
Selecting PhD Students and Projects with Limited Funding
Jatin Jindal

Google

India

jatinjindal369@gmail.com

Jérôme Lang

CNRS, PSL

Paris, France

lang@lamsade.dauphine.fr

Katarína Cechlárová

Pavol Jozef Šafárik University

Košice, Slovakia

katarina.cechlarova@upjs.sk

Julien Lesca

Huawei Technologies

Paris, France

julien.lesca@huawei.com

ABSTRACT
In some universities, there is a fixed number of PhD grants, but a

larger number of eligible projects and students, each student being

allowed to apply on several projects, and a committee builds up a

ranking (masterlist) over student-project pairs. The paper analyses

three mechanisms to choose the pairs to be funded. The first one,

used in some universities, is a greedy mechanism that gives a huge

priority to the masterlist and very little to student’s preferences. At

the other extremity of the spectrum, we have a priority-list variant

of student-oriented Gale-Shapley. It is strategyproof and optimal

for students, but has one drawback: it pays too little attention to

the masterlist, and thus to the committee. Inbetween, we have

an intermediate mechanism which can be seen as a good trade-

off. Among the properties we study, one is specific to our setting:

dynamic monotonicity, which deals with cases when a student

suddenly leaves the system in the middle of the process.

ACM Reference Format:
Jatin Jindal, Jérôme Lang, Katarína Cechlárová, and Julien Lesca. 2022. Se-

lecting PhD Students and Projects with Limited Funding. In Proc. of the
21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), Online, May 9–13, 2022, IFAAMAS, 9 pages.

1 INTRODUCTION
We study a student-project allocation problemmotivated by the real

procedure used at the computer science department of University

Paris-Dauphine. The institute (school, university) publishes a set

of PhD projects. Each student may apply for several projects. The

total number k of available grants is fixed. After evaluating the

students’ academic records and their presentations, the university

creates a master-list of student-project pairs. The motivation for the

master list is to obtain a kind of consensus in the university, taking

into account several different considerations, some being specific to

students (such as academic achievements), some specific to projects

(priority to some topics, balance between research groups) and

some specific to student-project pairs (fitness of a student for a

particular project). Given this master list, and (possibly) students’

preferences over projects, we must both select a subset of students
and a subset of projects to be funded and to assign students to

projects. Equivalently, we have to select a fixed number of disjoint

pairs consisting each of a student and a project.

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9–13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent

Systems (www.ifaamas.org). All rights reserved.

1.1 Our contribution
We define several desirable properties for the procedures and for

the matchings they output. Then we define several mechanisms for

constructing an allocation of students to projects.

The current procedure used in several French universities is

what we call in this paper greedy. On the one hand, it leads to a

lexicographically optimal matching from the point of view of the

committee. On the other hand, it has several drawbacks, the first of

them being that it neglects students’ preferences. Still, given that it

is in use in various places, it is worth studying it in detail.

We offer two alternative approaches. They can be seen as vari-

ants on the Gale-Shapley Deferred Acceptance algorithms (school-

proposing and student-proposing), where the university, via its

committee, expresses its preferences by the master list.

We show that the master-list variant of student-oriented Gale-

Shapley is a special case of matching with regional quotas, with

only one region and its upper quota. It is strategyproof and optimal

for students, but has one drawback: it pays too little attention to

the masterlist, and thus to the committee. The third mechanism,

which we call L-Deferred Acceptance, is intermediate between the

other two. Seen from the committee, its outcome is better than

student-oriented Gale-Shapley with a master list, and dominated

by the greedy mechanism. Seen from students, it is of course not

as good as the student-oriented mechanism; and it is incomparable

with the greedy mechanism. When the master list is consistent with

students’ preferences, all three mechanisms are equivalent.

We study the properties of the three mechanisms. We first con-

sider stability and show that all three mechanisms enjoy it. Then

we consider manipulation by students: the greedy mechanism can

be manipulated by students by declaring some projects unaccept-

able, the university proposing mechanism can be manipulated by

students by stating preferences that are different from their real

ones and also by truncating their preference lists, and the student-

proposing mechanism is fully incentive compatible.

Finally, we explore a dynamic monotonicity property, which is

specific to our setting, and thus novel. In real life, the system is not

closed: applicants can also apply to other universities or companies

outside the matching mechanism, and thus leave the system at any

time. We say that a mechanism satisfies dynamic monotonicity if

after some student declines an offer, we never have to retract an

offer previously made to another student (unless assigning her to a

better project). Unlike the other two, the greedy mechanism fails

to satisfy it; we suggest a simple way of coping with this failure.

Main Track AAMAS 2022, May 9–13, 2022, Online

687

AAMAS ’22, May 9–13, 2022, Online Jatin Jindal, Jérôme Lang, Katarína Cechlárová, and Julien Lesca

1.2 Related work
The student-project allocation problem has been introduced by

Abraham et al. [1]. In this model, each project is lead by one lec-

turer, and both projects and lecturers have capacity constraints.

Students have preferences over projects and lecturers have prefer-

ences over students. The authors propose a linear-time algorithm to

find the student-optimal stable matching. The proposed algorithm is

a generalization of the famous Gale-Shapley Deferred Acceptance

algorithm [5] where students make proposals to projects. Abra-

ham et al. [2] complemented the previous work with a version of

the lecturer-oriented Deferred Acceptance algorithm. The authors

show that in this algorithm each student who is not unassigned is

assigned to the worst project she can have in any stable matching.

Further, they proved several structural properties of stable match-

ings: each lecturer has the same number of students in all stable

matchings, exactly the same students are unassigned in all stable

matchings and a project offered by an under-subscribed lecturer

has the same number of students in all stable matchings.

Manlove and O’Malley [11] consider a model with capacities of

projects and lecturers where both students and lecturers have pref-

erences over projects. Stable matchings can have different sizes. The

authors prove that finding a stable matching with maximum car-

dinality is APX-hard, and give an approximation algorithm with a

performance guarantee of 2. Iwama et al. [8] derive for this problem
an improved upper bound of 1.5 and a lower bound of 21/19.

Kwanashie at al. [9] use a different optimality criterion for match-

ing students to projects. The preferences of lecturers are ignored

and the authors consider the so-called profile, which is a vector

whose r th component indicates how many students have their

r th-choice project. An efficient algorithm for finding a maximum

matching whose profile is lexicographically maximum and another

one to find a maximum matching whose reverse profile is lexico-

graphically minimum are proposed.

Abraham et al. [1] consider a model where lecturers have pref-

erences over student-project pairs, with a notion of stability as in

[3] (see also [10], pages 271-272); the authors extend the student-

oriented Deferred Acceptance algorithm to this setting to obtain

a stable matching. Our model differs from the above in that we

assume a master list of student-project pairs, and consider several

different criteria for the obtained matching.

Matching problems where preferences of one or both sides of

the market (students and/or schools) are derived from a common

master list have been considered by Irving et al. [7]. Note that the
master list orders agents on only one side of the market; it does

not order pairs. Also, in [7] there is no upper bound on the size of

the matching. The authors show that in case of strict preferences,

there is a unique stable matching that can be obtained by a version

of the greedy algorithm.

Cechlárová et al. [4] study a problem closely related to ours, how-

ever, the focus is on the uncertainty on student decisions to accept

or reject a project offered to her. They provide an analysis of the

best approximation ratio achievable by a mechanism of exchanges

between the committee and the students.

Goto et al. [6] study a general model of matching with regions

that have minimal and maximal quotas. Their input contains stu-

dents’ preferences over schools, schools’ preferences over students,

and a master list L over pairs. They propose a generalisation of

student-proposing Deferred Acceptance which, under some con-

ditions on the regions, outputs a stable matching and is student-

strategyproof. In the special case with a single region and a max-

imum quota equal to the number of grants, we find something

closely related to one of our mechanisms, which will be further

discussed in Subsection 4.3.

2 NOTATION
Let S = {s1, . . . , sn } be a set of n students and P = {p1, . . . ,pm } a

set ofm projects offered by the university. We assume the university

has resources to support at most k PhD students. We also assume

that no student can work on more than one project and that no

project can be assigned to more than one student. Each student s
applies to a subset A(s) of projects. Let A = {(s,p)|s ∈ S ;p ∈ A(s)};
a pair (s,p) in A is called an admissible pair.

Each student s has a preference relation ≻s over A(s), which we

assume to be a strict linear ordering. We write pj ≻s pr if s prefers
project pj to project pr and pj ⪰s pr means that either pj ≻s pr
or pj = pr . We let ≻S= (≻s1 , . . . ,≻sn). We assume that s prefers a
project in A(s) to not getting any project.

The committee (jury) of the university expresses a preference

relation over student-project pairs, namely a linear ordering over a

subset of A, which we call the master list and denote by L. In what

follows, we shall use upper indices to denote the ordering of pairs

in L; for example, (s1,p1) is the first (top-most) pair in L, (s2,p2) is
the second, etc. We say that (s,p) is preferred to (s ′,p′) by L, which
we write (s,p) ≻L (s ′,p′), if either (1) both (s,p) and (s ′,p′) appear
in L, that is, if (s,p) = (si ,pi) and (s ′,p′) = (s j ,p j), and i < j , or (2)
(s,p) appears in L and (s ′,p′) does not. We will use (s,p) ⪰L (s ′,p′)
to mean that either (s,p) ≻L (s ′,p′) or (s,p) = (s ′,p′). Note that a
student s can appear several times on the list, paired with different

projects, and similarly, a project can appear several times on the

list, paired with different students.

An instance of the student-project allocation problem with lim-

ited funding (SPALF) is a tuple I = (S, P ,A,≻S ,L,k).
A matching M is a set of student-project pairs such that no

student (respectively, no project) appears in more than one pair in

M . A matchingM is admissible ifM ⊆ A, that is, if no student is

assigned to a project she does not apply to. IfM is a matching then

we denote byM(s) the project to which student s is matched inM
and byM(p) the student matched to project p inM . If student s (or
projectp) is not matched inM thenM(s) (orM(p)) will be the empty

set. By S(M) and P(M) we denote the set of students and projects

matched byM , respectively. Formally, S(M) = {s ∈ S |(s,p) ∈ M for

some p ∈ P} and P(M) = {p ∈ P |(s,p) ∈ M for some s ∈ S}.
The university is considered as a special agent whose preferences

over matchings are derived lexicographically from the master list

L: the university’s (or equivalently, the committee’s) preference

relation over matchings, denoted by ≻∗
L , is defined as follows:M ≻∗

L
M ′

if there exists a pair (s,p) ∈ A such that (s,p) ∈ M \ M ′
,

and for each (s ′,p′) ≻L (s,p) we have (s ′,p′) ∈ M if and only if

(s ′,p′) ∈ M ′
.
1

1
The rationale for using a lexicographic extension is mainly fairness and accountability

to different components of the university (supervisors and research groups): once the

committee has made its mind about ≻L , it would be difficult to argue that we must

sacrifice a pair against less prioritary pairs; for instance, if (s1, p1) ≻L (s1, p3) ≻L

Main Track AAMAS 2022, May 9–13, 2022, Online

688

Selecting PhD Students and Projects with Limited Funding AAMAS ’22, May 9–13, 2022, Online

In the real world, finding a final matching may be complicated

because of several difficulties; the main two are discussed below.

The first difficulty may be caused by the ordering of the master

list L that does not respect the preferences of students: it can be the

case that student s prefers p to p′ and yet the committee decides

to rank (s,p′) before (s,p), or even not to rank (s,p) at all in the

masterlist. There are various reasons for that: s may be considered to

be a better fit forp′ than forp though she prefersp; or the supervisor
associated with p may have some negative opinion about s .

This difficulty can be avoided by requiring that L is student-
consistent: whenever (s,p) ≻L (s,p′) then s prefers p to p′. We will

see that assuming student-consistency leads to great simplification.

The second difficulty stems from the fact that a student’s will-

ingness to commit to a project may evolve: if a student applies for a

position elsewhere (e.g., another university, or a company), at some

time point she may decline on offer that she has already accepted,

and the current matching must be updated.

Inwhat follows, we denote byL(s,p) andM(s,p)
the set of (student-

project) pairs in L andM respectively, that are strictly preferred by

L to the pair (s,p). Formally, L(s,p) = {(s ′,p′) ∈ L|(s ′,p′) ≻L (s,p)}

and M(s,p) = {(s ′,p′) ∈ M |(s ′,p′) ≻L (s,p)}. We will use the

notation Mleast to denote the least preferred pair in the match-

ing M according to the master list L. Formally Mleast = {(s,p) ∈
M |∀(s ′,p′) ∈ M, (s ′,p′) ⪰L (s,p)}.

Finally, we denote by M a mechanism, which takes in input an

instance I and returns a matchingM ⊆ S × P , i.e., M(I) = M .

Example 1. Assume we have four students S = {s1, s2, s3, s4},
four projects P = {p1,p2,p3,p4} and three grants k = 3. We take
A(s1) = A(s2) = P , A(s3) = {p1,p3,p4}, A(s4) = {p1,p2,p4}. The
students’ preferences and the master list are as below.

Students’ preferences Master list L (continued over 3 lines)

≻s1 : p2,p3,p1,p4 (s1,p1), (s2,p1), (s1,p3), (s2,p3),
≻s2 : p1,p2,p4,p3 (s3,p3), (s4,p1), (s2,p4), (s1,p2),
≻s3 : p1,p4,p3 (s2,p2), (s3,p4), (s3,p1), (s4,p2), (s4,p4)
≻s4 : p4,p2,p1

Students’ ≻s1 : p2,p3,p1,p4
preferences ≻s2 : p1,p2,p4,p3

≻s3 : p1,p4,p3
≻s4 : p4,p2,p1

Master List L : (s1,p1), (s2,p1), (s1,p3), (s2,p3), (s3,p3),
(s4,p1), (s2,p4), (s1,p2), (s2,p2), (s3,p4),
(s3,p1), s4,p2), (s4,p4)

We have (s1,p1) = (s1,p1), (s2,p2) = (s2,p1) etc. ≻L is not student-
consistent: (s1,p1) ≻L (s1,p2) although s1 prefers p2 to p1. Note that
p4 is deemed admissible by s1 but (s1,p4) is not deemed admissible
by the committee, as it is not in L.

(s2, p1), then preferring larger matchings, i.e., {(s1, p3), (s2, p1)} ≻ {(s1, p1)}, would
be hard to justify to the research group of the supervisors of p1 .

3 CRITERIA
3.1 Lexicographic Optimality
An admissible matchingM is lexicographically optimal if no other

admissible matching is lexicographically preferred toM , that is, if

M ′ ≻∗
L M holds for no feasible matching M ′

. Since ≻∗
L is a strict

linear order, there is a unique lexicographically optimal matching.

In Example 1, the lexicographically optimal matching is M∗ =

{(s1,p1), (s2,p3), (s3,p4)}.

3.2 Stability

Definition 1. Let M ⋆ (s,p) be the matching obtained from M
by the following operations:

(1) match s and p
(2) unmatch s if s was matched inM
(3) unmatch p if p was matched inM
(4) unmatchMleast if s < S(M), p < P(M), and |M | = k .

Then (s,p) ∈ L \M is a blocking pair if

(i) s ∈ S(M), p ≻s M(s), andM ⋆ (s,p) ≻∗
L M .

(ii) s < S(M) andM ⋆ (s,p) ≻∗
L M

A matching is stable if it admits no blocking pair.

This is a rather classical stability condition, seeing the univer-

sity as an agent whose preferences are lexicographic. Note that

matching s to p when (s,p) is blocking may lead to a matching with

smaller cardinality. For the preferences given in Example 1 and

matchingM = {(s2,p2), (s3,p1), (s4,p4)}:

• (s2,p1) is a blocking pair because of condition (i).
• (s1,p1) is a blocking pair because of condition (ii).
• (s1,p3) is a blocking pair because of condition (ii), since
Mleast = (s4,p4).

By contrast, matching M ′ = {(s1,p2), (s2,p1), (s3,p3)} admits no

blocking pair and so it is stable.

3.3 Strategyproofness
We shall consider two different kinds of manipulations. To be able

to define the needed notions, we first introduce some notation.

Given a student s , we denote by ≻−s the preferences of all stu-

dents except s . Similarly, by A−s we denote the admissible pairs of

all students except s . Then by I + (≻′
s ,≻−s) we denote the instance

I modified in such a way that the preference relation ≻s of student

s was changed to a preference relation ≻′
s , while everything else,

including A(s) was kept intact. Notation I + (A′(s),A−s) means

that the instance I is modified in such a way that student s replaced
her admissible set A(s) by its strict subset A′(s); the preference or-
dering of s on A′(s) is simply the restriction of ≻s to A

′(s), and L is

simplified accordingly.

We say that mechanism M is permutation strategyproof if no
student can force a better outcome for her by permuting her pref-

erence list; formally, if for all s ∈ S we haveM(I) ⪰s M(I + (≻′
s

,≻−s)) for all possible ≻
′
s . We say that mechanism M is truncation

strategyproof if no student can force a better outcome for her by

truncating her preference list; formally, if for all s ∈ S we have

M(I) ⪰s M(I + (A′(s),A−s)) for all possible A
′(s) ⊆ A(s).

Main Track AAMAS 2022, May 9–13, 2022, Online

689

AAMAS ’22, May 9–13, 2022, Online Jatin Jindal, Jérôme Lang, Katarína Cechlárová, and Julien Lesca

3.4 Dynamic monotonicity
So far we assumed that the final matching is computed at once, from

the master list and the students’ preferences. In real life, things are

sometimes not so static: some students may restrict further their

set of admissible projects, or even withdraw completely. To take

an example, in the university of two of the authors, the master list

is made up in May, but the contracts are signed in July. Between

these dates, a student may get a better offer from another place. This
means that s may accept p at time t (say, May 15), and then, on June

1, decline the offer (and then either leave the system completely, or

wait until she possibly gets a project she prefers to the project she

got elsewhere – and a fortiori, that she prefers to p). In other terms,

a student maintains a threshold above which she is ready to accept

a project, and this threshold may increase with time.

This calls for adapting our mechanisms so as to update the cur-
rent matching as soon as the student rejects a project p she is

currently assigned to (and implicitly, all projects below p in her

preference relation). However, updating a matching can be trouble-

some, as the following example shows.

Example 2.
Students’ preferences Master list L

≻s1 : p2,p1 (s1,p1), (s1,p2), (s2,p2), (s3,p1)
≻s2 : p2
≻s3 : p1

Assume that our mechanism outputs the lexicographically optimal
matching M∗ = {(s1,p1), (s2,p2)}. However, if a few days after the
proposal, s1 ends up rejecting the offer p1 by restricting her admissi-
ble set to {p2}, then the new lexicographically optimal matching is
{(s1,p2), (s3,p1)}. Thus, the following dilemma appears:

• we can make {(s1,p2), (s3,p1)} the new output. Lexicographic
optimality is preserved, but this is very rude to s2, to whom
we made an offer, who perhaps has already accepted this offer,
and who is now told that the offer is cancelled, and even worse,
that the new matching does not match her to any project.

• keep the offer (s2,p2) and compute the lexicographically opti-
mal matching containing this pair, namely, {(s2,p2), (s3,p1)}.
But we lose lexicographic optimality, as this matching is not
lexicographically optimal for the updated profile.

The reason why evolving preferences may either lead to a sub-

optimal matching or to canceling a previous offer (and possibly end

up giving the concerned student a worse final outcome than this

offer) is due to the failure of dynamic nonmonotonicity, which we

will define shortly.

Definition 2. LetI = (S, P ,A,≻S ,L,k) be an instance of SPALF,
si ∈ S , and p∗ ∈ A(si). We define I[si ,p∗] = (S, P ,A ′,≻′

S ,L,k),
where A′(si) = {p,p ≻si p

∗}, ≻′
si is the restriction of ≻si to A

′(si),
and for all j , i , A′(sj) = A(sj) and ≻′

sj=≻sj .

Replacing A(si) by A
′(si) = {p,p ≻s p

∗} corresponds to student

si rejecting all proposals that she does not prefer to p∗. Since p∗ ∈

A(si), we haveA
′(si) ⊂ A(si). A particular case is obtained when p∗

is the student’s most preferred project: in this case, A′ = ∅, which

means that s will not accept any project from that point, and thus

withdraws from the system.

Definition 3. Let M be a SPALF mechanism and I a SPALF
instance. A proposal (s,p) is safe for I and M if for any instance
I[si ,p

∗], ifM =M(I) andM ′ =M(I[si ,p
∗]), ifM(s) ∈ A′(s) then

M ′(s) ⪰s M(s). A mechanism M satisfies dynamic monotonicity if
for any instance I, every pair in M(I) is safe.

When a proposal (s,p) is not safe then the following may happen:

p has been proposed to s and s has accepted, and at some later point,

the mechanism has to come back on this proposal and to assign s
to a project that she likes less than p, or even to no project at all.

Dynamic monotonicity guarantees that this will never occur.

4 MECHANISMS
4.1 Greedy mechanism
This mechanism, called Greedy for short, goes down the master list

L making proposals to the next (student-project) pair (s,p) such
that both s and p are currently unmatched. This is repeated until the

current matching has reached the maximal capacity k or until the

master list L is exhausted. Algorithm 1 gives a formal description.

Algorithm 1: Greedy Mechanism

Input: Instance I = (S, P ,A,≻S ,L,k)
1 M := ∅

2 i := 1

3 while |M | < k and i ≤ |L| do
4 if si < S(M) and pi < P(M) then
5 M := M ∪ {(si ,pi)}

6 i := i + 1

7 returnM

In Example 1, the output isMG = {(s1,p1), (s2,p3), (s3,p4)}.

Example 3. S = {s1, s2}, P = {p1,p2,p3} and k = 2. We assume
that A(s1) = {p1,p2}, A(s2) = {p3}. The students’ preferences and
the master list are given in the following table.

Students’ preferences Master list L

≻s1 : p2,p1 (s1,p1), (s1,p2), (s2,p3)
≻s2 : p3

Greedy returns the matching {(s1,p1), (s2,p3)}.

Theorem 1. Greedy outputs a lexicographically optimal matching.

Proof. Let M be the matching given by Greedy and let M ′
be

a matching that is lexicographically preferred to M . Let (s,p) be
the pair in M ′ \ M with highest priority according to L. Such a

pair exists sinceM ′ ≻∗
L M . Then, during the execution of Greedy,

there was a moment when pair (s,p) was considered in line 4,

otherwise Mleast ≻L (s,p), implying M ≻∗
L M ′

. The fact that

(s,p) < M means (see the condition in line 4 of Greedy) that either
there is a pair (s,p′) ∈ M such that (s,p′) ≻L (s,p) or there is

a pair (s ′,p) ∈ M such that (s ′,p) ≻L (s,p). The choice of (s,p)
implies that (s,p′) ∈ M ′

or (s ′,p) ∈ M ′
, respectively, and so, by the

definition of a matching, (s,p) < M ′
, a contradiction. □

Main Track AAMAS 2022, May 9–13, 2022, Online

690

Selecting PhD Students and Projects with Limited Funding AAMAS ’22, May 9–13, 2022, Online

Theorem 2. The matching returned by Greedy is stable.

Proof. Suppose that the matching M returned by Algorithm 1

is not stable, that is, there exists a blocking pair (s,p) forM .

IfMleast ≻L (s,p), then (s,p) cannot be a blocking pair. Hence
(s,p) ≻L Mleast , and we must have reached line 5 of the algorithm

for pair (s,p) and the condition must have failed. Hence, either

(M(s),p) ≻L (s,p) or (s,M(s)) ≻L (s,p), in either case (s,p) cannot
be a blocking pair. □

Theorem 3. Greedy is permutation strategyproof, but not trunca-
tion strategyproof.

Proof. Greedy does not take into account the preferences of

students. Hence, no student has an incentive to reveal different

preferences since that will not affect the matching selected.

Example 3 provides a case where a student can get a better

outcome by revealing a different set of acceptable projects. If s1
reports A′(s1) = {p2} instead of her true admissible set then she

will be assigned to p2 instead of her less preferred project p1. □

Note that Greedy heavily relies on the master list and does not

take students’ preferences into account
2
, therefore it is meant to

be used if we want to give priority to the opinion of the committee

over those of the students.

Theorem 4. Greedy does not satisfy dynamic monotonicity.

Proof. See Example 2. □

Since Greedy is not monotonic, finding safe offers is nontrivial.

Still, a maximal set of safe offers can be found in polynomial time:

Proposition 1. Let I = (S, P ,A,≻S ,L,k) be an instance of
SPALF. An offer (s,p) is safe if the following two conditions hold:

(1) there is no pair (s ′,p′) such that (s ′,p′) ≻L (s,p) and either
s = s ′ or p = p′.

(2) the maximum cardinality matching inM(s,p) has cardinality
at most k − 1.

Proof. Assume (1) and (2) hold. The algorithm must consider

the pair (s,p): if it does not, then it means it stops before with a

matching of cardinality k ; but thenM(s,p)
would have cardinality

k . Once it considers it, because of condition 1, at this step neither

s ∈ S(M) nor p ∈ S(M), therefore the output will contain (s,p). □

To compute a maximal set of safe offers, it suffices to determine,

for each student s , if there is a safe offer for s . On Example 2, (s1,p1)
is a safe offer, but there is no safe offer for s2 or s3.

Proposition 1 provides only a sufficient condition for an offer

to be safe. The following example, with k = 2, shows that it is not

necessary.

Students’ preferences Master list L

≻s3 : p1,p3 (s1,p1), (s3,p1), (s3,p3)

Offer (s1,p3) is safe but does not satisfy the conditions of Propo-

sition 1.

2
More precisely, it takes into account the set of projects they declare admissible, but

not their relative preferences between projects.

4.2 Masterlist Proposing Deferred Acceptance
For brevity, we shall denote this mechanism by LDA (as L-Deferred
Acceptance), as the proposals are made according to the master list

L. The mechanism goes down the master list L making proposals

to the next (student-project) pair (s,p) such that project p is not

matched in the current matching, provided the funding capacity is

not yet exhausted. After acceptance, the pair is added to the current

matching. The student may accept the proposal either if she is not

matched or if she prefers project p to her current assignmentM(s).
If the latter occurs, pair (s,M(s)) is deleted from M (otherwise M
is left unchanged) and the proposal sequence starts immediately

after (s,M(s)) according to L. This is repeated while the size of the

current matching is smaller than the funding capacity k .

Algorithm 2: LDA Mechanism

Input: Instance I = (S, P ,A,≻S ,L,k)
1 M := ∅

2 i := 1

3 while |M | < k and i ≤ |L| do
4 (s,p) := (si ,pi)

5 i := i + 1

6 if p < P(M) then
7 if s < S(M) then
8 M := M ∪ {(s,p)}

9 else
10 if p ≻s M(s) then
11 M := M\{(s,M(s))} ∪ {(s,p)}

12 Let t be such that (s,M(s)) = (st ,pt)

13 i := t + 1

14 returnM

For the instance in Example 1, LDA first considers (s1,p1) and then

(s1,p3). As s1 prefers p3 to p1, the pair (s1,p1) is rejected and we

next consider the pair immediately following the pair that has just

been deleted, namely to (s2,p1). This proposal is accepted and at

this point M = {(s1,p3), (s2,p1)}. The mechanism continues with

(s2,p4), which is rejected. Then (s1,p2), which is accepted and thus

(s1,p3) is rejected. Now M = {(s1,p2), (s2,p1)} and the next pair

considered is (s2,p3), which is rejected, and then (s3,p3), which is

accepted. The final matching isMLDA = {(s1,p2), (s2,p1), (s3,p3)}.

Observation 1. At each point of the execution of Algorithm 2,
each student is either unmatched or matched to a project that she
weakly prefers to any project assigned to her during previous steps.

We say that a pair (s,p) is considered by Algorithm 2 (on a specific

instance), if at some point during the execution, the current pair in

the algorithm is (s,p). We say that (s,p) is proposed (or offered) if at
some point of the execution, the current pair is (s,p) and line 7 of

the algorithm is reached.

Since LDA goes down the master list, possibly revisiting multiple

times the same pair, the following obviously holds:

Main Track AAMAS 2022, May 9–13, 2022, Online

691

AAMAS ’22, May 9–13, 2022, Online Jatin Jindal, Jérôme Lang, Katarína Cechlárová, and Julien Lesca

Observation 2. At the step where (s,p) is considered by Algo-
rithm 2, each pair (s ′,p′) such that (s ′,p′) ≻L (s,p) has already been
considered earlier during the algorithm.

The following lemma expresses a property of proposals made by

the LDA Mechanism.

Lemma 1. Suppose (s,p) is considered at some step of Algorithm 2
and letM be the current matching obtained at the end of the previous
step. Then for every student s ′ ∈ S and for every p′ ∈ P \ P(M),
(s ′,p′) ≻L (s,p) impliesM(s ′) ⪰s ′ p

′.

Proof. By contradiction. Assume that (s,p) is considered at

some step σ , that M is the matching at the end of the previous

step σ − 1, and that (1) (s ′,p′) ≻L (s,p), (2) p′ < P(M), and (3)

p′ ≻s ′ M(s ′). From (1) and Observation 2, (s ′,p′) must have been

considered before (s,p). If (s ′,p′) was proposed, then by Observa-

tion 1,M(s ′) ⪰s ′ p
′
, contradicting p′ ≻s ′ M(s ′). Therefore, (s ′,p′)

was never proposed. Since at step σ we have p′ ≻s ′ M(s ′), this
means that (4) whenever (s ′,p′) is considered earlier at step σ ′ < σ
with matchingMσ ′ , we have p′ ∈ P(Mσ ′) (see condition on line 5).

Now we claim that (5) for all σ ′ < σ such that p′ ∈ P(Mσ ′),

we have (Mσ ′(p′),p′) ≻L (s ′,p′). We will prove this by induction.

For the base case, let σ1 be the first step (s ′,p′) was considered. By
(4), p′ ∈ P(Mσ1), and since no pair below (s ′,p′) is considered at

step σ1, we have (Mσ1 (p
′),p′) ≻L (s ′,p′). Our induction hypothe-

sis is that if at some step σ ′
when we considered (s ′,p′) pair we

have (Mσ ′(p′),p′) ≻L (s ′,p′), the next step σ ′′
when we consider

(s ′,p′), we will have (Mσ ′′(p′),p′) ≻L (s ′,p′). To prove this hypoth-
esis, we can see that when p′ is unassigned for the first step after

σ ′
, the current pair (si ,pi) would be next pair after (Mσ ′(p′),p′)

in the master list (corresponding to lines 12-13 of Algorithm 2).

So (si ,pi) ⪰L (s ′,p′), p′ is unassigned now, but by (4) when we

considered pair (s ′,p′), p′ is assigned. This is only possible if p′

is assigned at some step in between. But until then the current

pair would always appear before (s ′,p′) in L. This implies that

(Mσ ′′(p′),p′) ≻L (s ′,p′) and proves our induction hypothesis and

therefore (5).

In the proof of (5), whenever p′ is unassigned, the pair under
consideration is preferred to (s ′,p′) by L. But after the end of step

σ − 1, by (1) p′ < P(M), which contradicts the above argument. □

Corollary 4.1. LetM be the output of LDA, andM ′ be the match-
ing just beforeMleast = (s,p) is proposed. Then P(M) ⊆ P(M ′)∪{p}.

Proof. Assume that P(M) ⊈ P(M ′) ∪ {p}: M contains a pair

(s ′,p′) such that p′ < P(M ′) and p′ , p. (s ′,p′) ∈ M implies

(s ′,p′) ⪰L Mleast . Now, we claim thatM(s ′) ≻s ′ p
′
.

From Lemma 1,p′ < P(M ′) and (s ′,p′) ≻L (s,p) implyM ′(s ′) ≻s ′

p′. By Observation 1, we haveM(s ′) ⪰s ′ M
′(s ′). HenceM(s ′) ≻s ′ p

′
,

which contradictsM(s ′) = p′. Hence P(M) ⊆ P(M ′) ∪ p. □

Theorem 5. LDA outputs a stable matching.

Proof. By contradiction, suppose that the matching given by

LDA, sayM , is not stable, that is, there exists a blocking pair (s,p).
If p ∈ P(M) then (s,p) ≻L (M(p),p) should hold for (s,p) to be

a blocking pair. Furthermore, p was unassigned during the step

right before it was proposed to agent M(p). Therefore, we know

by Lemma 1 thatM(s) ⪰s p, leading to a contradiction with (s,p)
being blocking (conditions 1). Hence p < P(M).

Now, s never received the offer (s,p) during the execution of

Algorithm 2, since otherwise she would have accepted and by Ob-

servation 1, she would have been matched inM to a project that she

weakly prefers to p. Therefore, either (i) Algorithm 2 stopped be-

fore considering pair (s,p) or (ii) project p was matched to another

student each time (s,p) was considered.
In case (i), because (s,p) was never considered, and the last pair

to be considered comes before (s,p) in L. Therefore, bothMleast ≻L
(s,p) and |M | = k hold. This contradicts the assumption that (s,p)
is blocking: neither conditions 1 nor condition 2 can hold.

In case (ii), assume that p was matched with s ′ when (s,p) was
considered by Algorithm 2. If (s,p) ≻L (s ′,p), then by Lemma 1, at

the time when s ′ is offered to p, s was matched to a project that

he prefers to p, which by Observation 1, contradicts p ≻s M(p).
Therefore it must be the case that (s ′,p) ≻L (s,p).

Therefore, whenever (s,p) is considered, p is matched to some

student s ′ such that (s ′,p) ≻L (s,p). A fortiori, whenever an offer

(s ′′,p′′) such that (s,p) ≻L (s ′′,p′′) is made,p is already matched at

that stage. LetM ′
(respectivelyM ′′

) be the matching just before (re-

spectively after) we proposed the offerMleast = (s ′′′,p′′′). Because
(s,p) is blocking, (s,p) ≻L Mleast (by conditions 1 and 2). Now, p
must be already matched when a pair with smaller priority in L is

proposed. Hence p ∈ P(M ′). If p < P(M ′′) then |M ′′ | = |M ′ | < k .
Otherwise, Algorithm 2 will still execute at least until p become

free. This means that in both cases |M ′′ | < k and |M ′ | < k . From
Corollary 3, we know that every student will take the offer inside

P(M ′) ∪ {p′′′}. Hence, P(M) ⊆ P(M ′) ∪ p′′′ \ p. This means that

|P(M)| < k , which is not possible as the mechanism stopped be-

fore proposing the offer (s,p), which can be proposed. Hence LDA

returns a stable matching. □

Theorem 6. The LDA Mechanism is neither permutation nor trun-
cation strategyproof.

Proof. Let k = 2, L = {(s1,p1), (s2,p1), (s1,p2), (s1,p3)},A(s1) =
{p1,p2,p3}, A(s2) = {p1}. If ≻s1= p3,p2,p1 then the output is

{(s1,p2), (s2,p1)}.
Permutation: If s1 reports ≻′

s1= p3,p1,p2, then the output is

{(s1,p3), (s2,p1)}: s1 has an incentive to report ≻′
s1 instead of ≻s1 .

Truncation: If s1 reportsA′(s1) = {p3} then the output is {(s1,p3),
(s2,p1)}, thus s1 has an incentive to report A′(s1). □

Proposition 2. LDA satisfies dynamic monotonicity.

Proof. Assume not: then there exist instances I, I ′ = I[si ,p
∗],

such that LDA(I) = M , LDA(I ′) = M ′
, and for some si ,M(si) ≻si

M ′(si). Let S be the set of all pairs (s,M ′(s)) such that M(s) ≻s
M ′(s).

Assume first that S , ∅. Let (s,p) is the L-most preferred pair of

S . We claim that (s,M(s)) is a blocking pair inM ′
. Assume it is not.

Then we are in one of these three cases:

(1) (s,M(s)) < L′: since (s,M(s)) ∈ L, we have s = si , that is, s is
the student who has reduced her admissibility threshold. But then,

M(si) ≻si M
′(si), we cannot have (s,p) ∈ M ′

as p < A′(s)).
(2) There is a (s ′,M(s)) ∈ M ′

such that (s ′,M(s)) ≻L′ (s,M(s)):
(s ′,M(s)) is not blocking inM becauseM is stable, thereforeM(s ′) ≻s ′

Main Track AAMAS 2022, May 9–13, 2022, Online

692

Selecting PhD Students and Projects with Limited Funding AAMAS ’22, May 9–13, 2022, Online

M(s) = M ′(s ′). So, (s ′,M(s ′)) ∈ S , and (s ′,M(s ′) = M(s)) ≻L′ (s,p),
which contradicts the assumption that (s,p) is the L-most preferred

pair of S .
(3)M ′

least ≻′
L (s,M(s)) and |M ′ | = k : This implies thatM ′

least ≻′
L

Mleast andM
′
least ≻L Mleast . Now, the k different pairs inM ′

are

all in L so the algorithm should have selected them all in M too,

contradictingM(si) ≻si M
′(si).

Now, assume S = ∅. Since M(si) ≻si M ′(si), we must have

si < S(M
′). Again, assume (si ,pi) is not blocking forM

′
. Then we

are in one of these two cases:

(1) (s ′,pi) ≻L′ (si ,pi) for some (s ′,pi) ∈ M ′
. Since (s ′,pi) is not

weakly blocking in M , M(s ′) ⪰s ′ pi , therefore M(s ′) ⪰s ′ M ′(s ′).
But then (s ′,M(s ′)) should be in S , which contradicts S = ∅.

(2) M ′
least ≻′

L (si ,pi) and |M ′ | = k : This implies that M ′
least ≻′

L
Mleast and thusM ′

least ≻L Mleast . A similar reasoning as above

leads to a contradiction withM(si) ≻si M
′(si). □

We end up this section by a remark. In Algorithm 2 we could

consider replacing line 3 by simply While |M | < k and i ≤ |L|,
and line 6 by If p < P(M) and |M | < k , thus allowing already

matched students to be made offers even after maximal capacity

is reached, and to switch to the replace their previous match by

the new offer. However, if we do that we lose stability, as can

be seen on this example: L = (s1,p1), (s3p1), (s2,p2), (s1p3), and,
k = 2. If s1 prefers p3 to p1 then Algorithm 2 stops at |M | = 2

and outputs {(s1,p1), (s2,p2)}. But the modified algorithm with the

weaker stopping condition outputs {(s1,p3), (s3,p1)}. Now, (s2,p2)
is blocking: it has priority over (s3,p1) in L, and s2 prefers p2 to
nothing.

4.3 Student proposing Gale Shapley
This mechanism, abbreviated by SGS, is very similar to the classical

student-proposing Deferred-Acceptance algorithm. In the begin-

ning, all students are unassigned and apply for their most preferred

project. A first selection is made according to the masterlist, accord-

ing to the choice function Ch (see further). All students who are

rejected then apply to their second best project, and so on until all

students are either assigned to a project, or have exhausted their

preference list. The mechanism is formally given as Algorithm 3.

The choice function Ch is reminiscent of Greedy, except that
it is applied to a set of offers X ′

containing at most one offer per

student. These offers are considered in the decreasing priority order

(according to L) until the maximum number of grants is reached.

Given an instance I = (S, P ,A,≻S ,L,k), a set of rejected offers

Re ⊆ S×P , and a student s , we defineO(s,Re) as her most preferred

project p for which she has not been rejected, if such a p exists; and

O(s,Re) is undefined otherwise. Formally,O(s,Re) = p if (s,p) < Re ,
p ∈ A(s) and for all p′ ≻s p we have (s,p′) ∈ Re .

Given a set of offers X ′
containing at most one offer per student,

Ch(L,X ′) is the selected set of offers defined by Algorithm 3.

Example 4. We run SGS on the instance of Example 1. Initially,
Re = X = ∅. Then X ′ = {(s1,p2), (s2,p1), (s3,p1), (s4,p4)}. Reorder-
ing X ′ w.r.t. L gives o1 = (s2,p1),o2 = (s1,p2),o3 = (s3,p1),o4 =
(s4,p4), X = Ch(X ′,I) = {(s1,p2), (s2,p1), (s4,p4)}, Re = {(s3,p1)}.

At the next step we have X ′ = {(s1,p2), (s2,p1), (s3,p4), (s4,p4)},
X = {(s1,p2), (s2,p1), (s3,p4)} and Re = {(s3,p1), (s4,p4)}.

Algorithm 3: Function Ch
Input: L, X ′

1 Let X ′
:= {o1, . . . ,o |X ′ |}, such that o1 ≻L . . . ≻L o |X ′ |

2 i := 1

3 X := ∅

4 while i ≤ |X ′ | and |X | < k do
5 Let oi = (s,p)

6 if p < P(X) then
7 X := X ∪ {oi }

8 i := i + 1

Algorithm 4: Student proposing Gale Shapley Mechanism

Input: Instance I = (S, P ,A,≻S ,L,k)
1 Re := ∅

2 X := ∅

3 while some student s is unassigned in X and has not exhausted
her admissible set A(s) do

4 X ′ = {(s,O(s,Re)) : s ∈ S,O(s,Re) is defined }

5 X := Ch(L,X ′)

6 Re := Re ∪ (X ′ \ X)

7 return X

At the next step we have X ′ = {(s1,p2), (s2,p1), (s3,p4), (s4,p2)},
X does not change, and Re = {(s3,p1), (s4,p4), (s4,p2)}.

At the next step we have X ′ = {(s1,p2), (s2,p1), (s3,p4), (s4,p1)},
X does not change, and Re = {(s3,p1), (s4,p4), (s4,p2), (s4,p1)}. s4
has exhausted her preference list and all other students are assigned,
so the returned matching is {(s1,p2), (s2,p1), (s3,p4)}.

This algorithm is however not new. It corresponds to the Priority

list based Deferred Acceptance mechanism with regional minimum

andmaximum quotas, defined in [6], where (1) projects corresponds

to universities; (2) each project has a maximum quota 1, and no

minimum quota; and (3) there is only one region, containing all

projects, with maximum quota k and no minimum quota.

There is only one assumption in [6] which we do not have:

they assume that all universities are acceptable to all students and

vice versa. However, this assumption is needed only to ensure the

existence of a feasible matching in presence of minimum quotas. It

is not needed if there are no minimum quotas, and does not play

any role in the proofs of the results that we refer to below. This

allows us to import several of their results, namely:

Corollary 4.2. [Theorem 6 in [6]]
SGS outputs a stable matching.

Corollary 4.3. [Theorem 5 in [6]]
SGS is permutation strategyproof.

Corollary 4.4. [Theorem 9 in [6]]
SGS is student-optimal among all stable matchings.

Results in [6] do not say anything about truncation strategyproof-

ness, because they assume all schools are acceptable to students.

Proposition 4.5. SGS is truncation strategyproof.

Main Track AAMAS 2022, May 9–13, 2022, Online

693

AAMAS ’22, May 9–13, 2022, Online Jatin Jindal, Jérôme Lang, Katarína Cechlárová, and Julien Lesca

Proof. SGS tentatively assigns projects to students in the de-

creasing preference order. Assume SGS(I) = M and M(s) = p.
This means that all offers of a project that s prefers to p have been

rejected. Assume now that s truncates her preference list below
p′, and let M ′

be the resulting matching. If p′ ≻s p, then s will
be unsassigned in M ′

. If p ⪰s p
′
, then M ′ = M . Therefore, SGS is

truncation strategyproof. □

Lemma 2. LetM∗ be the output of SGS on a given instance I, let
s be a student and let p be a project in A(s) andM ′ be the output of
SGS on instance I + (A′(s),A−s). Then for any student s ′ ∈ S , we
haveM ′(s ′) ⪰s ′ M

∗(s ′).

Proof. MatchingM∗
, which was stable with respect to I, is still

stable with respect to I+ (A′(s),A−s) because any blocking pair in

I+ (A′(s),A−s)will be blocking in I as well. Hence, every student

weakly prefersM ′
overM∗

because of Corollary 4.5. □

Proposition 3. SGS satisfies dynamic monotonicity.

Proof. LetM = SGS(I) andM ′ = SGS(I ′)whereI ′ = I[si ,p].
Repeatedly applying Lemma 2 gives: for all s ′,M ′(s ′) ⪰s ′ M(s ′). □

4.4 Discussion
We first observe that the restriction to student-consistent master

lists makes all there mechanisms coincide.

Theorem 7. If the master list is student consistent, then the match-
ings given by Greedy, LDA and SGS coincide.

Proof. Let MG ,MLDA,MSGS
denote the matchings that are

output by Greedy, LDA and SGS, respectively.

Suppose MG , MSGS
. Since MG

is lexicographically optimal,

there exists (s,p) ∈ A such that (s,p) ∈ MG \MSGS
and for any

(s ′,p′) ∈ L(s,p), (s ′,p′) ∈ MG ⇔ (s ′,p′) ∈ MSGS
. This implies that

(s,p) ≻L (s,MSGS (s)) and (s,p) ≻L MSGS
least . Since the master list

is student consistent, hence p ≻s M
SGS (s). Therefore, (s,p) is the

blocking pair inMSGS
which is not possible. Hence,MG = MSGS

.

Now we show thatMG = MLDA
. When applying LDA, once an

offer is assigned then a student will never deviate from that project

because the master list is student-consistent. So, this basically re-

duces to going once top-down in the master-list in the similar way

as in Greedy. Therefore, the output will be same. □

As a consequence, under the assumption that the master list

is student-consistent, all the considered mechanisms output the

student-optimal stable matching and are permutation as well as

truncation strategyproof.

Next, we compare the three mechanisms according to (1) the

committee’s preference expressed by the master list, and (2) the

students’ preferences.

Proposition 4. For any I, Greedy(I) ⪰L LDA(I) ⪰L SGS(I).

Proof. Greedy(I) ⪰L LDA(I) is a direct consequence of Propo-
sition 1. Now, assume SGS(I) ≻L SGS(I) for some instance L. Then
there is a pair (s,p) such that (s,p) ∈ SGS(I), (s,p) < LDA(I) and
for all (s ′,p′) ≻L (s,p), (s ′,p′) ∈ LDA(I) if and only if (s ′,p′) ∈
SGS(I). But then s prefers SGS(I) to LDA(I) because of Proposi-
tion 4.5. Therefore, (s,p) is a blocking pair in LDA(I), which is not

possible because of the stability of LDA (Proposition 5). □

Of course, student-optimality of SGS tells us that for any I,

SGS(I) ⪰L LDA(I). Now, somewhat surprisingly, SGS and LDA
are student-incomparable. Take L = (s1,p1), (s1,p2), (s2,p2), (s2,p1)
and assume that both s1 and s2 prefer p2 to p1. Greedy outputs

{(s1,p1), (s2,p2)}. LDA outputs {(s1,p2), (s2,p1)}, which is better

than Greedy for s1 but worse for s2. Still, we have the weaker

property that Greedy cannot be better than LDA for all students:

if s prefers Greedy(I) to LDA(I) then there must be a student s ′

who prefers LDA(I) to Greedy(I).

5 SUMMARY
We have defined three mechanisms that output a set of at most k
student-project pairs from an input consisting of a master list of

pairs and students’ preferences over their acceptable projects. The

list of properties of the obtained matchings and mechanisms are

summarized in the table below.

Greedy LDA SGS all, L sc
⋆

lexicographic optimality + - - +

stability + + + +

permutation strategyprf. + - + +

truncation strategyprf. - - + +

student optimality - - + +

dynamic monotonicity - + + +

Which mechanism to choose depends on the priority of the

university. If what matters before all is the preferences of the com-

mittee expressed by the master list, then Greedy is probably the

one to use: via the master list, it gives the committee the possibility

of expressing the ability of a student to work better on a project

than on another, and can also give priority to some projects or

to some students over others. (This may explain why this mech-

anism is used in some universities.) But the price to pay is that

students may dislike the outcome; especially, they may feel frus-

trated when they see that the outcome is not stable but that they

are not allowed to exchange their projects. The SGS mechanism

enjoys stability, strategyproofness, satisfies dynamic monotonicity,

and is best for students, since its output is student-optimal among

all stable matchings. The price to pay is a weaker importance given

to the preference of the committee expressed by the master list;

perhaps SGS is the mechanism to choose if the risk of students

accepting offers from elsewhere is high. The LDA mechanism is a

trade-off between both, as it seems to have a good balance between

the master list and the students’ preferences (although it can be

sometimes worse than the output of Greedy for some students), and

it outputs a stable matching, and satisfies dynamic monotonicity;

but it is not strategyproof.

ACKNOWLEDGEMENTS
This work was funded in part by the Slovak Research and De-

velopment Agency under the contract APVV-17-0568, and by the

French government under management of Agence Nationale de

la Recherche as part of the "Investissements d’avenir" program,

reference ANR-19-P3IA-0001 (PRAIRIE 3IA Institute), and the ANR

project AGAPE ANR-18-CE23-0013.

Main Track AAMAS 2022, May 9–13, 2022, Online

694

Selecting PhD Students and Projects with Limited Funding AAMAS ’22, May 9–13, 2022, Online

REFERENCES
[1] D.J. Abraham, R.W. Irving, and D.F. Manlove. The Student-Project Allocation

Problem. In Proceedings of ISAAC ’03: the 14th Annual International Symposium on
Algorithms and Computation, volume 2906 of Lecture Notes in Computer Science,
pages 474–484. Springer, 2003.

[2] D.J. Abraham, R.W. Irving, and D.F. Manlove. Two algorithms for the Student-

Project allocation problem. Journal of Discrete Algorithms, 5(1):79–91, 2007.
[3] A.H. Abu El-Atta and M.I. Moussa. Student project allocation with preference

lists over (student,project) pairs. In Proceedings of ICCEE 09: the 2nd International
Conference on Computer and Electrical Engineering, pages 375–379. IEEE, 2009.

[4] K. Cechlárová, L. Gourves, and J. Lesca. On the problem of assigning phd grants.

In Proceedings of the Twenty-Eighth International Joint Conference on Artificial
Intelligence (IJCAI-19), pages 130–136, 2019.

[5] D. Gale and L.S. Shapley. College admissions and the stability of marriage.

American Mathematical Monthly, 69:9–15, 1962.

[6] M. Goto, A. Iwasaki, Y. Kawasaki, R. Kurata, Y. Yasuda, and M. Yokoo. Strate-

gyproof matching with regional minimum and maximum quotas. Artif. Intell.,
235:40–57, 2016.

[7] R.W. Irving, D.F. Manlove, and S. Scott. The stable marriage problem with master

preference lists. Discrete Applied Mathematics, 156(15):2959–2977, 2008.
[8] K. Iwama, S. Miyazaki, and H. Yanagisawa. Improved approximation bounds for

the student-project allocation problem with preferences over projects. Journal of
Discrete Algorithms, 13:59–66, 2012.

[9] A. Kwanashie, R.W. Irving, D.F. Manlove, and C.T.S. Sng. Profile-based optimal

matchings in the Student–Project Allocation problem. In Proceedings of IWOCA
2014: the 25th International Workshop on Combinatorial Algorithms, to appear,

Lecture Notes in Computer Science. Springer, 2015.

[10] D.F. Manlove. Algorithmics of Matching Under Preferences. World Scientific, 2013.

[11] D.F. Manlove and G. O’Malley. Student project allocation with preferences over

projects. Journal of Discrete Algorithms, 6:553–560, 2008.

Main Track AAMAS 2022, May 9–13, 2022, Online

695

	Abstract
	1 Introduction
	1.1 Our contribution
	1.2 Related work

	2 Notation
	3 Criteria
	3.1 Lexicographic Optimality
	3.2 Stability
	3.3 Strategyproofness
	3.4 Dynamic monotonicity

	4 Mechanisms
	4.1 Greedy mechanism
	4.2 Masterlist Proposing Deferred Acceptance
	4.3 Student proposing Gale Shapley
	4.4 Discussion

	5 Summary
	References

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset 46.48, 717.85 Width 531.21 Height 18.81 points
 Origin: bottom left

 1
 0
 BL

 2
 AllDoc
 2

 CurrentAVDoc

 46.481 717.8517 531.2114 18.8137

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 8
 9
 8
 9

 1

 HistoryList_V1
 qi2base

