
How Hard is Safe Bribery?
Neel Karia

∗

Microsoft Research

Bengaluru, India

t-neelkaria@microsoft.com

Faraaz Mallick
∗

IIT Kharagpur

Kharagpur, India

faraazrm@iitkgp.ac.in

Palash Dey

IIT Kharagpur

Kharagpur, India

palash.dey@cse.iitkgp.ac.in

ABSTRACT

Bribery in an election is one of the well-studied control problems

in computational social choice. In this paper, we propose and study

the safe bribery problem. Here the goal of the briber is to ask the

bribed voters to vote in such a way that the briber never prefers

the original winner (of the unbribed election) more than the new

winner, even if the bribed voters do not fully follow the briber’s

advice. Indeed, in many applications of bribery, campaigning for

example, the briber often has limited control on whether the bribed

voters eventually follow her recommendation and thus it is conceiv-

able that the bribed voters can either partially or fully ignore the

briber’s recommendation. We provide a comprehensive complexity

theoretic landscape of the safe bribery problem for many common

voting rules in this paper.

KEYWORDS

Bribery; Voting; Social Choice; Safe Bribery; Shift Bribery; Compu-

tational Complexity; Parameterized Hardness; Algorithms

ACM Reference Format:

Neel Karia, Faraaz Mallick, and Palash Dey. 2022. How Hard is Safe Bribery?.

In Proc. of the 21st International Conference on Autonomous Agents and Mul-

tiagent Systems (AAMAS 2022), Online, May 9–13, 2022, IFAAMAS, 9 pages.

1 INTRODUCTION

Voting has always served as a fundamental tool for aggregating

varied preferences in many applications in real-life and artificial

intelligence [32, 42]. In a typical voting setting, we have a set of

candidates, a set of voters each having a preference over the set of

candidates, and a voting rule which decides a winner based on the

preferences of the voters. Any such voting scenario is susceptible

to various kinds of control attacks – voters or candidates or some

other third party may influence the outcome of the election in their

way through some unfair means [27]. One of the most well-studied

attacks of such type is bribery, where an external agent, called a

briber, offers monetary rewards to some voters to vote as the briber

suggests so that the favourite candidate of the briber wins the

election [21–23]. This bribery problem not only models monetary

bribing but also other situations like campaigning in an election

where the monetary reward corresponds to the amount of time

and energy one needs to spend to campaign for some candidate.

Depending on how the briber needs to pay the voters to change

their votes, various models have been studied. In the $Bribery

problem, each voter has a fixed cost that the briber needs to pay

to make the voter cast the vote of the briber’s choice [21, 22]. In

∗
Both authors contributed equally to the paper

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems

(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9–13,

2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent

Systems (www.ifaamas.org). All rights reserved.

Swap Bribery, the briber has to pay for each swap of consecutive

candidates in a voter’s preference and the price also depends on

the pair of candidates being swapped [16]. In Shift Bribery, the

briber can only shift her favourite candidate by some positions and

the cost depends on the number of positions shifted [4, 5, 33, 39].

To the best of our knowledge, all the existing work on bribery

assumes that the bribed voters cast the exact same vote that the

briber has asked them. Although this may be a reasonable assump-

tion for some applications, in many other applications of bribery,

say campaigning, the briber can never be sure that the voters will

eventually cast the vote of the briber’s choice. Indeed, it may very

well be the case that some subset of voters follows the briber’s

recommendation exactly, some other subset of voters follows them

partially, and the remaining voters complete ignore the briber. More-

over, the briber may not have any knowledge of these sets of voters.

Now the situation will be worse for the briber if she prefers the

original winner more than the winner of the resulting election,

where not all bribed voters cast the votes of the briber’s choice. For

example, let us consider a plurality election where 10 voters vote

for candidate a, 8 voters vote for candidate b, and 4 voters vote

for candidate c. Assume that the briber’s preference is c ≻ a ≻ b

and the briber bribes 6 voters voting originally for a to vote for c.

However, only 3 of the 6 bribed voters eventually follow the briber’s

recommendation, while the other 3 bribed voters simply ignore the

briber. In the resulting election, candidates a and c receive 7 votes

each whereas the candidate b wins the election with 8 votes. We

observe that the briber would prefer the original winner a over the

new winner b. To model this kind of applications more suitably,

we propose the safe bribery problem.

In the safe bribery problem, the briber has a preference ≻B

which is a complete order over the candidates. Given a preference

profile of a set of voters, a cost function for each voter, a favourite

candidate c of the briber, and a budget of the briber, the goal of

the safe bribery problem is to compute if there exists a subset of

voters who can be bribed in such a way that (i) if all the bribed

voters follow the briber’s recommendation, then c wins, and (ii) for

every subset of bribed voters who follows the briber’s recommenda-

tion exactly, every subset of bribed voters who follows the briber’s

recommendation partially, and the other bribed voters ignoring

the briber’s recommendation, the winner of the election is not less

preferred than the winner of the “unbribed” election according to

≻B. We study the safe version of the $Bribery and Shift Bribery

problems in this paper. We also study the computational problem,

called is safe, of deciding if a given bribed profile and a given un-

bribed profile is safe for the briber with respect to a preference of

the briber. We refer the reader to Section 2.2 for the formal defini-

tions of the four problems. Section 3.1 covers some algorithms for

the polynomial-time results, Section 3.2 covers the hardness results,

and Section 4 deals with the parameterized complexity results.

Main Track AAMAS 2022, May 9–13, 2022, Online

714

1.1 Contribution

We provide a comprehensive complexity theoretic landscape of

the $Bribery Is Safe, Safe $Bribery, Shift Bribery Is Safe, and

Safe Shift Bribery problems. We summarise our main results in

Table 1. Other than these results, we also show that all the four

problems are polynomial time solvable for every anonymous and

efficient voting rule when we have a constant number of candidates

[Theorems 3.1 and 3.2]. We also look at safety in Shift Bribery

from a parameterized hardness perspective, and summarise our

results in Tables 2 and 3.

1.2 Related Work

Faliszewski et al. [21] propose the first bribery problem where the

briber’s goal is to change the minimum number of preferences to

make some candidates win the election. Then they extend their ba-

sic model to more sophisticated models, including $Bribery [22, 23].

Elkind et al. [16] extend this model further and study the Swap

Bribery problem (where there is a cost associated with every swap

of candidates), and its special case, the Shift Bribery problem. Dey

et al. [11] show that the bribery problem remains intractable for

many common voting rules for an interesting special case which

they call frugal bribery. The bribery problem has also been studied

in various other preference models, for example, truncated bal-

lots [1], soft constraints [43], approval ballots [45], campaigning in

societies [20], CP-nets [12], combinatorial domains [38], iterative

elections [39], committee selection [5], probabilistic lobbying [3],

local distance restricted bribery [10] etc. Erdelyi et al. [18] study

the bribery problem under voting rule uncertainty. Faliszewski et

al. [25] study bribery for the simplified Bucklin and the Fallback

voting rules. Xia [48], and Kaczmarczyk and Faliszewski [33] study

the destructive variant of bribery. Dorn and Schlotter [13] and Bred-

ereck et al. [4] explore the parameterized complexity of various

bribery problems. Chen et al. [7] provide novel mechanisms to

protect elections from bribery. Knop et al. [36] provide a uniform

framework for various control problems. Although most of the

bribery problems are intractable, a few of them, Shift Bribery for

example, have polynomial time approximation algorithms [15, 35].

Manipulation, a specialization of bribery, is another fundamental

attack on election [8]. In the manipulation problem, a set of voters

(called manipulators) wants to cast their preferences in such a way

that (when tallied with the preferences of other preferences) makes

some candidate win the election. Obraztsova and Elkind [40, 41]

initiate the study of optimal manipulation in that context.

The concept of safety in electoral control problems has been

studied before as well. Slinko and White initiate this line of work

by proposing the notion of safety in the context of manipulation

and studying the class of social choice functions that are safely

manipulable [46, 47]. Hazon and Elkind [30] and Ianovski et al. [31]

study computational complexity of safely manipulating popular

voting rules.

2 PRELIMINARIES

An election is a pair (C,V), where C = {c1, . . . , cm} is a set of

candidates and V = {v1, . . . , vn} is a set of voters. If not mentioned

otherwise, we use n and m to respectively denote the number

of voters and candidates. Each voter vi has a preference order

(vote) ≻i, which is a linear order over C. We denote the set of

all complete orders over C by L(C). We call a list of n preference

orders {≻1,≻2, . . . ,≻n} ∈ L(C)n an n-voter preference profile.

We denote the i
th

preference order of a preference profile P as

≻P
i . A map r : L(C)n → C is called a resolute voting rule (as we

assume the unique-winner model); in case of ties, the winner is

decided by a lexicographic tie-breaking mechanism ≻t, which is

some pre-fixed ordering over the candidates. For a set of candidates

X, let
−→
X be an ordering over them. Then,

←−
X denotes the reversed

ordering of

−→
X .

Let [ℓ] represent the set of positive natural numbers up to ℓ for

any positive integer ℓ. A voting rule r is called anonymous if, for

every preference profile (≻i)i∈[n] ∈ L(C)n and permutation σ

of [n], we have r((≻i)i∈[n]) = r((≻σ(i))i∈[n]). A voting rule is

called efficient if the winner can be computed in polynomial time

of the input length.

A scoring rule is induced by an m-dimensional vector, (α1, . . . ,

αm) ∈ Zm with α1 ⩾ α2 ⩾ . . . ⩾ αm and α1 > αm. A candidate

gets a score of αi from a voter if she is placed at the ith position in

the voter’s preference order. The score of a candidate from a voter

set is the sum of the scores she receives from each of the voters. If

αi is 1 for i ∈ [k] and 0 otherwise, we get the k-approval rule. If

αi is 0 for i ∈ [m − k] and −1 otherwise, we get the k-veto rule.

The scoring rules for score vectors (1, 0, . . . , 0) and (0, . . . , 0,−1)
are called plurality and veto rules respectively. The scoring rule for

score vector (m− 1,m− 2, . . . , 1, 0) is known as the Borda rule.

The scores for the other voting rules studied in the paper (apart

from scoring rules) are defined as follows. Let vs(a,b) be the dif-
ference in the number of votes in which a precedes b and the

number of votes in which a succeeds b, for a,b ∈ C. The max-

imin score of a candidate a is minb≠a vs(a,b). The candidate

with the maximum maximin score (after tie-breaking) is the win-

ner. Given α ∈ [0, 1], the Copeland
α

score of a candidate a is

|{b ≠ a : vs(a,b) > 0}| + α× |{b ≠ a : vs(a,b) = 0}|. The candi-

date with the maximum Copeland
α
score (after tie-breaking) is the

winner. We will assume α to be zero, if not mentioned separately.

A candidate a that has a positive pairwise score vs(a,b) against all
other candidates b ∈ C is called a Condorcet winner. Rules which

select a Condorcet winner as the winner (whenever it exists) are

called Condorcet-consistent rules. Copeland and maximin voting

rules are Condorcet-consistent. The simplified Bucklin score of a

given candidate a is the minimum number k such that more than

half of the voters rank a in their top k positions. The candidate

with the lowest simplified Bucklin score (after tie-breaking) is the

winner and her score is called the Bucklin winning round.

We use s(a) to denote the total score that a candidate a ∈ C gets

in an election. Similarly, if Y ⊆ C, we use s(Y) to refer to the score

of each candidate from Y; e.g. s(Y) = 5 means that each candidate

from Y has a score of 5. The voting rule under consideration will

be clear from the context. Note that we assume that the briber is

aware of the votes cast by each voter.

2.1 Parameterized Complexity

A parameterized problem Π is a subset of Γ∗ × N, where Γ is a

finite alphabet. A central notion is fixed parameter tractability (FPT)

which means, for a given instance (x,k), solvability in time f(k) ·

Main Track AAMAS 2022, May 9–13, 2022, Online

715

Voting Rule $Bribery Is Safe Safe $Bribery Shift Bribery Is Safe Safe Shift Bribery

Plurality P (Theorem 3.3) P (Theorem 3.4) P (Theorem 3.3) P (Theorem 3.4)

k-approval co-NP-complete (Theorem 3.9) NP-hard (Corollary 3.1) P (Corollary 3.3) P (Corollary 3.3)

Veto P (Theorem 3.5) P (Theorem 3.6) P (Theorem 3.5) P (Corollary 3.4)

k-veto co-NP-complete (Corollary 3.5) NP-hard (Corollary 3.1) P (Corollary 3.5) P (Corollary 3.5)

Borda co-NP-complete (Theorem 3.10) NP-hard (Corollary 3.1) co-NP-complete (Theorem 3.11) NP-hard (Corollary 3.1)

S. Bucklin co-NP-complete (Theorem 3.12) NP-hard (Corollary 3.1) P (Theorem 3.7) P (Theorem 3.8)

Copeland co-NP-complete (Theorem 3.13) NP-hard (Corollary 3.1) co-NP-complete (Theorem 3.14) NP-hard (Corollary 3.1)

Maximin co-NP-complete (Theorem 3.13) NP-hard (Corollary 3.1) co-NP-complete (Theorem 3.15) NP-hard (Corollary 3.1)

Table 1: Complexity Results for Safe Bribery

Voting Rule #shifts #bribed voters #candidates

Borda FPT (Theorem 4.1) co-W[1]-hard (Theorem 4.3) XP (Theorem 3.1)

Copeland FPT (Theorem 4.1) co-W[1]-hard (Theorem 4.4) XP (Theorem 3.1)

Maximin FPT (Theorem 4.1) ? XP (Theorem 3.1)

Table 2: Parameterized Complexity Results for Shift Bribery Is Safe

Voting Rule #shifts #candidates #voters #bribed voters OR budget

Borda XP (Theorem 4.2) XP (Theorem 4.2) W[1]-hard (Corollary 3.2) W[2]-hard (Corollary 3.2)

Copeland W[1]-hard (Corollary 3.2) XP (Theorem 4.2) W[1]-hard (Corollary 3.2) W[2]-hard (Corollary 3.2)

Maximin XP (Theorem 4.2) XP (Theorem 4.2) W[1]-hard (Corollary 3.2) W[2]-hard (Corollary 3.2)

Table 3: Parameterized Complexity Results for Safe Shift Bribery

p(|x|), where f is an arbitrary function of k and p is a polynomial

in the input size |x|. There exists a hierarchy of complexity classes

above FPT, and showing that a parameterized problem is hard for

one of these classes is considered evidence that the problem is

unlikely to be fixed-parameter tractable. The main classes in this

hierarchy are: FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[P] ⊆ XP. We now

define the notion of parameterized reduction [9].

Definition 2.1. LetA,B be parameterized problems. We say that

A is fpt-reducible to B if there exist functions f,g : N → N, a
constant α ∈ N and an algorithm Φ which transforms an instance

(x,k) of A into an instance (x ′,g(k)) of B in time f(k)|x|α so that

(x, k) ∈ A if and only if (x ′,g(k)) ∈ B.

2.2 Problem Definition

Let r be any voting rule. We first define when a bribed profile is

“safe” in the context of $Bribery. Let ≻B be the preference of the

briber. Intuitively speaking, we say that a bribed profile is safe if no

candidate preferred less than the original winner (in ≻B), wins the

election when a subset of bribed voters does not follow the briber’s

suggestion but casts their original votes. Formally, we define the

notion of safety for $Bribery as follows.

Definition 2.2. (Safety for $Bribery): Given a voting rule r, a set

C ofm candidates, a set V of n voters, an n-voter profile P = (≻P
i

)i∈[n] ∈ L(C)n, the preferred candidate c ∈ C, a preference order

≻B∈ L(C) of the briber, and another profile Q = (≻Q
i)i∈[n] ∈

L(C)n (representing a bribed profile), we say that Q is safe for P with

respect to≻B if the following conditions hold. Let us definew = r(P)

(where c ≻B w), and Vb = {vi | vi ∈ V, ≻P
i ≠≻

Q
i }. We call the

voters in Vb the bribed voters, and define Vu = V \ Vb.

▷ [Safety] For every subset V ′
b ⊆ Vb, if we have x =

r((≻Q
i)vi∈V′

b
, (≻P

i)vi∈V\V′
b
), then we have x ≻B w or

x = w.

▷ [Success] We have c = r((≻Q
i)vi∈Vb

, (≻P
i)vi∈Vu

).

We now define the computation problem of finding if a bribed

profile is safe.

Definition 2.3. ($Bribery Is Safe): Given a voting rule r, a set C

ofm candidates, an n-voter profile P = (≻P
i)i∈[n] ∈ L(C)n over

C,the preferred candidate c ∈ C, a preference order ≻B∈ L(C) of the

briber, and another profile Q = (≻Q
i)i∈[n] ∈ L(C)n (representing

the bribed profile), compute if Q is safe for P with respect to≻B for r.

We denote any arbitrary instance of $Bribery Is Safe by (C,P, c,≻B

,Q).

We next define the computational problem of safely bribing the

voters in an election.

Definition 2.4. (Safe $Bribery): Given a voting rule r, a set C

of m candidates, a set V of n voters, an n-voter profile P = (≻P
i

)i∈[n] ∈ L(C)n corresponding toV, the preferred candidate c ∈ C, a

preference ≻B∈ L(C) of the briber, a family Π = (πi)i∈[n] ∈ Nn
of cost functions corresponding to every voter, and a budget b ∈ R,
compute if there exists a setVb ⊆ V of voters along with a profileQ =

((≻Q
i)vi∈Vb

, (≻P
i)vi∈V\Vb

) ∈ L(C)n such that the following

conditions hold: (1) Σvi∈Vb
πi ⩽ b, (2) The profile Q is safe for P

Main Track AAMAS 2022, May 9–13, 2022, Online

716

with respect to ≻B for r. An arbitrary instance of Safe $Bribery is

denoted by (C,P, c,≻B,Π,b).

We next define the concept of safety for Shift Bribery. Here,

the concept of safety is more fine-grained. Suppose a voter is bribed

to shift the favourite candidate c of the briber by t positions. How-

ever, it is possible that the bribed voter follows the suggestion of

the briber only partially and shifts c to left by a lesser number of

positions than t. Hence, the briber needs to bribe in this case in such

a way that no unfavourable candidate for the briber (compared to

the original winner) wins the election even if any subset of voters

follow the briber’s suggestion only partially. Formally, it is defined

as follows.

Definition 2.5. (Safety for Shift Bribery): Given a voting rule r,

a set C ofm candidates, a set of V of n voters, an n-voter profile P =

(≻P
i)i∈[n] ∈ L(C)n corresponding to V, the preferred candidate

c ∈ C, a preference order ≻B ∈ L(C) of the briber, and a shift vector
𝔰 = (s1, . . . , sn) ∈ Nn0 , we say that the shift vector 𝔰 is safe for

P with respect to ≻B if the following conditions hold. Let us define

w = r(P) (where c ≻B w) and Q = {≻Q
i | i ∈ [n], ≻Q

i is obtained

from ≻P
i by shifting c to the left by si positions}

▷ [Safety] For every shift vector 𝔰 ′ = (s ′
1
, . . . , s ′n) with s ′i ⩽

si, ∀i ∈ [n], if we have Q ′ = {≻Q
i | i ∈ [n], ≻Q

i is obtained

from ≻P
i by shifting c to the left by s ′i positions} and x =

r(Q ′), then we have x ≻B w or x = w.

▷ [Success] We have c = r(Q).

We next define the problem of computing if a Shift Bribery is

safe.

Definition 2.6. (Shift Bribery Is Safe): Given a voting rule r, a

set C of m candidates, an n-voter profile P = (≻P
i)i∈[n] ∈ L(C)n

over C, a distinguished candidate c ∈ C, a preference order ≻B∈
L(C) of the briber, and a shift vector 𝔰 = (s1, . . . , sn) ∈ Nn0 (corre-

sponding to a bribing strategy), compute if 𝔰 is safe for P with respect

to ≻B for r. We denote any arbitrary instance of Shift Bribery Is

Safe by (C,P, c,≻B,𝔰). Sometimes it will be convenient to define

an instance of Shift Bribery Is Safe as (C,P, c,≻B,Q) where Q is

obtained by applying 𝔰 to P.

We next define the computational problem of bribing the voters

in an election, safely and according to the rules of Shift Bribery.

Definition 2.7. (Safe Shift Bribery): Given a voting rule r, a set

C ofm candidates, a set V of n voters, an n-voter profile P = (≻P
i

)i∈[n] ∈ L(C)n over C, the preferred candidate c ∈ C, a preference

≻B∈ L(C) of the briber, a family Π = (πi : [m − 1] → N)i∈[n]

of cost functions (where πi(0) = 0, ∀i ∈ [n]) corresponding to every
voter, and a budget b ∈ R, compute if there exists a shift vector

𝔰 = (s1, . . . , sn) ∈ Nn0 such that: (1) Σvi∈Vπi(si) ⩽ b (2) The

shift vector 𝔰 is safe for P with respect to ≻B. An arbitrary instance

of Safe Shift Bribery is denoted by (C,P, c,≻B,Π,b).

3 RESULTS

We now present our results. Given an election with its winner w

and the preference ≻B of the briber, we define a set G of “good

candidates” as {a ∈ C : a ≻B w} ∪ {w} and the set B of “bad

candidates” as {a ∈ C : w ≻B a}. For Is Safe, let Vb be the set of

bribed voters, and Vu the rest of the voters.

We begin with showing a connection of Safe Shift Bribery

and Safe $Bribery with the classical problems Shift Bribery and

$Bribery respectively.

Observation 3.1. There is a polynomial-time many-to-one re-

duction from $Bribery to Safe $Bribery and from Shift Bribery to

Safe Shift Bribery.

Letw be the winner of the “unbribed election”. To reduce any in-

stance of $Bribery (Shift Bribery respectively) to Safe $Bribery

(Safe Shift Bribery respectively), we set the preference≻B of the

briber to be c ≻ . . . ≻ w and keep everything else the same. The

reduction is clearly correct and runs in polynomial time.

Many hardness results of Safe $Bribery and Safe Shift Bribery

are obtained as useful corollaries.

Corollary 3.1. If $Bribery (Shift Bribery respectively) is NP-
complete for any anonymous and efficient voting rule, Safe $Bribery

(Safe Shift Bribery respectively) is NP-hard for that voting rule.

Since $Bribery is NP-complete for k-approval, k-veto, Borda,

simplified Bucklin, Copeland and maximin [6, 21, 23, 26], Safe

$Bribery is NP-hard for these voting rules. Similarly, since Shift

Bribery is NP-complete for Borda, Copeland and maximin (using

results from [17]), Safe Shift Bribery is NP-hard for these voting

rules.

Corollary 3.2. If Shift Bribery isW[k]-hard for any anonymous

and efficient voting rule, when parameterized by any parameter, Safe

Shift Bribery is also W[k]-hard for that voting rule, when parame-

terized by the same parameter.

This is because the reduction in Observation 3.1 is also an fpt-

reduction, since the instances of the Shift Bribery and Safe Shift

Bribery problems are the same (preserving the parameter), with

the only difference being the addition of ≻B to the Safe Shift

Bribery instance, which can be done in polynomial time. Since

Shift Bribery is W[2]-hard for Borda, Copeland and maximin

when parameterized by the number of bribed voters or the budget [4,

5], Safe Shift Bribery is also W[2]-hard for these voting rules

when parameterized by either of these two parameters. Since Shift

Bribery is W[1]-hard for Borda, Copeland, and maximin when

parameterized by the number of voters, Safe Shift Bribery is also

W[1]-hard for these three voting rules with number of bribed voters

as the parameter [4]. By a similar reduction, Safe Shift Bribery

for Copeland is W[1]-hard with respect to the number of shifts,

given that Shift Bribery for Copeland isW[1]-hard with respect

to the number of shifts [4].

3.1 Algorithmic Results

We present here our algorithmic results. We show that all our four

problems are polynomial-time solvable for every anonymous and

efficient voting rule when we have a constant number of candidates.

Our results on the scoring rules follow via an algorithm that uses

min-cost flow problem as a crucial subroutine, in a similar manner

as in [19]. In the interest of space, we omit a few proofs. For the

complete proofs, please refer to [34].

Main Track AAMAS 2022, May 9–13, 2022, Online

717

Theorem 3.1. When we have a constant number of candidates,

both $Bribery Is Safe and Shift Bribery Is Safe are in P for every

anonymous and efficient voting rule. That is, both $Bribery Is Safe

and Shift Bribery Is Safe belong to XP with respect to the number

of candidates as the parameter.

Proof Sketch. Let (C,P, c,≻B,Q) and (C,P, c,≻B,𝔰) be any in-
stances of $Bribery Is Safe and Shift Bribery Is Safe respectively.

If r(Q) is not c, we output no since the bribery is not successful

in this case. The number of possible anonymous preference pro-

files is

(m!+n−1

m!−1

)
= O ((n+m)m) = O

(
nO(1)

)
when we have

m = O(1). Let R be any anonymous preference profile such that

r(P) ≻B r(R); if no such R exists, we output yes. We now con-

struct a flow network GR(V ,E,W) to verify if one can obtain the

profile R from P using some bribed voters ignoring the briber’s

suggestion fully (or partially for shift safe bribery).

V = {ai,bi | i ∈ [n]} ∪ {s, t}

E = {(s,ai) | i ∈ [n]} ∪ {(bi, t) | i ∈ [n]} ∪ F

We now describe the set F of edges. There is an edge (ai,bj) in

F if for $Bribery Is Safe, ≻Q
i =≻

R
j or ≻P

i =≻
R
j and for Shift

Bribery Is Safe if ≻R
j can be obtained from ≻P

i by moving c left

by at most si positions. We finally define the capacity of every edge

to be 1. It is easy to check that one can obtain the profile R from P

considering some bribed voters who ignore the briber’s suggestion

fully (or partially for shift safe bribery) if and only if there is an s−t

flow of value n. We output yes if there is noR such that there exists

an s− t flow of value n. Otherwise, we output no. Since maximum

s− t flow can be computed in polynomial time, our algorithm runs

in O ((n+m)m) poly(m,n) time.

Theorem 3.2. When we have a constant number of candidates,

both Safe $Bribery and Safe Shift Bribery are in P for every anony-

mous and efficient voting rule. That is, both Safe $Bribery and Safe

Shift Bribery belong to XP with respect to the number of candidates

as the parameter.

The algorithm is again based on a flow network construction

and runs in O
(
(n+m)2m

)
poly(m,n) time.

We next present our results for specific voting rules, starting

with the plurality voting rule.

Theorem 3.3. For plurality, both $Bribery Is Safe and Shift

Bribery Is Safe are in P.

Proof Sketch. Let (C,P, c,≻B,Q) be any instance of $Bribery

Is Safe for plurality. For every bad candidate 𝔟 ∈ B, we define a

set W𝔟 = {i | i ∈ [n], 𝔟 is the top candidate in

≻P
i }. Let |W𝔟 | = n𝔟 . If r(Q) is not c, we outputno, as the bribed pro-

file is not successful. Else, we try to find a preference profile, where

a bad candidate can win, subject to the constraints of $Bribery Is

Safe. To model this, we construct a flow network for every 𝔟 ∈ B,

named G𝔟 = (V ,E,W), to check if it is possible for 𝔟 to win the elec-
tion by making some bribed voters not to fully follow the briber’s

suggestion.

V = {xi | i ∈ [n]} ∪ {ya | a ∈ C} ∪ {s, t}

E = {(s, xi) | i ∈ [n]} ∪ {(ya, t) | a ∈ C} ∪ F ∪ {(xi,y𝔟) | i ∈W𝔟}

The capacitiesW are as follows. For every i ∈ [n] \W𝔟 , we have

an edge (xi,ya) ∈ F if a is the top-ranked candidate in ≻Q
i or

≻P
i . We define the capacity of edge (ya, t) to be (n𝔟 − 1) for every

a ∈ C \ {𝔟} such that a is preferred over 𝔟 in the tie-breaking rule

and n𝔟 for every a ∈ C \ {𝔟} such that 𝔟 is preferred over a in

the tie-breaking rule. The capacity of the edge (y𝔟 , t) is nb. The

capacity of all other edges is 1. It can be shown that 𝔟 can be made

winner if and only if there is an s− t flow of value n in G𝔟 .

If for every bad candidate 𝔟 ∈ B, the value of maximum s − t

flow is less than n, then we output yes. Otherwise, we output no

(as in this case, no bad candidate can ever win). Since maximum

s−t flow can be computed inO
(
(m+ n)n2

)
using Edmonds-Karp

algorithm [14], and we run at mostm instances of it, our algorithm

runs in O
(
m(m+ n)n2

)
.

Any instance of Shift Bribery Is Safe for plurality (C,P, c,≻B

,𝔰) can be mapped to a $Bribery Is Safe instance by considering

the fact that if c appears in the top 𝔰i + 1 positions in ≻P
i , then c

should be placed at the top position in ≻Q
i , otherwise ≻

Q
i = ≻P

i .

This allows us to use the above construction to solve an Shift

Bribery Is Safe instance of plurality in O
(
m(m+ n)n2

)
time.

We next show that Safe $Bribery and Safe Shift Bribery are

polynomial-time solvable for the plurality and the voting rule.

Theorem 3.4. For plurality, both Safe $Bribery and Safe Shift

Bribery are in P.

Proof Sketch. Let (C,P, c,≻B,Π,b) be an arbitrary instance of

Safe $Bribery for plurality. Let the plurality winner according to

P be w. We may assume without loss of generality that the briber

asks all the bribed voters to have c as their most preferred candidate.

G and B are as defined in Theorem 3.3. Let s(𝔟) denote the initial
score of candidate 𝔟. 𝔟max = max{s(𝔟) | w ≻t 𝔟}, according to

the tie breaking rule, ≻t. Let X = {a ∈ G | s(a) ⩾ 𝔟max,a ≻t 𝔟

or s(a) > 𝔟max}. Initially X is non-empty since w ∈ X. Let λ be

the score of c in the constructed bribed profile. For all candidates

a ∈ C, let us define βa to be λ if c ≻t a and βa to be λ − 1 if

a ≻t c. For every x ∈ X and every final score λ of c which is in the

range s(c) to n, we construct a flow network Gx,λ(V ,E,C,D,W),
defining γx to be 𝔟max if x ≻t 𝔟, else (𝔟max + 1). HereD is the

set of edge demands, w is the set of edge capacities, and C is the

set of edge costs. The construction is as follows:

V = {s, t} ∪ {ui | i ∈ [n]} ∪ {ya | a ∈ C}

E = {(s,ui) | i ∈ [n]} ∪ {(ya, t) | a ∈ C}∪

{(ui,ya) | i ∈ [n],a = c or ≻P
i = a ≻ . . .}

Let the capacities of the edges be as follows. For every candidate

a ∈ C, the edges (ya, t) have a capacity of βa, and the rest of the

edges have capacity 1 each. Let the costs of the edges be defined as

follows. The edges (ui,yc) have cost πi, only if c does not appear

at the top of ≻P
i . The demands (lower bound of flow) on the edges

are as follows. The edge (yc, t) has a demand of λ, the edge (yx, t)
has a demand of γx and the rest of the edges have a demand of 0

each. If there is an s− t flow of value n and cost at most b for some

Gx,λ, then we output yes, and the corresponding edge flow values

help us construct a safe and successful bribed profile. Otherwise

we output no. Safe Shift Bribery can be reduced to this problem

by defining the price of each voter πi to be the cost required to

Main Track AAMAS 2022, May 9–13, 2022, Online

718

shift c to the top in their ordering. This algorithm is polynomial-

time solvable, by running O(mn) iterations of the out-of-kilter

algorithm [28].

Corollary 3.3. For k-approval, both Shift Bribery Is Safe and

Safe Shift Bribery are in P, for every integer k ∈ [2,m− 1].

A bribery instance of k-approval is equivalent to a correspond-

ing bribery instance of plurality, where the cost of moving c to the

top in plurality is equal to the cost of moving c to any of the top

k positions in k-approval (for every voter). The rest follows from

Theorem 3.3 and Theorem 3.4.

Next, we show some polynomial-time results for veto.

Theorem 3.5. For veto, both $Bribery Is Safe and Shift Bribery

Is Safe are in P and can be solved in polynomial time.

The algorithm uses a similar flow network construction and the

time complexity is O
(
m(m+ n)n2

)
.

Theorem 3.6. For veto, Safe $Bribery is in P.

The cheapest Safe $Bribery for veto is obtained by using a

simple greedy algorithm in O
(
n2m log(n) log(m)

)
.

Corollary 3.4. For veto, Safe Shift Bribery is in P.

The result follows from Corollary 3.3.

Next, we take a look at the greedy algorithm for solving Shift

Bribery Is Safe for simplified Bucklin. Although for simplified

Bucklin both Shift Bribery Is Safe and Safe Shift Bribery are

polynomial-time solvable, their $Bribery counterparts are not.

Theorem 3.7. For simplified Bucklin, Shift Bribery Is Safe is in

P.

Proof Sketch.We describe a greedy algorithm to solve Shift

Bribery Is Safe for simplified Bucklin. Consider (C,P, c,≻B,𝔰)
to be an instance of Shift Bribery Is Safe for simplified Bucklin,

with |C| = m. Let the winning candidate according to P be w ∈ C

and w ≠ c.

Let V be the set of voters. Let ℓ be the simplified Bucklin winning

round according to P. It is clear that the winning round for any

candidate x ∈ C \ {c} according to Q is no smaller than ℓ. Partic-

ularly, the winning round for w is either ℓ or ℓ + 1 according to

Q (as explained in [44]). Let scℓ(P,a) denote the number of votes

received by a ∈ C, till the ℓth round according to P.

Let ≻t = c ≻ w ≻
−→
C1 ≻

−→
C2

Let ≻B = c ≻
−→
C1 ≻ w ≻

−→
C2, where

C = C1 ∪ C2 ∪ {c,w}

Note that the above mentioned tie-breaking rule is assumed to

simplify the proof. Clearly C2 is the set of bad candidates. Let

pi(X,a) denote the position of candidate a in the ith vote of some

profile X. If r(Q) ≠ c, we return no, as the bribery is not successful.

Otherwise, we use the following algorithm for checking safety of

Shift Bribery Is Safe in simplified Bucklin.

Let B ′
be the complete subset of bad candidates each having

number of votes greater than ⌊n/2⌋ at the ℓth level. These are the

only candidates who can cause the bribery to be unsafe. Let b ′ ∈ B ′

be a bad candidate who beats all candidates in B ′ \ {b ′} in tie-

breaking. This is the most “powerful” bad candidate, who would be

the first bad candidate to win. Consider a preference profile R and

initialise it to P. Now for every voter vi ∈ V, we do the following

iteratively:

▷ If ∃a ∈ C\C2 such that pi(R,a) = ℓ and scℓ(R,a) > ⌊n/2⌋.
– If 0 < pi(R, c) − pi(R,a) ⩽ si, we create a new vote

≻Rb
i , by shifting c up in ≻R

i , such that pi(Rb,a) −

pi(Rb, c) = 1. We then assign≻R
i =≻Rb

i . If cwins forR,

then Shift Bribery Is Safe is a yes instance; terminate.

– Else, we keep R unchanged.

▷ Else, Shift Bribery Is Safe is a no instance; terminate.

The algorithm runs in O(n) time.

Theorem 3.8. For the simplified Bucklin voting rule, Safe Shift

Bribery is in P, assuming a monotonous price function.

The proof involves 2 cases, one of which uses a flow network,

and the other uses a dynamic programming algorithm from [44].

3.2 Hardness Results

We now present our hardness results. We use the Exact Cover by

3-Sets problem which is known to be NP-complete [29], in many

of our hardness proofs.

Definition 3.1 (Exact Cover by 3-Sets). Given a universe

U = {ui | i ∈ 3t} of 3t elements and a collection S = {Si | i ∈ [m]}
of subsets of U, where |Si| = 3 for each i ∈ [m], compute if there

exists a set I ⊆ [m] such that ∀ i, j ∈ I and i ≠ j, Si ∩ Sj = ∅ and
∪ i∈ISi = U.

We show that $Bribery Is Safe is co-NP-complete for the k-

approval voting rule for every constant k ⩾ 3.

Theorem 3.9. For k-approval, $Bribery Is Safe is co-NP- com-

plete, for k ⩾ 3.

Proof. To see that $Bribery Is Safe belongs to co-NP, any no

instance (C,P, c,≻B,Q) can be verified either from the fact that the

k-approval winner in Q is not c or from the existence of a profile

R = (Ri)i∈[n] such that (i) Ri =≻P
i or Ri =≻Q

i for every i ∈ [n]

and the k-approval winner in R is less preferred in ≻B than the

k-approval winner in P. To prove co-NP-hardness, we exhibit a
reduction from Exact Cover by 3-Sets to $Bribery Is Safe such

that the Exact Cover by 3-Sets instance is a yes instance if and

only if the $Bribery Is Safe instance is a no instance.

Let (U = {u1, . . . ,u3t}, S = {S1, . . . ,Sm}) be any instance of

Exact Cover by 3-Sets. Without loss of generality, we can assume

thatm > t by duplicating the sets in S. We construct an instance

(C,P, c,≻B,Q) of $Bribery Is Safe for k-approval as follows.

C = U ∪ {x,w} ∪D where

D = ⊎i∈[m]D
1

i⊎i∈[m]D
2

i where |D
1

i| = k− 3, |D2

i| = k− 1

≻t = w ≻ c ≻
−−−−→
U \ {c} ≻ x ≻

−→
D

≻B = c ≻
−−−−→
U \ {c} ≻

−→
D ≻ w ≻ x

Here D is a set of dummy candidates, who cannot win, w is the

winner in the “unbribed” preference profile, and c is the winner

Main Track AAMAS 2022, May 9–13, 2022, Online

719

in the bribed preference profile. Using Lemma 4.2 from [2], we

construct a set of “unbribed voters” and their votes such that we

have sVu
(uj) = sVu

(x) − 2 for every j ∈ [3t] and sVu
(w) =

sVu
(x)−(m−t+1). We now describe the set Vb of bribed voters,

and their bribed and original votes. For each i ∈ [m], we have a
bribed voter vi ∈ Vb, with original vote

≻P
i = w ≻

−→
D2

i ≻
−−−−−−−−−−→
C \ ({w} ∪D2

i)

and bribed vote

≻Q
i =
−→
Si ≻

−→
D1

i ≻
−−−−−−−−−→
C \ (Si ∪D1

i)

This finishes the description of the reduced $Bribery Is Safe in-

stance. We claim that the $Bribery Is Safe instance for k-approval

is a no instance if and only if the corresponding instance of Exact

Cover by 3-Sets is a yes instance.

=⇒: Suppose the $Bribery Is Safe instance is a no instance.

We observe that we have only one bad candidate, namely x. Hence,

there exists a subset Y ⊆ Vb such that, if R is the profile where

voters in Y vote according to Q and every other voter votes as

the “unbribed” instance, then the k-approval winner of R is x. We

observe that the k-approval score of x in R is sVu
(x). We claim

that |Y| = t. We have |Y| ⩽ t, otherwise there exists some uj ∈ C

whose score in R is at least sVu
(uj). However, this contradicts

our assumption that x is the k-approval winner in R. Also, |Y| ⩾ t,

otherwise the score of w in R is at least sVu
(w) + m − t + 1.

However, this contradicts our assumption that x is the k-approval

winner in R. Hence, we have |Y| = t. Moreover, for x to win, the

collection {Si : i ∈ [m],≻Q
i ∈ Y} of sets forms an exact cover of

U as this is the only case which makes the k-approval score of w

and uj for every j ∈ [3t] less than the k-approval score of x in R.

Therefore, Exact Cover by 3-Sets is a yes instance.

⇐=: Suppose the Exact Cover by 3-Sets instance is a yes

instance. Let X ⊆ S be an exact cover of U. Let us consider the

preference profile R where only bribed-voters in {vi ∈ Vb : Si ∈
X} vote according to Q and others vote according to P. The k-

approval score of the bad candidate x is sVu
(x), every candidate

in {uj : j ∈ [3t]} ∪ {w} is sVu
(x) − 1, and every candidate in D is

at most 1 in R. Hence, x is the k-approval winner in R. Thus, the

$Bribery Is Safe instance is a no instance. □

Corollary 3.5. For k-veto, Shift Bribery Is Safe and Safe Shift

Bribery are in P, for k > 1; $Bribery Is Safe is co-NP-complete, for

k ⩾ 3.

This follows from Theorem 3.9 and Corollary 3.3.

To get the hardness result for $Bribery Is Safe for Borda, we

use the Exact Cover by (3,4)-Sets problem, which is known to be

NP-complete [24].

Definition 3.2 (Exact Cover by (3,4)-Sets). Given a uni-

verse U = {u1,u2, . . . ,u4m/3} of 4m/3 elements and a collection

S = {Si | i ∈ [m]} of subsets of U, where |Si| = 4 for each

i ∈ [m] and where each ui ∈ U is in exactly 3 sets Sj,Sk,Sl for

some j,k, l ∈ [m]3, compute if there exists a set I ⊆ [m] such that

∀i, j ∈ I, i ≠ j, Si ∩ Sj = ∅ and∪i∈ISi = U.

Theorem 3.10. For Borda, $Bribery Is Safe is co-NP-complete.

Proof Sketch. Firstly $Bribery Is Safe for Borda belongs to

co-NP, provable in a similar fashion as in Theorem 3.9. To prove

co-NP-hardness, we demonstrate a reduction from Exact Cover

by (3,4)-Sets to $Bribery Is Safe such that the Exact Cover by

(3,4)-Sets instance is a yes instance if and only if the $Bribery Is

Safe instance is a no instance.

Let (U = {u1,u2, . . . ,u4m/3}, S = {Si | i ∈ [m]}) be an instance

of Exact Cover by (3,4)-Sets. Let (C,P, c,≻B,Q) be an instance

of $Bribery Is Safe for Borda. Let C = U ∪ {w, x} ∪ D, where

c = uj for some j ∈ [4m/3] is the winner according to Q, and w is

the winner according to P. D is a set of O(m2) dummy candidates

(who can never win). These candidates are added because the proof

requires that |C| = βm2 + γ, where β ⩾ 5/3 and γ ⩾ 15.

Let ≻B be c ≻
−−−−→
U \ {c} ≻

−→
D ≻ w ≻ x. Here x is the only bad

candidate. Let ≻t be w ≻ c ≻
−−−−→
U \ {c} ≻ x ≻

−→
D . Consider V

as the set of voters. Let Vb be the set of m bribed voters (each

corresponding to an Si ∈ S), and Vu be the rest of the voters.

Using Lemma 4.2 from [2], we can construct the election such that

if we consider only the votes in Vu, the scores of the candidates

are in the order sVu
(x) > sVu

(U) > sVu
(w) > sVu

(D), with
sVu

(x)−sVu
(w) = (|C|−1) (2m/3+ 1)+(m/3− 1) and sVu

(x)−

sVu
(ui) = 2βm2 + 2γ− 12. For each i ∈ [m], we have a bribed

voter vi ∈ Vb, with original vote

≻P
i = w ≻

−→
D ≻

−−−→
U \ Si ≻

−→
Si ≻ x

and bribed vote

≻Q
i =
−→
Si ≻

−→
D ≻

−−−→
U \ Si ≻ w ≻ x

It can be shown that an instance of $Bribery Is Safe for Borda

is a no instance if and only if the corresponding instance of Exact

Cover by (3,4)-Sets is a yes instance.

It turns out (by reducing from the Exact Cover by 3-Sets prob-

lem) that for Borda, Shift Bribery Is Safe is also co-NP-complete.

Theorem 3.11. For Borda, Shift Bribery Is Safe is co-NP-
complete.

Another reduction from Exact Cover by 3-Sets can be used

to show that for simplified Bucklin, $Bribery Is Safe is co-NP-
complete.

Theorem 3.12. For simplified Bucklin, $Bribery Is Safe is co-
NP-complete.

Next, we present the hardness results for some tournament-based

rules. For $Bribery Is Safe we obtain a generalized hardness result

which is applicable to any Condorcet-consistent voting rule. All the

three results below are obtained using separate reductions from

the Exact Cover by 3-Sets problem.

Theorem 3.13. For any Condorcet-consistent voting rule,

$Bribery Is Safe is co-NP-complete.

Theorem 3.14. For Copeland, Shift Bribery Is Safe is co-NP-
complete.

Theorem 3.15. For maximin, Shift Bribery Is Safe is co-NP-
complete.

Next we show the parameterized hardness results for Shift

Bribery Is Safe and Safe Shift Bribery.

Main Track AAMAS 2022, May 9–13, 2022, Online

720

4 PARAMETERIZED COMPLEXITY RESULTS

We observe that for each of Copeland, Borda and maximin, Shift

Bribery Is Safe is fixed parameter tractable when parameterized

by the number of shifts.

Theorem 4.1. For all anonymous and efficient voting rules, Shift

Bribery Is Safe parameterized by the number of shifts is fixed pa-

rameter tractable with complexity O
(
(tt)poly(m,n)

)
.

We next see that for Copeland, Borda and maximin, Safe Shift

Bribery is in XP when parameterized by the number of shifts. But

for Copeland, we have an added result from Corollary 3.2, that it is

W[1]-hard with number of shifts as the parameter.

Theorem 4.2. For all anonymous and efficient voting rules, Safe

Shift Bribery parameterized by the number of shifts is in XP with

complexity O
(
(n+ t)t(tt)poly(m,n)

)
.

To show W[k]-hardness, it is enough to give a parameterized

reduction from a known hard problem. Our parameterized hardness

proofs for Shift Bribery Is Safe, considering the number of bribed

voters as a parameter rely on reduction from theW[1]-hard problem
Multicoloured Independent Set.

Definition 4.1 (Multicoloured Independent Set). Con-

sider a graph G = (V ,E) where each vertex has one of h colours, and

compute whether there are h vertices of pairwise-distinct colours such

that no two of them are connected by an edge.

The above problem can be proved to be W[1]-hard, by reducing

it from a variant of the Multicoloured Cliqe problem [37].

In the following theorem, we prove that Shift Bribery Is Safe

for Borda is co-W[1]-hard when parameterized by the number of

bribed voters. The basic structure of this proof is inspired by [5].

Theorem 4.3. For Borda, Shift Bribery Is Safe is co-W[1]-hard,
when parameterized by the number of bribed voters.

Proof Sketch. Let (C,P, c,≻B,Q) be an instance of Shift

Bribery Is Safe for Borda. We give a parameterized reduction

from theW[1]-hardMulticoloured Independent Set problem.

Given a graph G = (V(G),E(G)) where each vertex has one of h

colours. Let (G,h) be our input instance. Without loss of general-

ity, we assume that the number of vertices of each colour is the

same and that there are no edges between vertices of the same

colour. We write V(G) to denote the set of G’s vertices, and E(G)
to denote the set of G’s edges. Further, for every colour i ∈ [h],

we write V(i) = {𝔳
(i)
1

, . . . , 𝔳
(i)
q } to denote the set of vertices of

colour i. For each vertex 𝔳, we write E(𝔳) to denote the set of

edges incident to 𝔳. For each vertex 𝔳, we write δ(𝔳) to denote its

degree, i.e., δ(𝔳) = |E(𝔳)| and we let ∆ = maxu∈V(G)δ(u) be

the highest degree of a vertex G. We form an instance of Shift

Bribery Is Safe for Borda as follows. We let the candidate set be

C = {c, x} ∪ V(G) ∪ E(G) ∪ F(G) ∪D ′ ∪D ′′
, where F(G),D ′

, and

D ′′
are sets of special dummy candidates. We let D ′

and D ′′
have

a cardinality of B+ 1 each, where B = h(q+ (q− 1)∆). For each
vertex 𝔳, we let F(𝔳) be a set of ∆− δ(𝔳) dummy candidates, and

we let F(G) = ∪𝔳∈V(G)F(𝔳). We set F(−i) = ∪𝔳∈V(i′),i′≠iF(𝔳).

Let w ∈ V(G) ∪ E(G) be the winner in P. For each vertex 𝔳, we

define the partial preference order

−−→
S(𝔳):

−−→
S(𝔳) : 𝔳 ≻

−−→
E(𝔳) ≻

−−→
F(𝔳)

For each colour i, we define
−−→
R(i) to be a partial preference order

that ranks first all members of D ′
, then all vertex candidates of

colours other than i, then all edge candidates corresponding to

edges that are not incident to a vertex of colour i, then all dummy

vertices from F(−i), and finally all candidates from D ′′
. Let the

briber’s preference order, ≻B, be: c ≻
−−−−−−−→
C \ {c, x,w} ≻ w ≻ x, and

let the tie-breaking rule, ≻t, be c ≻ w ≻
−−−−−−−→
C \ {c,w, x} ≻ x. We

therefore let x be the only bad candidate.

Let Vb be the set of bribed voters. We define two sets of h voters

each, Vb1
and Vb2

such that Vb = Vb1
⊎ Vb2

. For each i ∈ [h],
we have a voter vi1 ∈ Vb1

, whose preferences in P and Q are:

≻P
i1
=
−−−−→
S(𝔳

(i)
1

) ≻
−−−−→
S(𝔳

(i)
2

) ≻ · · · ≻
−−−−→
S(𝔳

(i)
q) ≻ c ≻ x ≻

−−→
R(i)

≻Q
i1
= c ≻

−−−−→
S(𝔳

(i)
1

) ≻
−−−−→
S(𝔳

(i)
2

) ≻ · · · ≻
−−−−→
S(𝔳

(i)
q) ≻ x ≻

−−→
R(i)

Similarly for each i ∈ [h] we have a voter vi2 ∈ Vb2
, whose

preferences in P and Q are:

≻P
i2
=
←−−−−
S(𝔳

(i)
q) ≻

←−−−−−
S(𝔳

(i)
q−1

) ≻ · · · ≻
←−−−−
S(𝔳

(i)
1

) ≻ c ≻ x ≻
−−→
R(i)

≻Q
i2
= c ≻

←−−−−
S(𝔳

(i)
q) ≻

←−−−−−
S(𝔳

(i)
q−1

) ≻ · · · ≻
←−−−−
S(𝔳

(i)
1

) ≻ x ≻
−−→
R(i)

Let Vu be the voters who were not bribed. They are of the

following types. There are h voters (∀i ∈ [h]), each of types (i)-1

and (i)-2;

(i)-1:

←−−
R(i) ≻ x ≻ c ≻

←−−−−
S(𝔳

(i)
q) ≻ · · · ≻

←−−−−
S(𝔳

(i)
2

) ≻
←−−−−
S(𝔳

(i)
1

)

(i)-2:

←−−
R(i) ≻ x ≻ c ≻

−−−−→
S(𝔳

(i)
1

) ≻ · · · ≻
−−−−−→
S(𝔳

(i)
q−1

) ≻
−−−−→
S(𝔳

(i)
q)

There is 1 voter, each of type (ii)-1 and (ii)-2;

(ii)-1:

−−→
F(G) ≻

−−→
V(G) ≻ x ≻

−−→
E(G) ≻

−→
D ′ ≻ c ≻

−→
D ′′

(ii)-2: Reverse (ii)-1, and then shift c to the right by B− 1 places

and shift V(G) ∪ {x} ∪ E(G) to the left by 1 place.

Let L be the score of c prior to executing any shift actions. Simple

calculations show that each candidate in V(G) ∪ {x} ∪ E(G) has
score L+B+ 1, and each candidate in F(G)∪D ′ ∪D ′′

has score at

most L+ B. Now, it is easy to show that Shift Bribery Is Safe for

Borda is a no instance if and only if Multicoloured Independent

Set is a yes instance.

Next, we obtain a similar result for Copeland, using a reduction

from the Multicoloured Independent Set problem.

Theorem 4.4. For Copeland, Shift Bribery Is Safe is co-W[1]-
hard, when parameterized by the number of bribed voters.

5 CONCLUSION

In this paper, we propose and study a nuanced notion of bribery

which we call safe bribery. We observe that the computational

complexity of safe bribery, for both $Bribery and Shift Bribery,

matches with the classical bribery problem for common voting

rules. Hence, safety during bribery can often be achieved without

incurring much additional computational overhead. However, we

obtained some interesting results for k-approval, k-veto and sim-

plified Bucklin, which were in P for the Shift Bribery problems

but hard for $Bribery problems. Our work is a natural extension

of the bribery problem and can be further studied with respect to

approximation algorithms and multi-winner voting rules.

Main Track AAMAS 2022, May 9–13, 2022, Online

721

REFERENCES

[1] Dorothea Baumeister, Piotr Faliszewski, Jérôme Lang, and Jörg Rothe. 2012.

Campaigns for lazy voters: truncated ballots. In Proc. 11th International Conference

on Autonomous Agents and Multiagent Systems, AAMAS 2012, Valencia, Spain,

June 4-8, 2012 (3 Volumes). 577–584.

[2] Dorothea Baumeister, Magnus Roos, and Jörg Rothe. 2011. Computational com-

plexity of two variants of the possible winner problem. In The 10th International

Conference on Autonomous Agents and Multiagent Systems-Volume 2. 853–860.

[3] Daniel Binkele-Raible, Gábor Erdélyi, Henning Fernau, Judy Goldsmith, Nicholas

Mattei, and Jörg Rothe. 2014. The complexity of probabilistic lobbying. In Algo-

rithmic Decision Theory, Vol. 11. Discrete Optimization, 1–21.

[4] Robert Bredereck, Jiehua Chen, Piotr Faliszewski, André Nichterlein, and Rolf

Niedermeier. 2014. Prices Matter for the Parameterized Complexity of Shift

Bribery. In Proc. 28th AAAI Conference on Artificial Intelligence (AAAI). 1398–

1404.

[5] Robert Bredereck, Piotr Faliszewski, Rolf Niedermeier, and Nimrod Talmon.

2016. Complexity of Shift Bribery in Committee Elections.. In Proc. 30th AAAI

Conference on Artificial Intelligence (AAAI). 2452–2458.

[6] Eric Brelsford, Piotr Faliszewski, Edith Hemaspaandra, Henning Schnoor, and

Ilka Schnoor. 2008. Approximability of Manipulating Elections.. In AAAI, Vol. 8.

44–49.

[7] Lin Chen, Lei Xu, Shouhuai Xu, Zhimin Gao, Nolan Shah, Yang Lu, and Wei-

dong Shi. 2018. Protecting Election from Bribery: New Approach and Compu-

tational Complexity Characterization. In Proc. 17th International Conference on

Autonomous Agents and MultiAgent Systems (AAMAS). 1894–1896.

[8] Vincent Conitzer and Toby Walsh. 2016. Barriers to Manipulation in Voting.

In Handbook of Computational Social Choice. 127–145. https://doi.org/10.1017/

CBO9781107446984.007

[9] Marek Cygan, Fedor V Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx,

Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. 2015. Parameterized

algorithms. Vol. 5. Springer.

[10] Palash Dey. 2021. Local distance constrained bribery in voting. Theor. Comput.

Sci. 849 (2021), 1–21. https://doi.org/10.1016/j.tcs.2020.10.005

[11] Palash Dey, Neeldhara Misra, and Y. Narahari. 2017. Frugal bribery in voting.

Theor. Comput. Sci. 676 (2017), 15–32.

[12] Britta Dorn and Dominikus Krüger. 2016. On the hardness of bribery variants

in voting with CP-nets. Ann. Math. Artif. Intell. 77, 3-4 (2016), 251–279. https:

//doi.org/10.1007/s10472-015-9469-3

[13] Britta Dorn and Ildikó Schlotter. 2012. Multivariate complexity analysis of swap

bribery. Algorithmica 64, 1 (2012), 126–151.

[14] Jack Edmonds and Richard M Karp. 1972. Theoretical improvements in algo-

rithmic efficiency for network flow problems. Journal of the ACM (JACM) 19, 2

(1972), 248–264.

[15] Edith Elkind and Piotr Faliszewski. 2010. Approximation algorithms for cam-

paign management. In International Workshop on Internet and Network Economics.

Springer, 473–482.

[16] Edith Elkind, Piotr Faliszewski, and Arkadii Slinko. 2009. Swap bribery. In Proc.

2nd International Symposium on Algorithmic Game Theory (SAGT 2009). Springer,

299–310.

[17] Edith Elkind, Piotr Faliszewski, and Arkadii Slinko. 2009. Swap Bribery. In

Algorithmic Game Theory, Marios Mavronicolas and Vicky G. Papadopoulou

(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 299–310.

[18] Gabor Erdelyi, Edith Hemaspaandra, and Lane A Hemaspaandra. 2014. Bribery

and voter control under voting-rule uncertainty. In Proceedings of the 2014 inter-

national conference on Autonomous agents and multi-agent systems. 61–68.

[19] Piotr Faliszewski. 2008. NonuniformBribery. In Proceedings of the 7th International

Joint Conference on Autonomous Agents andMultiagent Systems - Volume 3 (Estoril,

Portugal) (AAMAS ’08). International Foundation for Autonomous Agents and

Multiagent Systems, 1569–1572.

[20] Piotr Faliszewski, Rica Gonen, Martin Kouteckỳ, and Nimrod Talmon. 2018.

OpinionDiffusion andCampaigning on Society Graphs.. In Proc. 27th International

Joint Conference on Artificial Intelligence, IJCAI. 219–225.

[21] Piotr Faliszewski, Edith Hemaspaandra, and Lane A Hemaspaandra. 2006. The

complexity of bribery in elections. In AAAI, Vol. 6. 641–646.

[22] Piotr Faliszewski, Edith Hemaspaandra, and Lane A Hemaspaandra. 2009. How

hard is bribery in elections? Journal of artificial intelligence research 35 (2009),

485–532.

[23] Piotr Faliszewski, Edith Hemaspaandra, Lane A Hemaspaandra, and Jörg Rothe.

2009. Llull and Copeland voting computationally resist bribery and constructive

control. Journal of Artificial Intelligence Research 35 (2009), 275–341.

[24] Piotr Faliszewski, Edith Hemaspaandra, and Henning Schnoor. 2008. Copeland

voting: Ties matter. In Proceedings of the 7th international joint conference on

Autonomous agents and multiagent systems-Volume 2. Citeseer, 983–990.

[25] Piotr Faliszewski, Yannick Reisch, Jörg Rothe, and Lena Schend. 2014. Complexity

of manipulation, bribery, and campaign management in Bucklin and fallback vot-

ing. In Proc. 13th International Conference on Autonomous Agents and Multiagent

Systems (AAMAS). 1357–1358.

[26] Piotr Faliszewski, Yannick Reisch, Jörg Rothe, and Lena Schend. 2015. Complexity

of manipulation, bribery, and campaign management in Bucklin and fallback

voting. Autonomous Agents and Multi-Agent Systems 29, 6 (2015), 1091–1124.

[27] Piotr Faliszewski and Jörg Rothe. 2016. Control and Bribery in Voting. In

Handbook of Computational Social Choice, Felix Brandt, Vincent Conitzer, Ulle

Endriss, Jérôme Lang, and Ariel D. Procaccia (Eds.). Cambridge University Press,

146–168. https://doi.org/10.1017/CBO9781107446984.008

[28] Delbert R Fulkerson. 1961. An out-of-kilter method for minimal-cost flow prob-

lems. J. Soc. Indust. Appl. Math. 9, 1 (1961), 18–27.

[29] Michael R. Garey and David S. Johnson. 1990. Computers and Intractability; A

Guide to the Theory of NP-Completeness. W. H. Freeman & Co., USA.

[30] Noam Hazon and Edith Elkind. 2010. Complexity of safe strategic voting. In

International Symposium on Algorithmic Game Theory. Springer, 210–221.

[31] Egor Ianovski, Lan Yu, Edith Elkind, and Mark C Wilson. 2011. The complexity

of safe manipulation under scoring rules. In Twenty-Second International Joint

Conference on Artificial Intelligence.

[32] Benjamin N Jackson, Patrick S Schnable, and Srinivas Aluru. 2008. Consensus

genetic maps as median orders from inconsistent sources. IEEE/ACM Transactions

on computational biology and bioinformatics 5, 2 (2008), 161–171.

[33] Andrzej Kaczmarczyk and Piotr Faliszewski. 2016. Algorithms for destructive

shift bribery. In Proc. 15th International Conference on Autonomous Agents &

Multiagent Systems (AAMAS). 305–313.

[34] Neel Karia, Faraaz Mallick, and Palash Dey. 2022. How Hard is Safe Bribery?

arXiv preprint arXiv:2201.10383 (2022).

[35] Orgad Keller, Avinatan Hassidim, and NoamHazon. 2018. Approximating Bribery

in Scoring Rules. In Proc. 32nd International Conference on Artificial Intelligence

(AAAI). 1121–1129.

[36] Dušan Knop, Martin Koutecký, and Matthias Mnich. 2018. A Unifying Framework

for Manipulation Problems. In Proc. 17th International Conference on Autonomous

Agents and MultiAgent Systems (AAMAS). 256–264.

[37] Luke Mathieson and Stefan Szeider. 2012. Editing graphs to satisfy degree

constraints: A parameterized approach. J. Comput. System Sci. 78, 1 (2012), 179–

191. https://doi.org/10.1016/j.jcss.2011.02.001 JCSS Knowledge Representation

and Reasoning.

[38] Nicholas Mattei, Maria Silvia Pini, Francesca Rossi, and Kristen Brent Venable.

2012. Bribery in Voting Over Combinatorial Domains Is Easy.. In ISAIM.

[39] Cynthia Maushagen, Marc Neveling, Jörg Rothe, and Ann-Kathrin Selker. 2018.

Complexity of Shift Bribery in Iterative Elections. In Proc. 17th International

Conference on Autonomous Agents and MultiAgent Systems (AAMAS). 1567–1575.

[40] Svetlana Obraztsova and Edith Elkind. 2012. Optimal Manipulation of Voting

Rules. In Proc. 26th AAAI Conference on Artificial Intelligence (AAAI). 2141–2147.

[41] Svetlana Obraztsova and Edith Elkind. 2012. Optimal manipulation of voting

rules. In Proc. 11th International Conference on Autonomous Agents and Multiagent

Systems (AAMAS). 619–626.

[42] David M. Pennock, Eric Horvitz, and C. Lee Giles. 2000. Social Choice Theory and

Recommender Systems: Analysis of the Axiomatic Foundations of Collaborative

Filtering. In Proc. 17th National Conference on Artificial Intelligence and 12th

Conference on on Innovative Applications of Artificial Intelligence, July 30 - August

3, 2000, Austin, Texas, USA. 729–734. http://www.aaai.org/Library/AAAI/2000/

aaai00-112.php

[43] Maria Silvia Pini, Francesca Rossi, and Kristen Brent Venable. 2013. Bribery in

voting with soft constraints. In Proceedings of the AAAI Conference on Artificial

Intelligence, Vol. 27.

[44] Ildikó Schlotter, Piotr Faliszewski, and Edith Elkind. 2011. Campaignmanagement

under approval-driven voting rules. In Proceedings of the AAAI Conference on

Artificial Intelligence, Vol. 25.

[45] Ildikó Schlotter, Piotr Faliszewski, and Edith Elkind. 2017. Campaignmanagement

under approval-driven voting rules. Algorithmica 77, 1 (2017), 84–115.

[46] Arkadii Slinko and Shaun White. 2008. Nondictatorial social choice rules are

safely manipulable. In Proceedings of the Second International Workshop on Com-

putational Social Choice (COMSOC-2008). 403–414.

[47] Arkadii Slinko and Shaun White. 2014. Is it ever safe to vote strategically? Social

Choice and Welfare 43, 2 (2014), 403–427.

[48] Lirong Xia. 2012. Computing the margin of victory for various voting rules. In

Proceedings of the 13th ACM Conference on Electronic Commerce. 982–999.

Main Track AAMAS 2022, May 9–13, 2022, Online

722

https://doi.org/10.1017/CBO9781107446984.007
https://doi.org/10.1017/CBO9781107446984.007
https://doi.org/10.1016/j.tcs.2020.10.005
https://doi.org/10.1007/s10472-015-9469-3
https://doi.org/10.1007/s10472-015-9469-3
https://doi.org/10.1017/CBO9781107446984.008
https://doi.org/10.1016/j.jcss.2011.02.001
http://www.aaai.org/Library/AAAI/2000/aaai00-112.php
http://www.aaai.org/Library/AAAI/2000/aaai00-112.php

	Abstract
	1 Introduction
	1.1 Contribution
	1.2 Related Work

	2 Preliminaries
	2.1 Parameterized Complexity
	2.2 Problem Definition

	3 Results
	3.1 Algorithmic Results
	3.2 Hardness Results

	4 Parameterized Complexity Results
	5 Conclusion
	References

