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ABSTRACT
Evolutionary Game Theory (EGT) studies evolving populations of
agents that interact through normal form games whose outcome
determines each individual’s evolutionary fitness. In many applica-
tions, EGT models are extended to include spatial effects in which
the agents are located in a structured population such as a graph.
We propose a Mean Field Game (MFG) generalization, denoted
Pair-MFG, of the spatial evolutionary game model such that the
behavior of a given spatial evolutionary game (or more specifically
the behavior of its pair approximation) is a special case trajectory
of the corresponding MFG. The proposed Pair-MFG model also
allows for the formulation of the spatial evolutionary game as a
control problem, opening up additional avenues of research into
controlling the outcomes of these games.

The state evolution equations of the proposed model are highly
nonlinear and none of the equations in the system are necessar-
ily convex. This necessitates different numerical methods as com-
pared to those for traditional Linear Quadratic Gaussian MFGs.
We provide a method for solving this new Pair-MFG model using
fixed point iteration with time-dependent proximal terms and show
empirically that this method is capable of finding a solution to a
selection of EGT games.
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1 INTRODUCTION
Evolutionary Game Theory (EGT) is a branch of game theory that
studies evolving populations of agents that interact through normal
form games whose outcome determines each individual’s evolu-
tionary fitness. Spatial evolutionary games model populations in
which the players are located at the nodes of a graph and play
repeatedly with their neighbors [31]. Spatial evolutionary game
models have been widely used to model both biological and cul-
tural evolution, e.g., [5, 8, 10, 29, 36] and a variety of multi-agent
systems topics [1, 21, 27, 28, 34]. Most work on evaluating spatial
evolutionary games is performed with computationally expensive
simulations, an approach that often does not scale well for large
graphs [30]. Other limitations on validation [14] and variability

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9–13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved.

[19] make it difficult to apply simulations towards the analysis of
many evolutionary games.

A well known approximation technique for avoiding the prob-
lems inherent to simulations is known as pair approximation. Pair
approximation [10, 20, 24] (see Appendix A of [10] for detailed walk-
through) is a technique for analyzing spatial evolutionary games
through the use of a system of differential equations, in which the
effects that the spatial structure of the population has on individual
𝑖 are approximated by the effects of a single neighbor 𝑗 and the
local neighborhoods of 𝑖 and 𝑗 .

A different paradigm of multi-agent game theory, Mean Field
Games (MFG) were first introduced independently by Huang et
al. [15] and Lasry and Lions [17] as a mathematical formalism for
analyzing large populations of individually optimizing agents. The
key idea behind this model is that interactions between agents can
be computed as interactions between a representative agent and an
aggregate population distribution. The MFG formalism has found
widespread use in the modeling of various optimization problems
such aswireless network control [23], crowd evacuation [6], vaccine
distribution [18], and swarm robotics [9].

While EGT and MFG models each have many applications, there
is a modeling gap in the types of problems they can be used on.
Specifically, while spatial EGT models allow for the evaluation of
strategy evolution on networks, they can not be used to optimize
those strategies. Conversely, while MFG models are naturally op-
timization problems, they have not been used to model strategy
evolution for populations that interact on networks.

Contribution. In this paper, we propose aMean Field Game (MFG)
generalization of the spatial evolutionary game model such that the
behavior of a given spatial evolutionary game (or more specifically
the behavior of its pair approximation) is a special case trajectory
of the corresponding MFG. The proposed Pair-MFG model allows
for the formulation of the spatial evolutionary game as a control
problem, opening up additional avenues of research into controlling
the outcomes of these games. The new model, denoted Pair-MFG,
involves many nonlinear functions. This nonlinearity allows for
complex behavior characteristic of spatial evolutionary games that
simple dynamics such as the replicator equation are unable tomodel.
However, due to this nonlinearity, it is necessary to employ different
numerical methods than the ones for Linear Quadratic Gaussian
MFGs.

We show how to solve the Pair-MFG model as a fixed point
problem. It has been shown in previous work [3] that naive appli-
cation of fixed point iteration to an initial solution pair converges
in certain cases but can get stuck in others. We propose the addi-
tion a few heuristics such as time-dependent proximal terms that
allow for convergence in evolutionary games where normal fixed
point iteration fails. Finally, we provide empirical evaluations of the
effectiveness of our approach towards solving a Pair-MFG model.
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2 EVOLUTIONARY GAME THEORY
BACKGROUND

Evolutionary Game Theory (EGT) provides a framework for mod-
eling the time evolution of a population of agents that interact
through strategic games whose outcome determines each indi-
vidual’s evolutionary fitness. These models disregard any game-
theoretic assumptions of rationality and instead let individuals
reproduce or change strategies based on a population update rule.

2.1 Spatial Evolutionary Game
Consider a set of agents {1, . . . , 𝑀} that are placed on points in
a lattice/grid with a wrap-around boundary condition in which
each agent has 4 neighbors. Each agent can choose some strategy
𝑠𝑖 ∈ 𝑆 where 𝑆 is some discrete state space (ex: 𝑆 = {𝐶, 𝐷}, where
𝐶 is cooperate, 𝐷 is defect). The spatial evolutionary game model
consists of two phases:

Interaction phase. At each generation1 each agent chooses some
action 𝑠𝑖 ∈ 𝑆 and receives a payoff 𝜋 from playing game with its
neighbors. A common setting for this involves each agent playing
a normal-form game with each of its neighbors and obtaining a
payoff equal to the sum or average of its interactions.

C D
C a b
D c d

Update phase. Each time the update phase occurs, a percentage
of agents 𝛾 in the population use an update rule to decide whether
to change strategies or how to reproduce on the grid. There are
a number of different update rules used in EGT models. Some
commonly studied update rules include the following:
• Death-Birth rule: Each agent has a non-zero chance of dying
after the interaction phase. When an agent dies, it leaves
behind an empty space in the grid that can be populated by
new agents. Afterwards, agents that have not died have a
probability of 𝑝𝑏 to reproduce into adjacent empty spaces on
the grid that depends on their fitness. [for a more detailed
account, see the methods section of [4]]
• Fermi rule: Each agent compares its payoff 𝜋 from the in-
teraction phase with the payoff 𝜋 ′ of a randomly chosen
neighbor and switches to the neighbor’s strategy with prob-
ability 𝑝 𝑓 (𝜋, 𝜋 ′), where

𝑝 𝑓 (𝜋, 𝜋 ′) =
1

(1 + 𝑒−𝑠 (𝜋 ′−𝜋 ) )
(1)

where 𝑠 > 0 is a constant called the selection strength.
• Best response: Different from the two aforementioned rules,
the agent does not use the payoff at the current time to
inform its strategy updating. Instead an agent will evaluate:

argmax
𝑠𝑖

𝜋 (𝑠𝑖 , 𝑁 (𝑖)) (2)

where 𝜋 (𝑠𝑖 ) is the payoff obtained playing strategy 𝑠𝑖 versus
its current neighbors 𝑁 (𝑖).

1In the EGT literature, the successive steps of an EGT simulation are often called
iterations [5, 35], but also are called generations [11], time steps [24], and rounds [31].
In this paper we call them generations, to avoid confusion with the iterations of the
fixed-point algorithm introduced in Section 4.4.

In the evolutionary game model, the interaction and update phases
are repeated iteratively until a steady state or some predetermined
time horizon is reached.

2.2 EGT Approximations
EGT models have frequently been studied using systems of dif-
ferential equations termed as evolutionary game dynamics. These
dynamics are a continuous time approximation of the original dis-
crete time process specified by the evolutionary game. The resulting
systems of differential equations can be viewed as population-level
models as they model the evolutionary game by analyzing the time
evolution of the proportion of agents playing each strategy in the
population 𝑝𝑖 . For evolutionary games defined on a well-mixed pop-
ulation, these dynamics (such as the well known replicator dynam-
ics) can be derived by using the master equation that corresponds
to the Markov process specifying the underlying microscopic dy-
namics [33].

For spatial evolutionary games, applying the master equation
does not produce a closed system of equations. The equations that
specify the time evolution of the proportion of agents playing each
strategy 𝑝𝑖 in the population depend on the proportion of pairs of
agents 𝑝𝑖 𝑗 playing different strategy pairs in the population. In turn,
the equations that specify the time of evolution of pairs 𝑝𝑖 𝑗 will
depend on the proportion of triples 𝑝𝑖 𝑗𝑘 . This leads to a hierarchy
of equations defined up to proportions of groups of agents the size
of the entire population:

¤𝑝𝑖 = 𝐹 (𝑝𝑖 , 𝑝𝑖 𝑗 )
¤𝑝𝑖 𝑗 = 𝐺 (𝑝𝑖 , 𝑝𝑖 𝑗 , 𝑝𝑖 𝑗𝑘 )
¤𝑝𝑖 𝑗𝑙 = 𝐻 (𝑝𝑖 , 𝑝𝑖 𝑗 , 𝑝𝑖 𝑗𝑘 , 𝑝𝑖 𝑗𝑘𝑙 )

.

.

. (3)

These systems of equations are intractable to solve given a large
enough population size. Consequently, there is much work in past
literature [10, 13, 22, 25, 26, 31, 32] in which higher order propor-
tions are approximated using lower order proportions. For example,
[10] defines a pair approximation where second order conditional
probabilities are approximated using first order conditional proba-
bilities as follows:

𝑝𝑖 | 𝑗𝑘 ≈ 𝑝𝑖 | 𝑗
𝑝𝑖 | 𝑗𝑘𝑝 𝑗𝑘𝑝 𝑗 ≈ 𝑝𝑖 | 𝑗𝑝 𝑗𝑘𝑝 𝑗

𝑝𝑖 𝑗𝑘 ≈
𝑝𝑖 𝑗𝑝 𝑗𝑘

𝑝 𝑗
(4)

This idea of approximating higher order terms by lower order terms
is an approximation technique known as moment closure [16].

2.3 Pair Approximation
In pair approximation, the time evolution of the population is mod-
eled using a set of differential equations that use global (𝑝𝑖 ) and
local (𝑝𝑖 𝑗 ) density terms:

¤𝑝𝑖 = 𝐹1 (𝑝𝑖 , 𝑝𝑖 𝑗 )
¤𝑝𝑖 𝑗 = 𝐹2 (𝑝𝑖 , 𝑝𝑖 𝑗 ) (5)

The functions are best expressed as summations over configura-
tions cf of neighborhood strategy assignments. More concretely,
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for an arbitrary agent 𝑥 and its neighborhood {1, . . . , 𝑁 }, a config-
uration cf = {𝑠1, . . . , 𝑠𝑁 } denotes the assignment of strategies to all
neighbors of the agent 𝑥 . Using the master equation, we have:

¤𝑝𝑖 =
∑︁
cf


∑︁
𝑗 ∈𝑆

𝑃cf ( 𝑗)𝑃 ( 𝑗→ 𝑖, cf) − 𝑃cf (𝑖)𝑃 (𝑖→ 𝑗 | cf)


𝑃 (𝑖→ 𝑗 | cf) = 𝑃
(
𝑥 (𝑡 + 1) =𝑥 𝑗 | 𝑥 (𝑡) =𝑥𝑖 , cf

)
(6)

where an update rule (see section 2.1) is used to calculate the prob-
ability of an arbitrary agent changing its strategy conditioned on
its local neighborhood. The key idea in pair approximation is the
method for evaluating 𝑃cf in Eq. 6. The true value of 𝑃cf is a joint
distribution over 𝑁 variables comprising the neighborhood of an
arbitrary agent 𝑥 . For a configuration cf = {𝑠1, . . . , 𝑠𝑁 }, this is the
probability 𝑃 (𝑠1, . . . , 𝑠𝑁 ). In pair approximation, we approximate
this probability using first and second order terms. For example,
one possible second order approximation is:

𝑃 (cf) = 𝑃 (𝑠1, . . . , 𝑠𝑁 ) = 𝑝𝑠2 |𝑠1𝑝𝑠3 |𝑠1 . . . , 𝑝𝑠𝑁 |𝑠1𝑝𝑠1 (7)

This idea of conditioning on local configurations will be a key
component of our proposed MFG model.

3 MEAN FIELD GAMES BACKGROUND
Mean Field games (MFG) are a formalism that can be used to study
interactions between large populations of agents. Unlike EGT mod-
els, each agent directly optimizes a cost function with respect to
their control variables (similar in concept to strategies in the EGT
model). However, in EGT models, agents do not perform this opti-
mization directly and even in best response dynamics where some
optimization is performed, it is not performed over the entire time
horizon. As a result, MFGs provide a different solution concept with
respect to EGTs that can be more useful in certain applications.

We emphasize that our goal is to fill the MFG modeling gap
for populations that have a spatial structure but interact using a
discrete strategy set. This is notably different from diffusion based
MFGs in which the spatial component is used as the state space.
For the purpose of this paper, we provide an overview of the Linear
Quadratic MFG framework from which we will use as a guide for
developing our proposed model.

3.1 Continuous Linear Quadratic Gaussian MFG
In the Linear Quadratic MFG model [2], we are interested in a
population of agents {1, . . . , 𝑛} where each agent 𝑖 individually
minimizes a cost function:

𝐸
[ 1
2

∫ 𝑇

0
𝑥𝑇𝑡 𝐹𝑡𝑥𝑡 + (𝑥𝑡 − 𝑥𝑡 )𝑇 𝐹 𝑡 (𝑥𝑡 − 𝑥𝑡 ) + 𝑣𝑇𝑡 𝐿𝑡𝑣𝑡𝑑𝑡

+1
2
𝑥𝑇𝑇𝐺𝑇 𝑥𝑇 + (𝑥𝑇 − 𝑥𝑇 )𝑇𝐺𝑡 (𝑥𝑇 − 𝑥𝑇 )

]
(8)

where:
• 𝑥𝑡 is a vector specifying the agent’s state
• 𝑥𝑡 is a vector specifying the average of all agent states
• 𝑣𝑡 is a vector specifying the agent’s control
• 𝐹𝑡 is a matrix specifying the quadratic running cost of being
at state 𝑥𝑡
• 𝐿𝑡 is a matrix specifying a quadratic transport cost of using
control 𝑣𝑡

• 𝐹 𝑡 is a matrix specifying the quadratic running cost of being
at state 𝑥𝑡 with respect to the population average 𝑥𝑡
• 𝐺𝑇 and 𝐺𝑇 being the terminal cost versions of 𝐹

The position of each agent changes according to a state evolution
equation:

𝑑𝑥𝑡 =

(
𝐴𝑡𝑥𝑡 + 𝐵𝑡𝑣𝑡 +𝐴𝑡𝑥𝑡

)
𝑑𝑡 + 𝜎𝑡𝑑𝑊𝑡 (9)

where 𝐴𝑡 , 𝐴𝑡 , 𝐵𝑡 are some matrices that describe the movement of
the agent as a function of its control 𝑣𝑡 , current state 𝑥𝑡 and the
average of other agent states 𝑥𝑡 . The last term 𝜎𝑡𝑑𝑊𝑡 can be used
to describe additional Gaussian noise present in the state evolution
equation.

3.2 Discrete Linear Quadratic MFG
Consider the discrete version of the LQG-MFG model presented
in section 2 of [12]. Suppose each agent 𝑥 can be in a set of states
𝑠𝑖 ∈ 𝑆 and the state of a player evolves according to a controlled
Markov process:

𝑃
(
𝑥 (𝑡 + ℎ) = 𝑠 𝑗 | 𝑥 (𝑡) = 𝑠𝑖

)
= (𝛼𝑖 𝑗 (𝑡) + 𝜂𝑖 𝑗 )ℎ + 𝑜 (ℎ) (10)

for some ℎ > 0. Each agent specifies transition controls 𝛼𝑖 𝑗 for
all 𝑠𝑖 , 𝑠 𝑗 ∈ 𝑆, 𝑖 ≠ 𝑗 and each agent tries to minimize the objective
function:

min
𝛼

𝐸

[∫ 𝑇

0
𝐶 (𝑥 (𝑡), 𝜃 (𝑡), 𝛼 (𝑡))𝑑𝑡 +𝐺 (𝑥 (𝑇 ), 𝜃 (𝑇 ))

]
(11)

where 𝜃 (𝑡) describes the distribution of other players in each state
at time 𝑡 and the cost function 𝐶 is separated into the running cost
𝐹 and a quadratic energy cost:

𝐶 (𝑥 (𝑡), 𝜃 (𝑡), 𝛼 (𝑡)) = 𝐹 (𝑥 (𝑡), 𝜃 (𝑡)) + 1
𝐿

∥𝛼 (𝑡)∥2
2

(12)

where 𝐿 is some constant and

∥𝛼 (𝑡)∥2 =
∑︁
𝑖≠𝑗

𝛼𝑖, 𝑗 (𝑡)2 (13)

3.2.1 Well-mixed EGT. Given the above discrete framework, it is
easy to formulate an MFG model analogous to an EGT model for a
well mixed population. We define 𝐹 (𝑥 (𝑡), 𝜃 (𝑡)) to be:

𝐹 (𝑥 (𝑡), 𝜃 (𝑡)) =
∑︁
𝑖

P𝑥𝑖𝜃𝑖 (14)

where P𝑥𝑖 is the (𝑥, 𝑖)-th entry of the payoff matrix P. The running
cost is computed against 𝜃 (𝑡) which describes the average state dis-
tribution of the entire population. In essence, an agent will receive
a cost from playing a game with a well-mixed population.

4 PAIR APPROXIMATION MFG
We make an observation that, in the discrete MFG framework, the
mean field 𝜃 (𝑡) represents the distribution of a single agent. In
EGT literature, this is the same property as evolutionary dynamics
defined on a well-mixed population such as the replicator dynamics.
As mentioned in Section 2.2, pair approximation is a natural exten-
sion of evolutionary dynamics to structured populations where the
equations use higher order distributions.

Suppose then, in a manner similar to pair approximation, we
define a pair-level mean field distribution 𝜃 (𝑡) over 𝑆 × 𝑆 . We de-
note 𝜃𝑖 𝑗 (𝑡) to be the proportion of pairs of agents that are playing
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strategy 𝑖 and 𝑗 at time 𝑡 . We define our running cost 𝐹 for a single
agent in the state 𝑥 to be:

𝐹 (𝑥 (𝑡), 𝜃 (𝑡)) =
∑︁
𝑖

P𝑥𝑖
𝜃𝑥𝑖 (𝑡)
𝜃𝑥 (𝑡)

𝜃𝑥 (𝑡) =
∑︁
𝑗

𝜃𝑥 𝑗 (𝑡) (15)

Like in the discrete LQ-MFG model we define a state evolution
equation based on a Markov process. Unlike the well-mixed model,
we define a more complicated state evolution equation consistent
with our pair-level mean field:

𝑃 (𝑥 (𝑡 + 1) = 𝑠 𝑗 |𝑥 (𝑡) = 𝑠𝑖 ) =
∑︁
cf∈𝐶𝑑

𝑃cf (𝑖, 𝑡) · (𝛼𝑖 𝑗 (𝑡, cf) + 𝜂𝑖 𝑗 ) · 𝛾

(16)

where 𝐶𝑑 is the set of possible local neighborhood assignment
configurations for an agent with𝑑 neighbors and𝛾 is the percentage
of agents that can change their strategies during each generation.
More rigorously, we define 𝐶𝑑 as the set of tuples:

𝐶𝑑 = {(𝑥1, 𝑥2, . . . , 𝑥 |𝑆 |) 𝑠 .𝑡 .
∑︁

𝑥𝑖 = 𝑑} (17)

where 𝑥𝑖 denotes the number of neighbors of the agent 𝑥 that are
playing strategy 𝑖 and 𝑑 is the degree of the network. We constrain
the control variables 𝛼𝑖 𝑗 (𝑡, cf) ∈ [0, 1] to ensure that equation 16
produces a valid probability distribution. 𝑃cf (𝑖) denotes the prob-
ability of the configuration cf and is a function of 𝜃 (𝑡) and we
can approximate it by assuming all neighbors are independently
distributed:

𝑃cf (𝑖, 𝑡) =
(

𝑑

𝑥1, 𝑥2, . . . , 𝑥 |𝑆 |

)∏
𝑗

(
𝜃𝑖 𝑗 (𝑡)
𝜃𝑖 (𝑡)

)𝑥𝑖
cf = (𝑥1, 𝑥2, . . . , 𝑥 |𝑆 |) (18)

In this setting, we define controls 𝛼𝑖 𝑗 (cf) for each transition 𝑖 → 𝑗

that is some function of cf. From Eq. 16, using pair approximation,
we can derive the time evolution of joint probabilities:

𝜃𝑖 𝑗 (𝑡 + 1) = 𝜃𝑖 𝑗 (𝑡) + Δ𝜃𝑖 𝑗 (𝛼, 𝑡)

Δ𝜃𝑖 𝑗 (𝛼, 𝑡) =
∑︁
𝑘

∑︁
cf∈𝐶𝑑

[
𝜃𝑘 (𝑡)𝑃cf (𝑘, 𝑡)

𝑁 ( 𝑗, cf)
𝑑

𝛼𝑘𝑖 (𝑡, cf)𝛾

− 𝜃𝑖 (𝑡)𝑃cf (𝑖, 𝑡)
𝑁 ( 𝑗, cf)

𝑑
𝛼𝑖𝑘 (𝑡, cf)𝛾

]
(19)

where 𝑁 ( 𝑗, cf) denotes the number of nodes assigned 𝑗 in neigh-
borhood configuration cf or the 𝑥 𝑗 value in the cf tuple. To simplify
notation for further discussion, let𝑀 denote the mean field evolu-
tion equations that produce 𝜃 (𝑡) according to Eq. 19:

𝜃 = 𝑀 (𝛼, 𝜃 (0)) (20)

4.1 An Example
Let us define a pair-MFG for modeling an evolutionary game on
a square lattice grid (𝑑 = 4) with two strategies [0, 1] and the
following payoff matrix:

PAY =

[
2 −1
3 0

]
(21)

For our MFG model we want low costs for an agent to correspond
to high payoffs in the original EGT. A valid transformation for this

mapping is to subtract PAY from the maximum value of PAY and
add a small constant cost, P = max(PAY) − PAY + 1:

P =

[
2 5
1 4

]
(22)

Ourmean field distribution is defined as four values:𝜃00, 𝜃01, 𝜃10, 𝜃11
that sum to 1 and two additional computed values: 𝜃0 = 𝜃00 + 𝜃01,
𝜃1 = 𝜃10 + 𝜃11 Our running cost 𝐹 is:

𝐹 (𝑥 (𝑡), 𝜃 (𝑡)) =
{ 1
𝜃0
(2𝜃00 + 5𝜃01) 𝑥 = 0

1
𝜃1
(1𝜃10 + 4𝜃11) 𝑥 = 1

(23)

and our terminal cost is the same: 𝐺 (𝑥 (𝑇 ), 𝜃 (𝑇 )) = 𝐹 (𝑥 (𝑇 ), 𝜃 (𝑇 ))
Since our model only has two strategies, a configuration cf can

be represented with just one variable 𝑐 ∈ [0, 4] that denotes the
number of agents in the neighborhood playing the first strategy.
As an example, we have that 𝜃00 evolves as such:

𝑃
(
𝑥 (𝑡 + 1) = 1 | 𝑥 (𝑡) = 0

)
=

4∑︁
𝑐=0

𝑃𝑐 (0) · 𝛼01 (𝑡, 𝑐)𝛾

Δ𝜃00 =
4∑︁

𝑐=0
𝜃1𝑃𝑐 (0)

𝑐

4
𝛼10 (𝑡, 𝑐)𝛾 − 𝜃0𝑃𝑐 (0)

𝑐

4
𝛼01 (𝑡, 𝑐)𝛾

𝑃𝑐 (0) =
(
4
𝑐

) (
𝜃00
𝜃0

)𝑐 (
𝜃01
𝜃0

)4−𝑐
(24)

The transition probabilities and equations for other 𝜃𝑖 𝑗 are similarly
defined. Notice that because of how 𝑃𝑐 (0) is computed using higher
order terms of 𝜃00, the resulting dynamics are nonlinear and our
model will consequently lie outside of the scope of typical LQG-
MFG models.

4.2 Features
4.2.1 Generalization of best response. The model is a generaliza-
tion of a spatial evolutionary game using the best response update
rule. To see how this is the case, suppose we limit our pair-MFG
model to one generation 𝑡 ∈ {0, 1}.

Claim. There exists a set of controls 𝛼 (and cost functions 𝐶,𝐺)
such that the pair-MFG model is equivalent to a pair approximation
model of a best response spatial evolutionary game.

Proof. Consider a best response spatial evolutionary game. A given
agent 𝑥 playing strategy 𝑖 will change its strategy based on the
strategies of its neighbors. This is a deterministic function 𝑅 of a
given neighborhood configuration cf:

𝑅(𝑖, 𝑗, cf) =
{
1 𝑃𝑎𝑦 ( 𝑗, cf) > 𝑃𝑎𝑦 (𝑘, cf) ∀𝑘 ∈ 𝑆
0 otherwise

(25)

The above function is the probability in the best response model
that a given agent 𝑥 playing 𝑖 will change its strategy to 𝑗 . In our
pair-MFG formulation, the control term 𝛼 models the probability of
an agent changing its strategy given a neighborhood configuration
cf. If we let our control terms be:

𝛼𝑖 𝑗 (cf) = 𝑅(𝑖, 𝑗, cf) (26)

the equations 16 and 19 are then equivalent to the pair approxima-
tion equations for a best response spatial evolutionary game. Now
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consider the cost function:

𝛼∗ = argmin
𝛼

𝐸 [𝐶 (𝑥 (0), 𝜃 (0), 𝛼 (0))𝑑𝑡 +𝐺 (𝑥 (1), 𝜃 (1))] (27)

Replacing the 𝐶 and 𝐺 terms:

𝛼∗ = argmin
𝛼

𝐸

[
𝐹 (𝑥 (0), 𝜃 (0)) + 1

𝐿

∥𝛼 (𝑡)∥2
2

+𝐺 (𝑥 (1), 𝜃 (1))
]

= argmin
𝛼

𝐸

[
1
𝐿

∥𝛼 (𝑡)∥2
2

+ 𝐹 (𝑥 (1), 𝜃 (1))
]

(28)

If we make two additional assumptions for the terms in 𝐶,𝐺 :

• let 𝐿 be a large enough such that 1
𝐿
∥𝛼 (𝑡 ) ∥2

2 << 𝐺 (𝑥 (1), 𝜃 (1))
or equivalently that the energy term does not significantly
impact the minimum of our cost function,
• let 𝛾 << 1, so that 𝜃 (1) ≈ 𝜃 (0),

we have that

𝛼∗ ≈ argmin
𝛼

𝐸 [𝐹 (𝑥 (1), 𝜃 (0))] (29)

which is the decision rule for a best response spatial evolutionary
game. As 𝛾 → 0, the closer the pair-MFG model approaches the
best-response spatial evolutionary game.

4.2.2 Beyond best response. A key concept in the pair-MFG model
is that the agent’s control is their transition probability given a
certain neighborhood configuration. The original spatial evolution-
ary game is a special case of the pair-MFG where the "control"
probabilities are determined using the update rule. Following this
logic, we can model any update rule that can be specified by local
configurations of strategy assignments. In section 4, we defined our
configuration space as:

cf ∈ 𝐶𝑑 , 𝐶𝑑 = {(𝑥1, 𝑥2, . . . , 𝑥 |𝑆 |) 𝑠 .𝑡 .
∑︁

𝑥𝑖 = 𝑑} (30)

For the Fermi rule, we can define a configuration space:

cf ∈ 𝑆 ×𝐶2
𝑑−1, 𝑆 ×𝐶

2
𝑑−1 = {(𝑜, 𝑛1, 𝑛2) |𝑜 ∈ 𝑆, 𝑛1, 𝑛2 ∈ 𝐶𝑑−1} (31)

The new cf defines a neighbor 𝑜 and the neighborhood distributions
of the other 𝑑 − 1 neighbors of our agent and the 𝑑 − 1 neighbors
of 𝑜 . By replacing 𝐶𝑑 in equations 16 and 19 with the new configu-
ration space, we obtain a pair-MFG model that generalizes spatial
evolutionary games that use the Fermi rule. Like for best response,
there exists values of the control 𝛼𝑖 𝑗 (cf) such that the pair-MFG
model is equivalent to the pair approximation equations for the
Fermi rule spatial evolutionary game.

4.3 Solving the Model
Observe that the Pair-MFG model is not necessarily monotone. Ex-
isting mean field game models frequently make the assumption that
the interactions between agents are monotone so that the model
has a unique solution. In spatial models this translates to agents
being crowd-averse. Some evolutionary games such as coordination
games have crowd-following behavior which can result in more
than one equilibria. As a result, the solution to a Pair-MFG may not
necessarily be unique.

We define a solution to our pair-MFG model as a pair: (𝜃∗, 𝛼∗)

Figure 1: Alternating iterations: the left graph is the trajec-
tory induced by the optimal response to the mean field of
the right graph, and vice versa.

such that:

𝛼∗ = 𝐽 (𝜃∗) = argmin
𝛼

𝐸

[
𝑇−1∑︁
𝑡

𝐶 (𝑥 (𝑡), 𝜃∗ (𝑡), 𝛼 (𝑡)) +𝐺 (𝑥 (𝑇 ), 𝜃 (𝑇 ))
]

𝑃 (𝑥 (𝑡 + 1) = 𝑠 𝑗 | 𝑥 (𝑡) = 𝑠𝑖 ) =
∑︁
cf∈𝐶𝑑

𝑃cf (𝑖, 𝑡) · 𝛼𝑖 𝑗 (𝑡, cf) · 𝛾

𝜃∗ = 𝑀 (𝛼∗, 𝜃 (0)) (32)

given an initial condition 𝜃 (0).

Existence. Our optimization problem is not necessarily convex
given certain specifications of the payoff matrix PAY and subse-
quently the cost function 𝐶 , but because both 𝜃 and 𝛼 are defined
on convex compact sets there exists some (𝜃, 𝛼) pair such that the
above equations are satisfied. Using the Brouwer/Kakutani fixed
point theorem, it is easy to see that (𝜃∗, 𝛼∗) is a fixed point of the
function:

(𝜃, 𝛼) → (𝑀 (𝐽 (𝜃 )), 𝐽 (𝜃 )) (33)

which ensures that there exists a solution to the Pair-MFG model.

4.4 Fixed Point Iteration
Since we know that the optimal pair (𝜃∗, 𝛼∗) must be a fixed point
of the mapping in Eq. 33, we can try iterating the function until
convergence. However, this approach is not guaranteed to converge,
since we have no guarantee that Eq. 33 is a contraction mapping. In
fact, in [3], it was shown that in general, Eq. 33 is not a contraction
mapping for any finite MFGs. As a result, while on some evolu-
tionary games (such as the Prisoner’s Dilemma), naive fixed point
iteration converges to a solution, there are many other situations
where the fixed point iterations will start to alternate between two
different paths. An example of this alternating behavior is shown
in Fig. 1 for the Hawk-Dove type payoff matrix:

C D
C 2 1
D 3 0

4.4.1 Adjustments. We propose several novel adjustments that can
be made to the naive fixed point iteration method that can improve
its convergence.
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Step-size. The problem encountered by the fixed-point iteration
is similar to the problem occasionally encountered by hill-climbing
optimization routines without a step-size adjustment (eg. line search
or backtracking). Assume that some black-box iterative optimiza-
tion routine is used to optimize 𝐽 (𝜃 ). Instead of running this opti-
mization routine until convergence for each fixed point iteration,
we can limit the number of iterations in the inner optimization
loop and instead re-evaluate𝑀 more often. The number of inner
black-box optimizer iterations then serves as the "step-size" for the
outer fixed point iteration.

Proximal terms. A common technique studied in general nonlin-
ear optimization is the proximal point method [7] which is a method
for generating optimization sub-problems that are well conditioned
and thus easier to solve through the addition of a quadratic penalty
term relative to the previous iterate. Suppose we consider each
fixed point iteration as a separate sub-problem in an algorithm for
finding the solution of Eq. 32. At each iteration we add a proximal
term to the objective function 𝐽 that penalizes iterations 𝛼𝑛 that
move too far from the previous iteration 𝛼𝑛−1:

𝛼𝑛+1 = 𝐽 ′(𝜃𝑛) = argmin
𝛼

𝐸
[ (𝑇−1∑︁

𝑡

𝐶 (𝑥 (𝑡), 𝜃𝑛 (𝑡), 𝛼 (𝑡))

+ 1
2
∥𝛼 (𝑡) − 𝛼𝑛 (𝑡)∥

)
+𝐺 (𝑥 (𝑇 ), 𝜃 (𝑇 ))

]
(34)

However, since we apply a proximal term at each iteration, the
proximal terms closer to 𝑡 = 0 have a much larger effect than
those later in time. Small changes in the trajectory early on can
disproportionally impact the later trajectory and cost obtained.

Time-dependent Proximal terms. Due to the property where small
perturbations near 𝑡 = 0 can drastically change later trajectories,
simply adding a proximal term at each iteration is not likely to help
themethod converge. Since changes earlier in the time interval have
more impact on the final trajectory, we will want to penalize early
changes more than later changes. We define a new time-dependent
proximal term:

1
2𝑊 (𝑡) ∥𝛼 (𝑡) − 𝛼

𝑛 (𝑡)∥ (35)

such that the function𝑊 (𝑡) is a monotonically decreasing function
of time.

Accumulating Proximal terms. An alternative approach for pe-
nalizing drastic changes is to accumulate differences backwards
in time. If large changes have already been made at a later time,
earlier changes should be penalized more. Several approaches are
possible such as:
• A new function 𝑊 (𝑡, 𝛿 (𝑖)) ∀𝑖 > 𝑡 , where 𝛿 (𝑖) = 𝛼 (𝑡) −
𝛼𝑛−1 (𝑡) are the differences computed from the current back-
ward pass
• A new function𝑊𝐴 (𝑎𝑐𝑐) where 𝑎𝑐𝑐 =

∑
𝛿 (𝑖) multiplied with

the proximal term: 1
2𝑊 (𝑡 ) ∥𝛼 (𝑡) − 𝛼

𝑛 (𝑡)∥𝑊𝐴 (𝑎𝑐𝑐)

5 EVALUATION
We evaluate the fixed point iteration method with proximal heuris-
tics on the Pair-MFG model for several common games used in EGT
models. The EGT payoff matrices for each game are listed in Table

Algorithm 1: Fixed-Point Iteration with Time-dependent
Proximal terms
Input: 𝛼 , 𝜃0
Output: 𝛼∗, 𝜃∗

for 𝑡 ← 1 to 𝑇 do
𝜃𝑡 = 𝑀 (𝛼𝑡−1, 𝜃𝑡−1) ;

end
Initialize 𝑉 (𝑥, 𝑡),∀𝑡 ;
while 𝛼, 𝜃 not converged do

𝑉 (𝑥,𝑇 ) = 𝐺 (𝑥, 𝜃𝑇 ) ;
𝛼𝑝 = 𝛼 , 𝑎𝑐𝑐 = 0 ;
for 𝑡 ← 𝑇 − 1 to 0 do // Bellman backwards

let: 𝐽𝑥,𝑡 (𝛼) = 𝐶 (𝑥, 𝜃𝑡 , 𝛼) +
∑

𝑦 𝑃 (𝑦 |𝑥, 𝛼)𝑉 (𝑦, 𝑡 + 1) +
1

2𝑊 (𝑡 ) ∥𝛼 − 𝛼𝑡,𝑝 ∥𝑊𝐴 (𝑎𝑐𝑐) ;
𝛼𝑡 = argmin𝛼 𝐽𝑥,𝑡 (𝛼) ;
𝑉 (𝑥, 𝑡) = 𝐽𝑥,𝑡 (𝛼𝑡 ) ;
𝑎𝑐𝑐 = 𝑎𝑐𝑐 + 1

2 ∥𝛼𝑡 − 𝛼𝑡,𝑝 ∥
end
for 𝑡 ← 1 to 𝑇 do // Pair Approximation forwards

𝜃𝑡 = 𝑀 (𝛼𝑡−1, 𝜃𝑡−1) ;
end

end

1. In order to evaluate whether the fixed point iteration method can
obtain a solution we compute the optimal response difference Δ𝑜𝑝𝑡 .
Given iterates (𝜃𝑖 , 𝛼𝑖 ) at iteration 𝑖 of the fixed point algorithm, the
optimal response difference Δ𝑜𝑝𝑡 is the difference between the two
costs:
• Cost𝑂𝑚 obtained by an agent following the current controls
𝛼𝑖 with respect to the induced mean field 𝜃𝑖
• Cost 𝑂𝑑 obtained by an optimal defecting agent who uses
strategy 𝐽 (𝜃𝑖 ) (where 𝐽 is the Bellman equation with no
proximal heuristics) against the mean field 𝜃𝑖

Δ𝑜𝑝𝑡 = 𝑂𝑚 −𝑂𝑑 (36)

It is easy to see that Δ𝑜𝑝𝑡 = 0 only when a solution is found as this
means a defecting agent has no incentive to unilaterally deviate
from the current control iterate (the same concept as a Nash equilib-
rium). This quantity is similar to the notion of policy exploitability

Table 1: Evolutionary Game Payoff Matrices

Game Name Payoff Matrix

Prisoner’s Dilemma
(
2 −1
3 0

)
Hawk-Dove

(
2 1
3 0

)
Snowdrift

(
0 −3
3 −10

)
Rock-Paper-Scissors ©­«

0 −1 1
1 0 −1
−1 1 0

ª®¬
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in section 6 of [3]. We will now demonstrate empirical results where
the fixed point iterationmethodwith proximal heuristics can reduce
this quantity.

5.1 Experimental Setup
We evaluate the Pair-MFG model over configuration space 𝐶4 over
a discrete time span of [0, 100]. The initial proportions of each strat-
egy in each game is set to non-equilibrium values. For comparison,
we provide the results of best-response dynamics on a regular grid
of degree 4 over a time span of [0, 100]. We set 𝛾 = 0.1, so it is
expected that the trajectories found as a solution to the Pair-MFG
model will differ from the EGT model. For the fixed point iteration
solver, we set our proximal heuristics to be:

𝑊 (𝑡) =
(

1
𝑡/300+1

)2
𝑊𝐴 (𝑎𝑐𝑐) = 𝑎𝑐𝑐 + 1

5.2 Results
A solution to a MFG model (and thus the Pair-MFG model) is differ-
ent compared to the solution of a spatial evolutionary game. Agents
in the evolutionary game do not directly optimize their payoff over
the entire time-horizon. Intuitively, the trajectories obtained by
the Pair-MFG model are more optimal with respect to the possible
trajectories of a rogue defecting/invading agent.

It is well known that Evolutionary Stable Strategies (ESS) are an
equilibrium refinement of Nash Equilibrium. It is the same case here
where only under certain conditions (as discussed in section 4.2.1)
is it true that the models have equivalent trajectories. However,
many of the behaviors of the spatial EGT simulation are preserved
in the corresponding MFG model.

For example, in the Snowdrift game, a pull back after an initial
increase in the proportion of the first strategy is observed in the Pair-
MFG trajectory. This pull back is a result that cannot be obtained in a
well-mixed population model for two strategies, but can frequently
appear in spatial models.

Another example of the preservation of spatial effects can be seen
in the Rock-Paper-Scissors game. For the specific RPS payoff matrix
used, the replicator equation and other well-mixed models predict
a limit cycle where the magnitude of the cyclic waves for each strat-
egy remains constant. In a spatial population, the population will
instead converge to the Nash Equilibrium of {1/3 𝑅, 1/3 𝑃, 1/3 𝑆}
in which the magnitude of the cycle waves quickly dampen as the
population evolves towards equilibrium.

As seen in the optimal response difference curves in the bot-
tom row of Fig. 2, the proximal heuristics ensure that the optimal
response difference values do not get stuck in a limit cycle. By
adjusting the optimization rate for the control variables, we can
avoid one of the major problems found in the application of fixed
point iteration to solving mean field games.

6 MEAN FIELD TYPE CONTROL
Suppose we directly optimize Eq. 32 for 𝛼 under the assumption
that the joint state 𝜃 is controlled by the optimizer:

𝛼∗ = argmin𝛼 𝐸
[∑𝑇−1

𝑡 𝐶 (𝑥 (𝑡), 𝜃 (𝑡), 𝛼 (𝑡)) +𝐺 (𝑥 (𝑇 ), 𝜃 (𝑇 ))
]

𝜃 = 𝑀 (𝛼, 𝜃 (0)) (37)

This transforms the problem into a single agent optimal control
problem where the state consists of both the agent state 𝑥 and
the global joint state 𝜃 . This formulation is also known as a mean
field type control (MFTC) problem. Note that if we let 𝛼 ′ be the
solution to the above optimal control problem and 𝜃 ′ = 𝑀 (𝛼 ′),
we are not guaranteed that 𝛼 ′ = 𝐽 (𝜃 ′). The cost quantity in the
objective function is likely to obtain a lower value than the one in
Eq. 32. The MFTC model is analogous to having a central planner
dictating individual agent strategies and is more akin to the idea of
a pareto optimality rather than a nash equilibrium.

This relaxation of a Pair-MFG model, which we would denote
Pair-MFTC, is applicable to many multi-agent optimization prob-
lems. One possible application is reactive risk management for
large-scale intrusion detection. For example, using a Pair-MFTC
model, it becomes possible to efficiently optimize over a spatial ver-
sions of the susceptible-infected-susceptible (SIS) model that more
accurately captures network connectivity compared to existing
well-mixed SIS models. A solution to the Pair-MFTC can be used to
find optimal decentralized security policies for each agent to follow
based on the infection status of their local network dependencies.

6.1 Reinforcement Learning
Suppose we want to frame the Pair-MFG model as reinforcement
learning problem. In the case of Pair-MFTC, we can define a reward
function 𝑟 simply by using the negative cost function from the
optimal control problem:

𝑟 (𝑖, (𝑥, 𝜃𝑡 ), 𝛼) = −𝐶 (𝑥, 𝜃𝑡 , 𝛼) (38)

This is a natural reformulation of the MFTC problem as a reinforce-
ment learning problem. However, if we want to solve the Pair-MFG
instead of the Pair-MFTC, simply optimizing Eq. 37 can result in
rogue agents that defect from the central strategy. If we want to
correct for this issue, we will need to subtract the the reward ob-
tained by the rogue agent from the reward obtained from using
central planner’s solution. This essentially turns the MFG problem
into a two player game between a central planner and the optimal
defector. However, this presents a few issues:
• Since the Bellman equation must be solved from time 𝑇
backwards for an optimal strategy, the optimal defecting
strategy cannot be computed until time 𝑇 .
• Solving the optimization problem over the time horizon for
the optimal defecting strategy can be expensive (relative to
the cost of running the forward pass).

Myopic Relaxation Given the above issues, instead of computing an
exact cost function with an optimal defector, we can approximate
the optimal defecting strategy with a best response defector.

𝑟 (𝑖, (𝑥, 𝜃𝑡 ), 𝛼) = −𝐶 (𝑥, 𝜃𝑡 , 𝛼) + inf
𝑥
𝐶 (𝑥, 𝜃𝑡−1, 𝛼) (39)

Recall that as𝛾 → 0, the solution to the pair-MFGmodel approaches
that of a best response evolutionary game.

7 CONCLUSION
We have proposed Pair-MFG, a MFG generalization of the spatial
evolutionary game models. The proposed Pair-MFG model allows
for the formulation of the spatial evolutionary game as a control
problem, opening up additional avenues of research into controlling
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Figure 2: Comparisons of (a) best-reponse EGT simulations with (b) Pair-MFG trajectories after 150 iterations of the fixed-point
algorithm, in four evolutionary games. To demonstrate convergence of the fixed-point algorithm, row (c) shows the optimal-
response difference at each of its iterations. The 𝑥-axes in row (c) denote iterations of the fixed-point algorithm (as opposed to
iterations of the evolutionary game in parts (a) and (b)).

the outcomes of these games. We have provided a walkthrough of
the derivation of a Pair-MFG model from the equivalent EGT model
and shown that the behavior of a given spatial evolutionary game
(or more specifically the behavior of its pair approximation) is a
special case trajectory of the corresponding MFG.

We have provided amethod for solving this new Pair-MFGmodel
using fixed point iteration with time-dependent proximal terms and
show empirically that this method is capable of finding a solution
to a selection of EGT games. However, since we cannot ensure
the mappings are contractive, we can make no guarantees on the
computational complexity required to solve a Pair-MFG model.
Nevertheless, for two-strategy games, with low inner optimizer
iterations, we have empirically observed that solving a Pair-MFG
model is faster than multiple runs of a simulation on a decently
sized population. While this is not the case with larger games, this
is an area for future research. For example, we can define transition
functions parameterized by a small number of agent controls to
reduce the dimension of the Bellman equation. Such action space
projections for computational improvements on large games is a
direction we intend to explore.

Alternatively, it would be also interesting to investigate solving
Pair-MFG models through extensions of existing methods with con-
vergence guarantees such as Differential Dynamic Programming or
through saddle point optimization on the derived Hamilton-Jacobi
Bellman equation. For games with a small number of strategies, it
may be possible to even explicitly derive equations for a Primal-
Dual Hybrid Gradient (PDHG) method to solve a Pair-MFG model.
These other methods present challenges in that they are typically
formulated with several assumptions that a Pair-MFG model can
violate. While our model does not satisfy any of the assumptions
needed for nice guarantees (monotonicity, convexity, etc.), there
has been work [18] in which PDHG has been applied to models that
likewise violate these assumptions with reasonable effectiveness.
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