Past-
The-Post. These elections pose a number of distinct algorithmic
challenges when compared to those based on proportional represen-
tation. Think of the problem of gerrymandering and how govern-
ments can strategically manipulate elections by simply redrafting
borders, or how to guarantee a good level of overall representation
to voters as a whole, despite seats being won locally.

Decision-making challenges in district-based elections are not
appearing at the societal level only, but the parties themselves face
these continuously. When parties need to choose which candidates
to put forward, their decision is going to be based on a number of
strategic considerations, including the voters’ preferences and the
choices of the opposing parties. Some candidates may be fielded by
a party even if when they stand no chance of being elected, as their
role is to take away votes from other candidates and favour their
party indirectly. Similarly, it may be better not to run at all in a
district, as candidates may be better employed elsewhere. The next
example presents some of the intricacies of strategic nomination in
district-based election in a simple setup.

Example 1. Consider the district in the left side of Figure 1. where

three parties, A = {a1,a2,a3,a4}, B = {b}, and C = {c}, are compet-

ing to elect the plurality winner. The district, let us call it DL , consists
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5 3 3 4 3
a1 a2 a3 b c
b b c c b
c a1 a1 a1 a1
a2 c b a2 a2
a3 a3 a2 a3 a3
a4 a4 a4 a4 a4

5 3 3 4 3
a4 a2 a3 b c
b b c c b
c a4 a4 a4 a4
a2 c b a2 a2
a3 a3 a2 a3 a3
a1 a1 a1 a1 a1

Figure 1: Two districts with a Nash equilibrium when con-
sidered separately, but none when considered together.

of 18 voters, with preferences as depicted. Assume, for now, that parties

can only choose to nominate their candidates in DL .

Depending on whether party B, party C , or both nominate their

candidate in the district, party A has a way to guarantee its candi-

date a1 to be elected. However, how to do so is not entirely obvious, as

simply nominating a1 only will not work. If both b and c are nomi-

nated, partyAmust nominate all of its candidates. Candidate a2 then
prevents candidate b from getting 7 votes, and candidate a3 withholds
candidate c from getting 6 votes, making a1 the winner with only 5

votes. In other words, the role of a2 and a3 is that of splitting the votes
of, respectively, b and c in favour of a1. If, on the other hand, B nomi-

nates b but C does not nominate c , then party A must nominate a1
and a2, but not a3. In that way, a1 gets 8 votes against b getting 7

votes, and wins the election. By additionally nominating a3, party A
would split its own vote instead and candidate a1 would get no more

than 5 votes. Similarly, if c is nominated, but b is not, party Amust

have a1 and a3 run, but not a2. In conclusion, A has a strategy to win

the district for each choice of the other parties, which implies there is

at least one pure strategy Nash equilibrium.

Let us now look at the district in the right of Figure 1, call it DR .

This behaves symmetrically with respect toDL , except that the roles of

a1 and a4 are now inverted. Clearly, the equilibria of DL carry over to

DR , with a4 replacing a1. However, assume the two districts are now

part of the same election and parties need to decide whom to nominate

in each one of them. For example, A can decide to nominate a4 in DR
and nominate all others in DL . This new scenario has no pure strategy

Nash equilibrium. First of all notice thatA cannot win both districts in

equilibrium. When b and c are both inDL ,Awins both by nominating

only a4 in DR (adding other candidates would make A lose DL), but

this causes b to deviate to DR . When only c is in DL , A needs a1 and

a3 and not a2 there, but this makes c want to deviate to DR , causing,

in turn, b to deviate back to DL . To face b only in DL , A needs a1
and a2 but not a3, which would however make b want to deviate to

DR and, in turn, c back to DL . Similar arguments hold for b and c ,
both being in DR . In light of the above, one can easily verify that all
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profiles admit a profitable deviation and therefore are never a pure

strategy Nash equilibrium.

Strategic voting (see [17] for a comprehensive account) is one of
the more active topics in multi-agent systems, in particular within
the area of computational social choice. So far, the treatment of
strategic behaviour has mainly focused on the voters’ side, allowing
them to manipulate their preferences in order to elect a favourable
candidate. A dual approach, closer in spirit to ours, is strategic can-
didacy [3, 8, 14], where candidates can decide to drop from elections
they can never win in order for more preferred competitors to get an
edge. Recent contributions, for instance [12], have explored strate-
gic party nomination when elections are held in a Hotelling-Downs
model, but an equilibrium analysis of district-based elections is
surprisingly missing from the literature.

Contribution. In this paper we provide an equilibrium analysis
of nominee selection in district-based elections, modelling voters
as holding preferences over candidates and parties choosing which
candidates to field in which district. We analyse various restrictions,
such as voters following an underlying party preference (what we
call party-oriented) or voters in each district being in agreement
of which candidates from a party are closer to their needs (what
we call community-oriented), and their repercussion in terms of
equilibrium existence. Furthermore, we show that deciding the
existence of pure Nash equilibria for these games is NP-complete
if party size is bounded by a constant and ΣP2 -complete for the
general case. The proof of Σp

2-hardness proceeds by a reduction
from ∃∃!-3sat, a variant of qsat2 which was shown to be Σp

2-
complete by Marx [16].

Although we model voters holding an ideological position they
do not change strategically, we see this work as a contribution to
strategic voting [17], with participants trying to maximise their
own electoral return.

The Nash equilibrium analysis of elections, in particular large
ones such as national elections, is often met by the criticism that
voters’ behaviour tends to be non-atomic, in the sense that strategis-
ing often results in no change of the overall outcome, also known
as the paradox of voting or Downs’ paradox [7].

Our contribution gives, in our view, new vigour to the Nash Equi-
librium analysis of large elections, where a small pool of parties can
alter the choices of a large pool of voters by strategically selecting
their candidates. While individual voters often act in highly in-
complete information and limited computational resources, parties
are structured entities that invest large amounts of resources in
optimising their decision-making.

Paper Structure. In Section 2, we review and discuss related work.
Section 3 presents the basic model setup and motivation. Section 4
presents equilibrium existence results focusing on restricted in-
stances. Section 5 provides our core complexity results.We conclude
in Section 6 with a discussion of our results.

2 RELATEDWORK
Our framework relates to a number of research lines in computa-
tional social choice and algorithmic game theory:

Strategic candidacy, the decision of candidates not to run in an
election, to see a more preferred candidate win [3, 8, 14]. Although

we restrict the analysis to parties that only care about the number
of their elected candidates, in our model they can strategically place
candidates in various districts, and strategically decide not to run
in others, as in the scenario depicted in Example 1. This is also
related to election control, the decision of external authorities to
manipulate the elections by promoting (constructive control [1])
or hindering (destructive control [13]) certain candidates (see also
[10]). In our framework parties can be seen as such authorities, who
can influence elections without the need to resort to bribery [9].

Primaries, the internal party deliberations to put forward candi-
dates for forthcoming elections [2], and strategic nominations [12],
i.e., the selection of such candidates as a function of the other par-
ties’ choices. In our framework parties compete over a number of
districts, which reflects real-world elections systems and has reper-
cussions on equilibrium existence and computation. Unlike [12],
we allow for multiple elections occurring at the same time, and we
do not restrict ourselves to specific preference structures.

Colonel Blotto games and their application to strategic decisions
in elections [18] [15], specifically variants of the game with multi-
faceted resources, where the “type” of troops deployed matters [6].
Although in our framework parties strategically deploy resources,
i.e., candidates, in territories, i.e., districts, the strength of the re-
sources is determined by their relative rank compared to the ones
deployed by the opposing parties. Because of the nature of voters’
preferences, the utility of parties is not monotonic, i.e., adding more
candidates may harm a parties’ chances as it may end up splitting
the vote. Recall from Example 1 that fielding more candidates may
be useful to a party, as splitting the vote can have a positive strategic
outcome, but this may also work against them.

Distortion and misrepresentation. The very nature of districts can
create a mismatch between the majorities made by district winners
and the overall proportional representation. In the 2019 General
Elections in the UK, the Conservative Party won 56% of the seats,
i.e., a solid overall majority, with a 44% of the votes. The field of
computational social choice has looked at the divide between agents’
real preferences and the constraints imposed by electoral system,
in terms of the distortion imposed by individual preferences or the
misrepresentation when comparing them to voting outcomes [23],
recently looking at these concepts in candidate selection inside
political parties [2]. Although this paper is not directly concerned
with these concepts, we offer a reality-resembling framework where
they can naturally be applied.

Team-based hedonic games. Our work is also connected to the
concept of stability in team-based hedonic games [26], because
of the focus on equilibria resulting from coalitional choices, and
tournament-based competitions such as the recent computational
account of the Pokémon-Go territorial competitions with an un-
derlying tournament structure [5]. We note in this respect that in
the context of district-based elections, plurality is not reducible to
a tournament solution and the winner in a district does not only
depend on pairwise majority comparisons. As a matter of fact, in
Example 1, both districts have a transitive majority relation, e.g.,
b ≻maj c ≻maj a1 ≻maj a2 ≻maj a3 ≻maj a4 for DL . Obviously,
a district with all players having this relation as their preference
relation, would have the same majority relation. Yet b would be
elected whenever it were nominated in the district. By contrast,
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who is elected in the district depends on the whole choice function
induced by the plurality rule.

3 PRELIMINARIES
Voters, Candidates, Districts and Assemblies. Consider a set V =

{v1, . . . ,v |V |} of voters, partitioned into a set D = {D1, . . . ,D |D |}

of districts or constituencies, and a set C = {c1, . . . , c |C |} a set
of candidates, partitioned into a set P = {P1, . . . , P |P |} of parties.
We will at times use the auxiliary notion of region, understood as
a subset of the set D of districts, where we allow regions to overlap.

We assume elections to be simultaneously held in each district.
Before the vote takes place, parties choose, independently and
concurrently, which candidates to nominate in which district. Some
parties may not have enough candidates to cover all district, and
will need to choose among them. Other parties may have too many
candidates and will need to choose who to leave out. After the
parties have made their decision, voters in each district will choose
among the candidates nominated in their district.

Formally, each district D is to elect κ representatives to take a
seat in an assembly of representatives or parliament. For simplicity,
we assume κ to be identical for all districts. We at times simplify
this even further, and take κ to be 1 , that is, every district elects no
more than one representative in the assembly.

For a set X , we denote by
(X
k
)
the set of subsets of X of size k .

The set of full assemblies is thus given by
( C
κ · |D |

)
. For techni-

cal convenience we also want to account for districts not being
represented or for them being underrepresented, for instance, if
fewer than κ candidates are running in a district, we define the
set A of all possible assemblies, the outcomes of our games, as⋃

0≤k≤κ · |D |

(C
k
)
. We will therefore assume that |C | ≥ κ · |D|.

Voters’ Preferences. We assume each voter i to have (voter)-
preferences over the candidates, expressed as a total ordering ≿i
over C . Similarly, each party P has preferences over the possible
assemblies, also represented by a weak order ≿P over A. For ex-
ample, a party may prefer assemblies with a higher number of its
elected candidates and is indifferent to the remaining composition.

The way candidates are chosen is as follows. In each district D
each party nominates a number of their own candidates and a
number of κ representatives are chosen among the candidates nom-
inated in D on basis of the preferences of the voters in D and a
given voting rule f .

Formally, a κ-voting rule f associates to every voter’s profile
≿= (≿v1 , . . . ,≿v |V |

), every subsetW of voters, and every subset K
of candidates, a set ofκ candidates fromK , that is, f (≿,W ,K) ∈

(K
κ
)
.

In case |K | < κ, we set f (≿,W ,K) = K . Clearly, if κ = 1 and K , ∅,
we have that f (≿,W ,K) is a single candidate in K .

Although our framework allows for general voting rules, we will
focus on the plurality rule, i.e., we elect a candidate in a district
if they are ranked first by most voters in that district, assuming a
fixed deterministic tie-breaking order over C .

Strategies and Equilibria. The issue we want to focus on is how
the parties can manipulate the outcome of the election, that is, the
composition the assembly elected, by strategically choosing which
of their candidates are to run in which districts.

We formally define a (nomination) strategy for a party P as a
nomination function νP : D → 2P . We require that a party can
nominate a given candidate in at most one district, that is, D , D ′

implies ν (D) ∩ ν (D ′) = ∅.
A nomination profile is then a profile ν = (νP1 , . . . ,νP |P| ) of

nomination functions, one for each party. By ν (D) we then denote
the set of all candidates nominated by the parties in district D, that
is, ν (D) =

⋃
P ∈P νP (D). Then, f (≿,D,ν (D)) is the set of candidates

chosen to be represent district D in the assembly.
Given a set D = {D1, . . . ,D |D |} of districts, a voter preference

profile ≿ = (≿v1 , . . . ,≿v |V |
) and voting rule f , each nomination

profile ν = (νP1 , . . . ,νP |P| ) now determines an assembly defined as

A(ν ) =
⋃
D∈D

f (≿,D,ν (D)).

A candidate c is said to be elected under ν if c ∈ A(ν ).
Finally, we assume each party to have (party)-preferences over

the assemblies, represented by a reflexive, transitive, and connected
relation ≿P over A, with strict and indifferent parts ≻P and ∼P ,
respectively. A natural choice for party preferences, and the one
adopted in this paper, is to assume that a party P prefers assemblyA
to assembly A′ if the number of P ’s members elected in A is larger
than those elected in A′, that is, if∑

D∈D
|AD ∩ P | ≥

∑
D∈D

|A′
D ∩ P |.

The parties, as players, together with their nomination strategies
and preferences over assemblies, now define a strategic-form game,
whichwe shall henceforth refer to as adistrict-nomination game,
for which the usual game-theoretic solution concepts are defined.
This in particular holds for (pure) Nash equilibrium, which then
is a nomination profile ν = (νP1 , . . . ,νP |P| ) such that for all parties P
and all strategies ν ′P , we have

A(ν ) ≿P A(ν−P ,ν
′
P ),

where (ν−P ,ν ′P ) is the profile ν
′′ = (ν ′′P1

, . . . ,ν ′′P |P|
) such that ν ′′P =

ν ′P and ν ′′Q = νQ for all parties Q other than P . If a nomination
profile ν is a Nash equilibrium, we also say that ν is stable.

4 EQUILIBRIA
Example 1 showed an instance of district-based elections where
individual districts have a number of equilibria if taken in isolation,
but putting them together does not guarantee a stable outcome. In
this section, we want to understand whether equilibria exist as we
alter the game structure, for example the number of districts or the
preference structure.

Observe first that the presence of districts is not necessarily the
reason why equilibria do not exist. In fact, if there are at least as
many districts as there are candidates, equilibria are always guar-
anteed to exist, as each candidate can be nominated in a separate
district, constructing an equilibrium. When parties compete for
scarce districts, unstable elections are in fact ubiquitous, even in
very simple setups. Figure 2 presents an instance of an unstable
election with two parties and one district.

Proposition 1. There is a two-party one-district game with no

pure Nash equilibria.
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3 9 9 4 7 10
a1 a1 a2 b1 b1 b2
a2 b1 b1 a1 b2 a1
b2 a2 b2 a2 a1 b1
b1 b2 a1 b2 a2 a2

∅ b1 b2 b1b2

∅
−

0, 0, 0, 0
b1

0, 0, 42, 0
b2

0, 0, 0, 42
b1

0, 0, 29, 13

a1
a1

42, 0, 0, 0
a1

22, 20, 0, 0
b2

16, 0, 0, 26
b2

12, 0, 20, 10

a2
a2

0, 42, 0, 0
b1

0, 12, 30, 0

a2

0, 25, 0, 17
b1

0, 12, 20, 10

a1a2
a1

33, 9, 0, 0
a1

22, 9, 11, 0
b2

16, 9, 0, 17

a1

12, 9, 11, 10

Figure 2: On the left the preference rankings of the voters.
On the right the normal-form game resulting from the nom-
ination strategies of partiesA = {a1,a2} and B = {b1,b2}. The
entries in the matrix specify the winner and the vote break-
down for each candidate, in lexicographic order. The game
obtained has no pure Nash equilibrium.

The fact that Nash equilibria are not guaranteed to exist even
in the most basic scenarios motivates the computational questions
we ask in Section 5. However, there are restrictions in terms of
district size and voters’ composition, where equilibria do instead
exist and warrant consideration. This section is devoted to a few
basic observations on this, complementing the complexity analysis.

To start, we say that a preference profile≿ = (≿v1 , . . . ,≿v |V |
) is

community-oriented if for each two candidates ci , c j belonging
to the same party and each two voters vi ,vj belonging to the same
district, we have that ci ≿vi c j iff ci ≿vj c j . With community-
oriented preferences, voters can diverge on party choice, but, within
each party, they agree on the candidates that best represent them.
The idea is that some candidates are objectively closer to a district’s
problems than others, e.g., they come from the same region, and
voters agree on this.

Dually, the following restriction looks at parties first. We say
that a preference profile ≿ = (≿v1 , . . . ,≿v |V |

) is party-oriented
if for all candidates ci , c j , ck with ci , c j ∈ Pi and ck ∈ Pj , Pi ,
and each voter vi , we have that ci ≿vi ck implies that c j ≿vi ck .
In other words, party-oriented preferences are such that voters
have a strict preference over parties, and they rank candidates from
preferred parties always higher than those from less preferred ones.
However, even if sharing the same preference over the parties, they
may disagree on how to rank candidates within a party.

With party-oriented preferences, the party that is most often
ranked on top in one district can always guarantee a candidate to
be elected by simply fielding their strongest member according to
the tie-breaking order, and this follows.

Proposition 2. With one district and party-oriented preferences,

there is always a Nash equilibrium.

This is also true for community-oriented preferences, as voters
who prefer the same party also prefer the same candidate.

Proposition 3. With one district and community-oriented pref-

erences, there is always a Nash equilibrium.

When two parties compete, differences begin to arise in terms
of stability. Say that a district is oddly populated, if the number
of voters in that district is odd, evenly populated, otherwise.

Proposition 4. Let each district be oddly populated. Then two-

party elections with party-oriented preferences always have a Nash

equilibrium.

Proof. Let P , P ′ be two parties. Now call a district D a safe seat
for party P if every single-candidate nomination by party P will get
that candidate elected in D, no matter the response of P ′. Observe
that, with two-party elections, we have that each district with an
odd number of voters is either a safe seat for party P or it is for
party P ′. Let now each party make a single-candidate nomination,
until they exhaust their own safe seats or their own members.
If all safe seats are occupied by some candidate, then we have a
Nash equilibrium, as no party can profitably deviate by occupying
the opposing party safe seat or adding more nominees in their
own. Without loss of generality, assume that a safe seat by P ′ is
unoccupied, instead. Let now P occupy it by one of their remaining
candidates and proceed for each such seat until their remaining
candidates are exhausted. As P ′ would have occupied the seat at
the earlier stage if enough of their candidates were available, this
is also a Nash equilibrium profile. □

Evenly populated districts allow for instability.

Proposition 5. There are two-party elections with party-oriented

preferences and no Nash equilibrium.

Proof. Consider parties A = {a1,a2} and B = {b} with an
underlying tie-breaking order of a1 > b > a2 and two districts,
D1 and D2. D1 is populated by voter v1, with preference relation
a1 ≻ a2 ≻ b1, and voter v2, with preference relation b1 ≻ a1 ≻ a2.
D2 is populated by voter v3, with the same preference as v1, and
voter v4, with the same preference as v2. We can observe that each
nomination profile admits a profitable deviation. Whenever a1 is
nominated in a district, say D, B is better off nominating b1 in D ′.
But then A can win both district by simply following b1 in D ′ and
leaving a2 in D instead. □

Using a similar idea we can show a broader result for community-
oriented preferences.

Proposition 6. There are two-party elections with community-

oriented preferences and no Nash equilibrium, independently on the

number of oddly populated districts.

Proof. Consider A = {a1,a2}, B = {b} and an underlying com-
munity order of a1 > b > a2 in two districts D1 and D2, each
made by voters with preference order a1 ≻ b ≻ a2. This, notice, is
independently on the number of oddly populated districts. Now,
candidate b will always want to deviate to the district where a1 is
not. But thenA can field a1 there, and move a2 to the district where
b is not, creating a cycle. □

As soon as the number of parties grows to three and there are
at least two districts, Nash equilibria cease to be guaranteed, even
under party-oriented preferences.

Proposition 7. There is a three-party two-district game where

voters have party-oriented preferences and no Nash equilibrium.
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Proof. Let parties A = {a}, B = {b} and C = {c} compete for
districts D1 and D2.

Let each Di be such that a beats b, b beats c and c beats a in
pairwise majority comparison, building a Condorcet cycle. Now, if
not all candidates are present together in the same district, there
will be a party that does not win either district. But then this party
can successfully change their strategy and run in the other district,
winning it. Likewise, if all parties run in the same district, two
parties have a profitable deviation towards the other one. No party
is better off when not running. So there is no Nash equilibrium. □

Although stability can be guaranteed in restricted instances, equi-
libria do not generally exist. This makes equilibrium computation
an important challenge, which we tackle next.

5 COMPLEXITY
In this section, we explore the computational complexity of deciding
whether a given district nomination game has a Nash equilibrium.
Let us recall that we assume κ = 1 and plurality as voting rule. We
also assume that the parties are solely interested in getting as many
of their candidates elected in the assembly. A district nomination
game is thus fully determined by the voters’ preferences over the
candidates, the partition of the voters in districts, and the partition
of the candidates in parties. Its size can be taken to be |V | · |C |.

district candidacy
Given: District nomination game G with set V of voters,

setC of candidates, set D of districts, set P of parties
Problem: Does G allow for a pure Nash equilibrium?
We first prove that district candidacy is NP-hard by a reduc-

tion from the satisfiability problem 3sat. We see that this reduction
involves the construction of a district nomination game wherein
all parties are singletons. For this special class, it is not hard to
see that district candidacy is also contained in NP, giving us an
NP-completeness result. For general district nomination games, we
subsequently find that district candidacy is Σp

2-complete.
The proof of Σp

2-hardness proceeds by a reduction from ∃∃!-
3sat, a variant of qsat2 which was shown to be Σp

2-complete
by Marx [16] [also see 25]. The instances of ∃∃!-3sat are of the
form ∃X∃!Yφ, whereφ is a propositional formula over Φ, andX and
Y are subsets of propositional variables partitioning Φ. Then, ∃∃!-
3sat is the decision problem whether there is an assignment of
truth values to the variables in X such that there is exactly one

assignment of truth values to the variables in Y satisfying a given
Boolean formula φ. Importantly, for ∃∃!-3sat to remain Σp

2-hard,
one may restrict attention to formulas φ in 3CNF form. This is sim-
ilar to 3sat, but different from the canonical Σp

2-complete problem
qsat2, the set of true formulas of the form ∃X∀Yφ, which only
remains Σp

2-hard if φ is in 3DNF form. Moreover, it enables us to
show Σp

2-hardness of district candidacy by extending the 3-sat
construction that demonstrated its NP-hardness.

5.1 NP-hardness
Let an instance φ of 3sat be given by a set K = {K1, . . . ,K |K |}

of pairwise distinct clauses, where each clause K in K is given
by a set {ℓ′K , ℓ

′′
K , ℓ

′′′
K } of three literals over a set of propositional

3 2 2
ap c1 b1

b1
...

...
... ck̂ℓ

bkℓ
bkℓ ap c1

c1 b1
...

...
... ck̂ℓ

ck̂ℓ
bkℓ ap

e1 e1 e1
e2 e2 e2

Figure 3: Voter preferences over local candidates in dis-
trict Dℓ,i with Kℓ = {K1, . . . ,Kkℓ }. We write bi for bKi , and ci
and ei for cℓ,i and eℓ,i , respectively. Only preferences over
local candidates are listed; preferences over non-local candi-
dates are understood to be ordered in arbitrary order at the
bottom of the preference lists.

variables Φ = {p1, . . . ,p |Φ |}. Thus, every literal is of the form p

or ¬p from some p ∈ Φ. We have ℓ̄ = ¬p if ℓ = p, and ℓ̄ = p if
ℓ = ¬p. We generally also write p̄ for ¬p and omit parentheses
and commas in clauses, writing, for instance, pq̄r̄ for the clause
{p,¬q,¬r }. For each literal ℓ, we let Kℓ = {K ∈ K : ℓ ∈ K}, that is,
Kℓ is the set of all clauses in K that contain ℓ. We set kℓ = |Kℓ | and
k̂ℓ = max(|Kℓ |, |Kℓ̄ |).

Let φ be a 3CNF given by a set K of clauses over Φ. We construct
a district nomination gameGφ with a set ofO(2|Φ|+3|K|) districts,
each to be populated with seven voters below. For every literal ℓ,
we let Dℓ = {Dℓ,0, . . . ,Dℓ, k̂ℓ } be a set of k̂ℓ + 1 districts, which
we will also refer to as a the literal region for ℓ. The set D of all
districts is then given by the union of all literal regions, that is,
D = Dℓ1 ∪ · · · ∪Dℓ2|Φ| , where {ℓ1, . . . , ℓ2 |Φ |} is the set of all literals
over Φ. The literal regions are pairwise disjoint and, thus, partition
the set D of all districts.

As candidates we have, for each variable, p ∈ Φ, one variable
candidate ap , for each clause K ∈ K, one clause candidate bK ,
for each literal ℓ, a total of k̂ℓ literal candidates cℓ,1, . . . , cℓ, k̂ℓ , and for
each literal ℓ two “extra” candidates eℓ,1 and eℓ,2. Observe that
we thus have O(5|Φ| + 4|K|) candidates in total. As the parties of
the district nomination game Gφ , we take the singleton coalitions,
containing exactly one candidate. Thus, a party {c} strictly prefers
assembly A to assembly A′, if c is elected as a representative in A
but not in A′. Otherwise party {c} is indifferent. For notational
convenience, we will generally identify singleton parties with their
one candidate and simply write c for {c}. Moreover, with some
abuse of notation, we also write νc = D if νc (D) = {c} (and, hence,
νc (D

′) = ∅, for all districts D ′ , D).
We associate each candidate c with a region Dc ⊆ D. For each

variable p in Φ, each clause K = {ℓ′, ℓ′′, ℓ′′′}, and all literals ℓ, we
define, for 1 ≤ i ≤ k̂ℓ and 1 ≤ j ≤ 2:

Dap = Dp ∪ Dp̄ DbK = Dℓ′ ∪ Dℓ′′ ∪ Dℓ′′′

Dcℓ,i = Dℓ Deℓ, j = Dℓ
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Figure 4: NP-construction for 3CNF φ with clauses K =

{pqr ,pq̄r , p̄qr̄ }, depicting a stable nomination profile.

We say that candidate c is local to the districts inDc and non-local
to all other districts. We also say that c is local to literal region Dℓ ,
if Dℓ ⊆ Dc . We will later see that candidates can only hope to be
elected in districts/regions where they are local.

We now populate the districts with voters. Let ℓ be a literal.
Then, for every 0 ≤ i ≤ k̂ℓ , the district Dℓ,i has seven voters whose
preferences are depicted in Figure 3. The important thing to observe
is that, in each districtDℓ,i with ℓ a literal over p, there is a majority
cycle between variable candidate ap , each clause candidate bK
with K ∈ Kℓ , and each literal cℓ,i . That is, a majority of voters
prefers ap to any bK for K ∈ Kℓ , another majority of voters prefers
eachbK to any cℓ, j , and there is a third majority of voters preferring
each cℓ, j to ap . If in some district Dℓ,i ∈ Dℓ , the local variable
candidate ap , a local clause candidatebK , and a literal candidate cℓ,i
are all nominated, then ap will win the plurality vote.

To illustrate our construction, consider the 3CNF φ with clauses
K = {pqr ,pq̄r , p̄qr̄ }. For the literals, then Kp = {pqr ,pq̄r } and
Kq̄ = {pq̄r }. Each of the six literal regions has three districts, for
instance, Dp = {Dp,0,Dp,1,Dp,2} and Dr̄ = {Dr̄,0,Dr̄,1,Dr̄,2}. See
Figure 4 for the setup of the districts and literal regions. There,
local variable candidates ap are depicted by red circles ( p ), local
clause candidates bK by blue squares ( K ), and local literal can-
didates cℓ,i by yellow diamonds ( ) in the districts in which they
are nominated, that is, Figure 4 depicts a nomination profile. Thus,
variable candidate ap is nominated in Dp̄,0, clause candidate bpq̄r
inDq̄,1, and literal candidate cq,1 inDq,1. Extra and non-local candi-
dates are omitted, as the former ensure that the latter are elected in
equilibrium, but otherwise play no role in the equilibrium analysis.

Nominations of the three variable candidates, ap , aq , and ar ,
determine a truth-value assignment for the variables p, q, and r ,
provided they are nominated in districts they are local to. If ax
is nominated in a district in Dx , variable x is set to false, if ax is
nominated in a district in Dx̄ , variable x is set to true. Thus, in
our example in Figure 4, variable p is to true and q and r to false.
Also, observe that this assignment satisfies φ. What is more, this
nomination profile is stable, as all local variable, clause, and literal
candidates will be elected and, hence, do not want to deviate.

Now consider Figure 5, which depicts another nomination profile
in the same game, determining the assignment that sets p and r
to false, and q to true and does not satisfy φ. The nomination pro-
file is not stable either. To see this, consider clause candidate bpq̄r ,
who can only hope to be elected (under Nash equilibrium) if nom-
inated in Dp , Dq̄ , or Dr . If so, however, bpq̄r is bound to get en-
tangled in a nomination cycle. For instance, if bpq̄r is nominated
inDp,2 inDp , the literal candidate nominated inDp,2 would deviate
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Figure 5: NP-construction for 3CNF φ with clauses K =

{pqr ,pq̄r , p̄qr̄ }, depicting a unstable nomination profile.
Clause candidate bpq̄r cannot be nominated in any of its lo-
cal literal regions without getting into a cycle.

toDp,0 ( 1 ), whereupon, variable candidate would move toDp2 ( 2 ),
inciting bpq̄r to move to Dp,0 ( 3 ), and so on.

This argument can be generalised and we find that a nomination
profile inGφ is stable if and only if φ is satisfiable. Our argument for
NP-hardness of district candidacy relies on four observations.

(1) In all districts, all voters prefer local candidate to non-local
candidates. This entails that, in equilibrium, candidates can
only be elected if nominated in their own region.

(2) Variable and clause candidates always have a best response
that gets them elected. In particular, for ℓ a literal on p, we
have |Dℓ | > k̂ℓ . Hence, there will always be a district in Dℓ

not occupied by cℓ,i where ap can be elected. All variable
and all clause candidates will thus be elected in equilibrium.

On this basis we define a pre-equilibrium as a nomination profile
wherein all variable and clause candidates are nominated in districts
where they are local, that is, if νap ∈ Dap and νbK ∈ DbK . A
pre-equilibrium ν defines an assignment α , such that, if under ν
variable candidate ap is nominated in Dp , then α sets p sets to false,
and, if P nominates ap in Dp̄ , then α sets p to true. This mapping
between nominations of variable candidates and assignments is one-
to-one and onto. We furthermore say that a nomination profile ν
separates candidates c and c ′ if (i) they are nominated under ν , and
(ii) they are nominated in different literal regions. We find that a
pre-equilibrium ν separates each variable candidate from all clause
candidates if and only if the valuation induced by ν satisfies φ. On
this basis, we obtain the next two observations.

(3) The game Gφ has a Nash equilibrium if and only if it al-
lows for a pre-equilibrium that separates each variable can-
didate ap from all clause candidates bK . The key to this
observation is that if ap and bK are not separated, they are
bound to get entangled in a majority cycle with the literal
candidates of the literal region in question.

(4) A 3CNF φ is satisfiable if and only if Gφ allows for a pre-
equilibrium that separates each variable candidate ap from
all clause candidates bK .

As an immediate consequence of observations 3 and 4, we can now
state our first main result of this section.

Theorem 1. district candidacy is NP-hard.

If the parties—as in the construction ofGφ—all have exactly one
candidate, then they have each exactly |D| + 1 strategies at their
disposal. Thus, one can ‘guess’ a nomination profile and check in
polynomial time whether no party has an incentive to deviate to

Main Track AAMAS 2022, May 9–13, 2022, Online

593



p

p̄q̄r

p̄qr̄

0

1

2

3

0

1

2

3

Dp Dp̄

p̄q̄r

p̄qr̄

¯

¯

¯

¯

0

1

2

3

0

1

2

3

D′
p D′

p̄

pqr

pqr̄

q0

1

2

3

0

1

2

3

Dq̄

pqr

pqr̄

q0

1

2

3

0

1

2

3

D′
q D′

q̄

pq̄r r

1

2

3

0

1

2

3

Dr Dr̄

pq̄r
r

1

2

3

0

1

2

3

D′
r D′

r̄

1

2

?

?

Figure 6: Σp
2-construction for instance ∃{p}∃!{q, r }φ where φ

is given by {pqr ,pqr̄ ,pq̄r , p̄qr̄ , p̄q̄r }. Elected candidates are de-
picted leftmost in each district.

one of its |D| + 1 strategies. This observation extends to the case
where the size |P | of each party P is fixed at a constant and the size
of its strategy space (|D| + 1) |P | bounded by a polynomial.

Corollary 1. If all parties have a constant number of candidates,

district candidacy is NP-complete. This, in particular holds, for the

case where each party has exactly one candiate.

5.2 Σp
2-Completeness

Corollary 1 still leaves open the upper bound of the complexity of
district candidacy for the general case, where party size is not
bounded by a constant. We find that this problem is Σp

2-complete.
To demonstrate this, we first consider eqilibrium verification,
the decision problem whether a given nomination profile ν is a
pure Nash equilibrium in a given district nomination game. This
problem is in coNP: given a nomination profile ν , one can non-
deterministically guess a party P along with one of its strategies ν ′P ,
and check if P wants to deviate to ν ′P . Recalling that Σp

2 = NPcoNP,
membership of district candidacy in Σp

2 follows almost imme-
diately: one can non-deterministically guess a nomination profile
and consult the coNP-oracle to check whether it is stable.

Lemma 1. equilibrium verification is in coNP. As a consequence,
district candidacy is in Σp

2 .

To proveΣp
2 -hardness of district candidacy, we extend the con-

struction we used to prove its NP-hardness. Let ∃X∃!Yφ an instance
of ∃∃!-3sat; we construct a district nomination gameG∃X∃!Yφ that
has a Nash equilibrium if and only if ∃X∃!Yφ holds. For techni-
cal purposes, we will assume that the set K of clauses of φ con-
tains Y = {{y, ȳ} : y ∈ Y }. We can make this assumption without
loss of generality, as ∃X∃!Yφ holds if and only if ∃X∃!Yφ ′, when φ
is given by K and φ ′ by K ∪ Y.

We introduce two literal regions Dℓ = {Dℓ,0, . . . ,Dℓ, k̂ℓ } and
D′
ℓ
= {D ′

ℓ,0, . . . ,D
′
ℓ, k̂ℓ

} for each literal ℓ over Φ. For an illustration,

see Figure 6. In this context, we say that a nomination profile ν
separates candidates c and c ′, if both (i) c and c ′ are nominated
under ν , and (ii) νc ∈ Dℓ ∪ D′

ℓ
and νc ′ ∈ Dℓ′ ∪ D′

ℓ′
imply ℓ , ℓ′.

We populate these districts with candidates who belong to five
parties P , Q , B, C , and E. Party P consists of one variable candi-
date ap for each variable p ∈ Φ, a total of k̂x + 1 variable candidates

denoted by a′x,0, . . . ,a
′
x, k̂x for each variable x ∈ X , and k̂ℓ + 1

literal candidates dℓ,0, . . . ,dℓ, k̂ℓ for each literal ℓ over X . PartyQ
consists of one variable candidate a′y , for each variable y ∈ Y , one
clause candidate b ′K for each clause K ∈ K, and 2 · k̂ℓ literal can-

didates d ′
ℓ,1, . . . ,d

′
ℓ, k̂ℓ

, and d ′′
ℓ,1, . . . ,d

′′
ℓ, k̂ℓ

for each literal ℓ on Y .
In addition, party Q also has one spoiler candidate a′′. Party B
has one clause candidate bK for each clause K ∈ K. For each lit-
eral ℓ on Φ, Party C consists of k̂ℓ literal candidates denoted by
cℓ,1, . . . , cℓ, k̂ℓ . Finally, Party E consists of k̂ℓ + 3 “extra” candi-

dates eℓ,1, eℓ,2, e
′
ℓ,1, . . . , e

′
ℓ, k̂ℓ+2 for each literal ℓ on Φ.

We now define for each candidate c a region Dc where c is
considered to be local. For each variable p in Φ, each clause K =
{ℓ′, ℓ′′, ℓ′′′}, all literals ℓ, 1 ≤ i ≤ rℓ , and 1 ≤ j ≤ 2, we have:

Dap = Dp ∪ Dp̄ DbK = Dℓ′ ∪ Dℓ′′ ∪ Dℓ′′′ Dd ′
ℓ,i
= D′

ℓ

Da′x,i = D′
x ∪ D′

x̄ Da′y = D′
y ∪ D′

ȳ Dd ′′
ℓ,i
= Dℓ ∪ D′

ℓ

Ddℓ,i = Dℓ ∪ D′

ℓ̄
Da′′ =

⋃
y∈Y (Dy ∪ Dȳ ) Deℓ, j = Dℓ

Dcℓ,i = Dℓ Db′K
= D′

ℓ′
∪ D′

ℓ′′
∪ D′

ℓ′′′
De ′

ℓ,i
= D′

ℓ

Appropriate voter preferences can now be defined. To do so,
we partition the districts into four regions: DX =

⋃
x ∈X (Dx ∪

Dx̄ ), DY =
⋃
y∈Y (Dy ∪ Dȳ ), D′

X =
⋃
x ∈X (D′

x ∪ D′
x̄ ), and D′

Y =⋃
y∈Y (D′

y ∪D′
ȳ ). If two districts both belong to one of these regions,

they have very similar electorates.1
On DX and DY , the game G∃X∃!Yφ is reminiscent of Gφ . Intu-

itively, satisfiability of φ is checked there. If that is the case, partyQ
then tries to find an alternative assignment for Y in D′

X and D′
Y so

as to falsify ∃X ∃!Yφ.
The definition of the voter preferences ensure that observa-

tions (1) and (2) regardingGφ extend in adapted form toG∃X∃!Yφ : in
equilibrium candidates are elected in districts where they are local,
and parties P and B always have a best-response in which all of their
variable and clause candidates are elected. Moreover, P ’s and Q’s
literal candidates will never be elected in equilibrium. Their role is
rather to split the vote for their party’s variable and clause candi-
dates. Thus, for ℓ a literal over p, party P ’s literal candidates dℓ,i
guarantee that ax is nominated inDℓ if and only if all of P ’s variable
candidates a′x, j are elected in D′

ℓ
. This forces Q ’s clause candidates

to be nominated in D′

ℓ̄
if they are to be elected. Similarly,Q ’s literal

candidates d ′
ℓ,i and d

′′
ℓ, j ensure that Q’s variable and clause candi-

dates will only be all elected if they are separated. Furthermore, all
ofQ ’s literal candidates d ′′

ℓ,i are needed to getQ ’s spoiler candidate
elected in a district Dℓ, j . Finally, the inclusion of Y in K ensures
that for each variable ℓ at least one clause candidate is nominated
in some district in Dℓ ∪ Dℓ̄ .

We now argue that ∃X∃!Yφ holds if and only if G∃X∃!Yφ has
a Nash equilibrium, which suffices for a proof of Σp

2-hardness of

1The voters’ preferences in each of these regions are depicted in Figures A1 through A4
in the appendix at https://www.dropbox.com/s/h71pp1oyhsrsc8h/appendix.pdf?dl=0.
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district candidacy. The key observation is again that there is a
one-one correspondence between party P ’s and party Q ’s nomina-
tions of variable candidates and truth-value assignments. Thus, ap
is nominated in Dp̄ (in Dp ) if and only if p is set to true (to false).
Similarly, a′y is nominated inD′

ȳ (inD′
y ) if and only ify is set to true

(to false). Note that the nominations of P ’s candidates and those
of Q’s candidates for a single nomination profile may correspond
to different assignments. A similar equivalence holds between nom-
inations that separate Q’s clause candidates b ′K from P ’s variable
candidates ax with x ∈ X and its own variable candidates ay on
the one hand and assignments satisfying φ on the other.

First assume that ∃X∃!Yφ holds, that is, there is an assignment α
satisfying φ such that the only assignment that coincides with α
onX and still satisfies φ is α itself. Then, it is possible to construct a
stable nomination profile such that the nominations of P ’s and Q ’s
variable candidates both correspond to α . As φ is satisfiable, B’s
and Q’s clause candidates will be separated from P ’s and Q’s vari-
able candidates. Accordingly, all variable and clause candidates are
elected. This is illustrated in Figure 6, which concerns the instance
∃{p}∃!{q, r }φ where φ be given by {pqr ,pqr̄ ,pq̄r , p̄qr̄ , p̄q̄r }.2 Note
that there is only one assignment that sets p to false and satis-
fies φ, namely, the assignment αp̄qr that additionally sets q and r
to true. Hence, ∃{p}∃!{q, r }φ holds. The nominations of party P ’s
variable candidates ap ( p ) correspond to the assignment αp̄qr .
Moreover, P ’s variable candidates ap are separated from B’s clause
candidates bK ( K ) reflecting that αp̄qr satisfies φ. Thus, P and B
will get all their non-literal candidates elected, and do not want
to deviate. Note we may assume that party C’s nominations of its
literal candidates ( ) constitute a best-response, and that party E
(not depicted) does not want to deviate either.

Now consider party Q (indicated by the ‘open’ icons), whose
nomination of its variable candidates a′y ( y ) also correspond to
assignment αp̄qr and who also gets all its variable and clause candi-
dates b ′K ( K ) elected. Observe that this can only be the case if Q ’s
clause candidates are separated from P ’s variable candidates ax
with x ∈ X and from its own variable variables in D′

Y . Party Q’s
spoiler candidate a′′ ( ), however, is not elected. As wemay assume
that none of its literal candidatesd ′

ℓ,i ( ) andd ′′
ℓ, j ( ) will be elected

in equilibrium, Q’s only hope to improve would be to make sure
that its spoiler candidate a′′ is elected along with all its variable
and clause candidates. To do so, Q would have to nominate a′′ in a
district like Dr,0, which is not occupied any of P ’s orQ ’s candidates
(see arrow 1 ). To get elected in Dr,0, however, a′′ also needs all of
its literal candidates d ′′r,i to be nominated there as well to split the
vote (see arrow 2 ). Note that then b ′pq̄r can no longer be elected
in D ′

r , and Q will have to find an appropriate re-nomination that
ensures all of its variable and clause candidates are still elected.
Any such re-nomination by Q , however, would have to separate its
clause candidates from P ’s variable candidates ax with x ∈ X and
from its own variable candidates ay . This, suggests an alternative
assignment to Y that falsifies ∃X∃!Yφ, a contradiction.

Now assume that ∃X∃!Yφ does not hold. Then, either φ is satis-
fiable or it is not. If the latter, party P will not be able to separate
its variable candidates from B’s clause candidates, and a plurality
cycle with some of C’s literal candidates will be unavoidable, in a
2For presentational purposes, we dispense with the additional clauses in Y.

similar way as it would inGφ . If the former, we may assume that P
and B separate their variable and clause candidates by nominating
(all) their candidates in accordance with some assignment α that
satisfies φ. In this case, we know there is another assignment α ′

that coincides with α on X and also satisfies φ. By nominating its
candidates in accordance with α ′, party Q can separate its variable
and clause candidates and get them all elected. Because α and α ′

differ on some y ∈ Y , moreover, Q can now also get its spoiler
candidate a′′ elected by nominating it in Dy if ay is nominated
in Dȳ , and vice versa. Now, a′′ is bound to end up in a literal region
where also some of B’s clause candidates are nominated. As a′′
behaves like ay in the latter’s absence, a plurality cycle will be un-
avoidable. Altogether we may conclude that no stable nomination
profile exists in this case.

On this basis, we can close this section by stating the second
main result, where the membership part follows from Lemma 1.

Theorem 2. district candidacy is Σp
2-complete.

6 DISCUSSION AND FUTUREWORK
In this paper we initiated the study of equilibrium computation in
district-based elections. Our framework and results can be extended
in various ways, starting from relaxing some constraints.

Firstly, we assumed parties to only be interested in the number
of their own members get elected. We may however consider par-
ties have preferences over their own candidates, as well, or even
other parties’ candidates. The latter allows for a treatment of strate-
gic candidacy into our framework, in particular the multiwinner
variants [20].

We also abstracted away from voters strategically modifying
their own ballot to get more preferred candidates elected. The
introduction of strategic behaviour from the voters’ and parties’
side suggests new preference restrictions, such as single peakedness,
and the exploration of district-based elections that incentivise truth
telling from both sides. Also, the combination of district candidacy
and strategic voting, already explored for strategic candidacy [3],
is an interesting direction.

Also, campaigning in districts typically impose a cost on candi-
dates and the results explored in the context of strategic candidacy
may be of even higher relevance in our setup [19].

Our complexity analysis showed that the problem isNP-complete
when the number of party candidates is bounded but becomes Σp

2 in
the general case. A parameterised complexity analysis is a natural
follow up. Σp

2 problems have been studied in the context of social
choice [21, 22] and evolutionary game theory [4], whose precise
connection with our work still remains to be explored.

Another important question concerns misrepresentation [23].
As parties are interested in getting their nominees elected, there
may be an incentive for them to reduce misrepresentation, in the
sense that nominating a stronger candidate in a district often means
offering (more) voters a candidate that is ranked higher in their
preferences. Understanding how equilibria affect misrepresentation
is an important open challenge. Finally, the exploration of multi-
winner voting rules constitutes a natural extension.
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