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ABSTRACT
Recent success in reinforcement learning (RL) has brought renewed

attention to the design of reward functions by which agent behav-

ior is reinforced or deterred. Manually designing reward functions

is tedious and error-prone. An alternative approach is to specify

a formal, unambiguous logic requirement, which is automatically

translated into a reward function to be learned from. Omega-regular

languages, of which Linear Temporal Logic (LTL) is a subset, are a

natural choice for specifying such requirements due to their use in

verification and synthesis. However, current techniques based on

omega-regular languages learn in an episodic manner whereby the

environment is periodically reset to an initial state during learning.

In some settings, this assumption is challenging or impossible to

satisfy. Instead, in the continuing setting the agent explores the

environment without resets over a single lifetime. This is a more

natural setting for reasoning about omega-regular specifications de-

fined over infinite traces of agent behavior. Optimizing the average

reward instead of the usual discounted reward is more natural in

this case due to the infinite-horizon objective that poses challenges

to the convergence of discounted RL solutions.

We restrict our attention to the omega-regular languages which

correspond to absolute liveness specifications. These specifications
cannot be invalidated by any finite prefix of agent behavior, in

accordance with the spirit of a continuing problem. We propose a

translation from absolute liveness omega-regular languages to an

average reward objective for RL. Our reduction can be done on-the-

fly, without full knowledge of the environment, thereby enabling

the use of model-free RL algorithms. Additionally, we propose a

reward structure that enables RL without episodic resetting in com-

municating MDPs, unlike previous approaches. We demonstrate

empirically with various benchmarks that our proposed method of

using average reward RL for continuing tasks defined by omega-

regular specifications is more effective than competing approaches

that leverage discounted RL.
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1 INTRODUCTION
The area of reinforcement learning (RL) for sequential decision-

making has witnessed tremendous success in recent years. This

is evidenced by RL architectures with superhuman performance

in games of perception and precision such as Go [1, 2], general

board games [3], and Atari [4–6], among others. In these settings,

the reward signal by which agent experience is labeled for positive

or negative reinforcement need only account for the current state

observed by the agent and the action chosen by the same. However,

it is often necessary or useful to account for the history of the

agent when arbitrating the credit assignment computed by the

reward function of the underlying decision process. Examples of

this include learning in decision processes where rewards are sparse

[7], where states are partially observable [8], or where the objective

is temporally extended [9]. Moreover, it is often more natural to

express the goal of the agent as the language of desirable and

undesirable outcomes, with the reward signal reflecting the pursuit

and avoidance, respectively, of such behaviors. The use of formal

language structures to define such behavioral specifications has

been well-studied in the area of formal verification and is gaining

traction in specifying reward signals for RL. These specifications

take the form of automata with various accepting conditions that

define the language they capture. It is worth noting that there

exist techniques to translate natural language objectives to their

corresponding automata representations in some settings [10].

The recent development of reward machines provides a similar

structured representation of the underlying reward signal and can

capture non-Markovian, or history-dependent, behavior [11, 12].

These reward machines are automata whose transitions denote

the reward observed by an agent for traversing from the initial

node in the reward machine to some other node via a sequence

of transitions that capture semantically meaningful events in the

decision process. This naturally enables the definition of temporally

extended objectives in RL as well as the augmentation of the under-

lying decision process to include observed transitions in the reward
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machine, thereby transforming some non-Markovian objectives

into Markovian tasks over the augmented decision process [13, 14].

Traditional off-the-shelf RL solutions can be employed for these

Markovian tasks.

The field of RL [15] studies sampling-based approaches to derive

decision-making policies that rely on scalar reward signals to opti-

mize for the underlying learning objective. Samples of behavior and

their associated rewards are used in a data-driven fashion to refine

state or action value functions and compute policies that maximize

expected cumulative reward. In episodic RL, the environment is

periodically reset to an initial state over the course of learning. In

continuing RL, the environment is not reset and the agent seeks

to maximize its performance over its lifetime. Additionally, the

environment in this setting should permit the agent to visit any

state from all other states, in order to allow the agent to correct

early mistakes. Such an environment is called communicating.
The foregoing notions of formal languages and RL have been

used to great effect in the formal synthesis of control policies, which

has garnered much interest in recent years [16–18]. This paradigm

enables developers to focus on defining the behavioral specifica-

tion of interest in some formal language as opposed to translating

and implementing said specification as a reward signal or learning

objective manually, which is known to be error-prone and lacking

guarantees of behavior [19]. Formal synthesis algorithms leverage

the underlying specification and compute a correct-by-construction

policy yielding the desired behavior. In this paper, we explore such

formal synthesis of policies through the use of average-reward

model-free reinforcement learning (RL) [20, 21] for a class of formal

specifications expressed in omega-regular languages [22]. These

languages provide a rich formalism to unambiguously express de-

sired properties of the system. These languages are accepted by

automata on infinite words, where a word denotes a sequence of

semantically meaningful observations observed by the agent. We

introduce the notion of nondeterministic reward machines to cap-

ture reward inherent in 𝜔-regular automata. Then, by computing a

product Markov decision process (MDP) between the reward ma-

chine of an 𝜔-regular specification and the MDP that models the

agent-environment dynamics, existing continuing RL algorithms

can be readily adopted to search for an optimal policy.

We focus our attention to the problem of translating omega-regular
objectives to average reward for model-free RL. This is justified by

challenges facing the adoption of discounted RL for continuing

tasks, as discussed in the sequel. Consider the cumulative reward

that is often expressed as a discounted sum of the individual rewards

received by the agent at each step. The use of a discount factor

ensures that the cumulative reward is bounded even for an infinite

sequence of actions and rewards, thereby facilitating convergence.

While mathematically convenient, discounting results in short-term

rewards being valued higher than the long-run performance of the

system. Thus, obtaining a suitable policy for long-run behavior

depends on choosing the right discount factor, which may have

to approach 1 as the size of the environment increases. However,

choosing a discount factor close to 1 results in a weak contraction

in RL algorithms, causing slow convergence and instability. This is

exacerbated in continuing task settings, where one has to choose

a very high discount factor to approximate the maximization of

long-run performance. Moreover, despite the success of discounted

RL for episodic tasks [5], the solution of discounted RL depends on

initial state distributions, which makes it an optimization that is not

compatible with function approximations in continuing settings

[23]. Such function approximation is critical for learning policies on

large-scale models as evidenced by the adoption of large learning

models in state-of-the-art RL solutions. Thus, a natural alternative

to discounting is to optimize the average reward of the agent in

these settings.

However, the adoption of average reward RL faces its own set of

challenges. While establishing the existence of an optimal policy

for discounted RL is relatively straightforward, analyzing MDPs

with the average reward objective is more difficult and requires

some assumptions over the structure of the underlying MDP. Un-

like discounted RL approaches, where the discount factor plays

the role of the contraction parameter and enables convergence, in

average reward RL algorithms the contraction factor depends on

communicating assumptions of theMDP.When the communicating

assumption is satisfied, there are model-free convergent average

reward RL algorithms. Satisfying the communicating assumption

presents a challenge to the adoption of average reward RL for the

formal synthesis of policies satisfying omega-regular specifications.

Indeed, the product MDP resulting from the property and the under-

lying MDP may not be communicating. When episodic resetting is

unavailable, communication is a natural assumption. The challenge

is then to ensure that this property is preserved in the product

MDP. We demonstrate that this communicating property is pre-

served in the product MDP for an important class of omega-regular

specifications by leveraging the proposed reward machines.

The main contribution of this paper is to provide an average-

reward model-free RL algorithm for the design of policies that

satisfy a given absolute liveness omega-regular specification. Our

approach ensures that the communicating property is preserved

in the product, enabling the learning of optimal policies, while not

requiring episodic resetting. Despite the assumption of commu-

nicating MDPs, the naive synchronization of the MDP with the

automaton is not generally communicating. We propose a reward

machine and an augmented specification such that the communi-

cating property of the synchronized MDP is preserved. Our work

is the first to provide a translation from omega-regular objectives

to average-reward RL with formal guarantees. We validate our ap-

proach with an implementation of the proposed construction and

demonstrate its effectiveness on several benchmarks.

The paper is organized as follows. Section 2 includes the pre-

liminaries and states the problem definition. Section 3 presents the

main results of the paper, which establish a novel algorithm for

producing optimal policies for an absolute liveness property with

average reward RL. In Section 4, we test the performance of our ap-

proach on different case studies against prior techniques. Section 5

discusses related work in formal synthesis, average reward RL, and

related areas. We conclude with a summary in Section 6.

2 PROBLEM DEFINITION
Markov Decision Processes. Let D(𝑆) be the set of distributions
over a given set 𝑆 . A Markov decision process (MDP) M is a tuple

(𝑆, 𝑠0, 𝐴,𝑇 ,𝐴𝑃, 𝐿) where 𝑆 is a finite set of states, 𝑠0 ∈ 𝑆 is the

initial state, 𝐴 is a finite set of actions, 𝑇 : 𝑆 × 𝐴 −⇁ D(𝑆) is the
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probabilistic transition function,𝐴𝑃 is the set of atomic propositions,
and 𝐿 : 𝑆 → 2

𝐴𝑃
is the labeling function.

For any state 𝑠 ∈ 𝑆 , we let 𝐴(𝑠) denote the set of actions that
can be selected in state 𝑠 . An MDP is a Markov chain if 𝐴(𝑠) is
singleton for all 𝑠 ∈ 𝑆 . For states 𝑠, 𝑠 ′ ∈ 𝑆 and 𝑎 ∈ 𝐴(𝑠), 𝑇 (𝑠, 𝑎) (𝑠 ′)
equals 𝑝 (𝑠 ′ |𝑠, 𝑎). A run of M is an 𝜔-word ⟨𝑠0, 𝑎1, 𝑠1, . . .⟩ ∈ 𝑆 ×
(𝐴 × 𝑆)𝜔 such that 𝑝 (𝑠𝑖+1 |𝑠𝑖 , 𝑎𝑖+1)>0 for all 𝑖 ≥ 0. A finite run is

a finite such sequence. For a run 𝑟 = ⟨𝑠0, 𝑎1, 𝑠1, . . .⟩ we define the
corresponding labeled run as 𝐿(𝑟 ) = ⟨𝐿(𝑠0), 𝐿(𝑠1), . . .⟩ ∈ (2𝐴𝑃 )𝜔 .
We write RunsM (FRunsM ) for the set of runs (finite runs) of the
MDPM and RunsM (𝑠) (FRunsM (𝑠)) for the set of runs (finite runs)
of the MDP M starting from the state 𝑠 . We write last (𝑟 ) for the
last state of a finite run 𝑟 .

A strategy in M is a function 𝜎 : FRuns → D(𝐴) such that

supp(𝜎 (𝑟 )) ⊆ 𝐴(last (𝑟 )), where supp(𝑑) denotes the support of the
distribution𝑑 . A memory skeleton is a tuple𝑀 = (𝑀,𝑚0, 𝛼𝑢 ) where
𝑀 is a finite set of memory states,𝑚0 is the initial state, and 𝛼𝑢 :

𝑀×Σ → 𝑀 is the memory update function. We define the extended

memory update function 𝛼𝑢 : 𝑀×Σ∗ → 𝑀 in a straightforward

way. A finite memory strategy forM over a memory skeleton𝑀

is a Mealy machine (𝑀,𝛼𝑥 ) where 𝛼𝑥 : 𝑆×𝑀 → D(𝐴) is the next
action function that suggests the next action based on the MDP and

memory state. The semantics of a finite memory strategy (𝑀,𝛼𝑥 )
is given as a strategy 𝜎 : FRuns → D(𝐴) such that for every

𝑟 ∈ FRuns we have that 𝜎 (𝑟 ) = 𝛼𝑥 (last (𝑟 ), 𝛼𝑢 (𝑚0, 𝐿(𝑟 ))).
A strategy 𝜎 is pure if 𝜎 (𝑟 ) is a point distribution for all runs

𝑟 ∈ FRunsM and is mixed (short for strictly mixed) if supp(𝜎 (𝑟 )) =
𝐴(last (𝑟 )) for all runs 𝑟 ∈ FRunsM . Let RunsM𝜎 (𝑠) denote the subset
of runs RunsM (𝑠) that correspond to strategy 𝜎 with initial state

𝑠 . Let ΠM be the set of all strategies. We say that 𝜎 is stationary if

last (𝑟 ) = last (𝑟 ′) implies 𝜎 (𝑟 ) = 𝜎 (𝑟 ′) for all runs 𝑟, 𝑟 ′ ∈ FRunsM .

A stationary strategy can be given as a function 𝜎 : 𝑆 → D(𝐴). A
strategy is positional if it is both pure and stationary.

An MDPM under a strategy 𝜎 results in a Markov chainM𝜎 . If

𝜎 is a finite memory strategy, thenM𝜎 is finite-state Markov chain.

The behavior of anMDPM under a strategy 𝜎 and starting state 𝑠 ∈
𝑆 is defined on a probability space (RunsM𝜎 (𝑠), FRunsM𝜎 (𝑠) , Pr

M
𝜎 (𝑠))

over the set of infinite runs of 𝜎 with starting state 𝑠 . Given a

random variable 𝑓 : RunsM → R, we denote by EM𝜎 (𝑠) {𝑓 } the
expectation of 𝑓 over the runs of M originating at 𝑠 that follow 𝜎 .

A sub-MDP of M is an MDP M ′ = (𝑆 ′, 𝐴′,𝑇 ′, 𝐴𝑃, 𝐿′), where
𝑆 ′ ⊂ 𝑆 , 𝐴′ ⊆ 𝐴 is such that 𝐴′(𝑠) ⊆ 𝐴(𝑠) for every 𝑠 ∈ 𝑆 ′, and
𝑇 ′

and 𝐿′ are analogous to 𝑇 and 𝐿 when restricted to 𝑆 ′ and 𝐴′
.

Moreover M ′
is closed under probabilistic transitions. An end-

component [24] of an MDPM is a sub-MDPM ′
such that for every

state pair 𝑠, 𝑠 ′ ∈ 𝑆 ′ there is a strategy that can reach 𝑠 ′ from 𝑠

with positive probability. A maximal end-component is an end-

component that is maximal under set-inclusion. Every state 𝑠 of an

MDPM belongs to at most one maximal end-component. An MDP

M is communicating if it is equal to its maximal end-component. A

bottom strongly connected component (BSCC) of a Markov chain is

any of its end-components.

Reward Machines. In the classical RL literature, the learning ob-

jective is specified usingMarkovian reward functions, i.e. a function

𝜌 : 𝑆 ×𝐴 → R assigning utility to state-action pairs. A rewardful

MDP is a tupleM = (𝑆, 𝑠0, 𝐴,𝑇 , 𝜌) where 𝑆, 𝑠0, 𝐴, and𝑇 are defined

in a similar way as for MDPa, and 𝜌 is a Markovian reward function.

A rewardful MDP M under a strategy 𝜎 determines a sequence

of random rewards 𝜌 (𝑋𝑖−1, 𝑌𝑖 )𝑖≥1, where 𝑋𝑖 and 𝑌𝑖 are the ran-

dom variables denoting the 𝑖-th state and action, respectively. For

𝜆 ∈ [0, 1[, the discounted reward Disct (𝜆)M𝜎 (𝑠) is defined as

lim

𝑁→∞
EM𝜎 (𝑠)

{ ∑︁
1≤𝑖≤𝑁

𝜆𝑖−1𝜌 (𝑋𝑖−1, 𝑌𝑖 )
}
,

while the average reward AvgM𝜎 (𝑠) is defined as

lim sup

𝑁→∞

1

𝑁
EM𝜎 (𝑠)

{ ∑︁
1≤𝑖≤𝑁

𝜌 (𝑋𝑖−1, 𝑌𝑖 )
}
.

For an objective RewardM∈{Disct (𝜆)M ,AvgM } and state 𝑠 , we

define the optimal reward RewardM∗ (𝑠) as sup𝜎 ∈ΠM RewardM𝜎 (𝑠).
A strategy 𝜎 is optimal for RewardM if RewardM𝜎 (𝑠)=RewardM∗ (𝑠)
for all 𝑠∈𝑆 . The optimal cost and strategies for these objectives can

be computed in polynomial time [25].

Often, complex learning objectives cannot be expressed using

Markovian reward signals. A recent trend is to express learning

objectives using finite-state reward machines [11]. We require

a more expressive variant of reward machine capable of 𝜖 tran-

sitions and nondeterminisim. We call them nondeterministic re-

ward machines. A (nondeterministic) reward machine is a tuple

R = (Σ𝜖 ,𝑈 ,𝑢0, 𝛿𝑟 , 𝜌) where 𝑈 is a finite set of states, 𝑢0 ∈ 𝑈 is

the starting state, 𝛿𝑟 : 𝑈 × Σ𝜖 → 2
𝑈
is the transition relation, and

𝜌 : 𝑈 × Σ𝜖 ×𝑈 → R is the reward function, where Σ𝜖 = (Σ ∪ {𝜖})
and 𝜖 is a special silent transition.

Given an MDP M = (𝑆, 𝑠0, 𝐴,𝑇 ,𝐴𝑃, 𝐿) and a reward machine

R = (Σ𝜖 ,𝑈 ,𝑢0, 𝛿𝑟 , 𝜌) over the alphabet Σ = 2
𝐴𝑃

, their product

M × R = (𝑆×𝑈 , 𝑠0×𝑢0, (𝐴×𝑈 ) ∪ {𝜖} ,𝑇×, 𝜌×)
is a rewardful MDPwhere𝑇×

: (𝑆×𝑈 )×((𝐴×𝑈 )∪{𝜖}) → D(𝑆×𝑈 )
is such that 𝑇× ((𝑠,𝑢), 𝛼) ((𝑠 ′, 𝑢 ′)) equals

𝑇 (𝑠, 𝑎) (𝑠 ′) if 𝛼 = (𝑎,𝑢 ′) and (𝑢, 𝐿(𝑠), 𝑢 ′) ∈ 𝛿𝑟

1 if 𝛼 = 𝜖 and 𝑠 = 𝑠 ′ and 𝛿 (𝑢, 𝜖,𝑢 ′) ∈ 𝛿𝑟

0 otherwise.

and 𝜌× : (𝑆×𝑈 ) × ((𝐴×𝑈 ) ∪ {𝜖}) × (𝑆×𝑈 ) → R is defined such

that 𝜌× ((𝑠,𝑢), 𝛼, (𝑠 ′, 𝑢 ′)) equals{
𝜌 (𝑢, 𝐿(𝑠), 𝑢 ′) if 𝛼 = (𝑎,𝑢 ′) and (𝑢, 𝐿(𝑠), 𝑢 ′) ∈ 𝛿𝑟

𝜌 (𝑢, 𝜖,𝑢 ′) if 𝛼 = 𝜖.

For technical convenience, we assume that M×R contains only

reachable states from (𝑠0, 𝑢0). For both discounted and average ob-

jectives, the optimal strategies of M×R are positional on M×R.
Moreover, these positional strategies characterize a finite mem-

ory strategy (with memory skeleton based on the states of R and

the next-action function based on the positional strategy) over M
maximizing the learning objective given by R.

Omega-Regular Specifications. Formal specification languages,

such as𝜔-automata and logical based objectives, provide a rigorous

and unambiguous mechanism to express learning objective over

continuing tasks. There is a growing trend [26–30] in expressing
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learning objectives in RL using linear temporal logic (LTL) and

𝜔-regular languages (that strictly generalize LTL). We will express

𝜔-regular languages as good-for-MDP Büchi automata [31].

LTL [22] is a temporal logic whose formulae describe a subset of

the 𝜔-regular languages, which is often used to specify objectives

in human-readable form. Given a set of atomic propositions𝐴𝑃 , the

LTL formulae over 𝐴𝑃 can be defined via the following grammar:

𝜑 := 𝑎 ∈ 𝐴𝑃 | ¬𝜑 | 𝜑 ∨ 𝜑 | X𝜑 | 𝜑 U𝜑. (1)

Additional operators are defined as abbreviations: ⊤ def

= 𝑎 ∨ ¬𝑎;
⊥ def

= ¬⊤; 𝜑 ∧ 𝜓
def

= ¬(¬𝜑 ∨ ¬𝜓 ); 𝜑 → 𝜓
def

= ¬𝜑 ∨ 𝜓 ; F𝜑
def

= ⊤U𝜑 ;

and G𝜑
def

= ¬ F¬𝜑 . We write𝑤 |= 𝜑 if 𝜔-word𝑤 over 2
𝐴𝑃

satisfies

LTL formula 𝜑 . The satisfaction relation is defined inductively [22].

Every LTL formula can be converted [32, 33] into a Good-for-MDP

Büchi automaton, defined later.

Nondeterministic Büchi automata are finite state machines capa-

ble expressing all 𝜔-regular languages. Formally, a (nondetermin-

istic) Büchi automaton is a tuple A = (Σ, 𝑄, 𝑞0, 𝛿, 𝐹 ), where Σ is a

finite alphabet, 𝑄 is a finite set of states, 𝑞0 ∈ 𝑄 is the initial state,
𝛿 : 𝑄 × Σ → 2

𝑄
is the transition function, and 𝐹 ⊂ 𝑄 × Σ ×𝑄 is the

set of accepting transitions.
A run 𝑟 of A on𝑤 ∈ Σ𝜔 is an 𝜔-word 𝑟0,𝑤0, 𝑟1,𝑤1, . . . in (𝑄 ×

Σ)𝜔 such that 𝑟0 = 𝑞0 and, for 𝑖 > 0, 𝑟𝑖 ∈ 𝛿 (𝑟𝑖−1,𝑤𝑖−1). Each triple

(𝑟𝑖−1,𝑤𝑖−1, 𝑟𝑖 ) is a transition of A. We write inf (𝑟 ) for the set of
transitions that appear infinitely often in the run 𝑟 . A run 𝑟 of A is

accepting if inf (𝑟 )∩𝐹 ≠ ∅. The language L(A) ofA is the subset of

words in Σ𝜔 that have accepting runs inA. A language is𝜔-regular
if it is accepted by a Büchi automaton.

Given an MDP M and an 𝜔-regular objective 𝜑 given as an

𝜔-automaton A𝜑 = (Σ, 𝑄, 𝑞0, 𝛿, 𝐹 ), we want to compute an opti-

mal strategy satisfying the objective. We define the satisfaction

probability of 𝜎 from starting state 𝑠 as:

PSemM
A (𝑠, 𝜎) = Pr

M
𝜎 (𝑠)

{
𝑟 ∈ RunsM𝜎 (𝑠) : 𝐿(𝑟 ) ∈ L(A)

}
.

The optimal satisfaction probability PSemM
A (𝑠) for specification

A is defined as sup𝜎 ∈ΠM Pr
M
𝜎 (𝑠, 𝜎) and we say that 𝜎 ∈ ΠM is an

optimal strategy for A if PSemM
A (𝑠, 𝜎) (𝑠) = PSemM

A (𝑠).
Given an MDP M = (𝑆, 𝑠0, 𝐴,𝑇 ,𝐴𝑃, 𝐿) and automaton A =

(2𝐴𝑃 , 𝑄, 𝑞0, 𝛿, 𝐹 ), the productM×A = (𝑆×𝑄, (𝑠0, 𝑞0), 𝐴×𝑄,𝑇×, 𝐹×)
is an MDP with initial state (𝑠0, 𝑞0) and accepting transitions 𝐹×

where 𝑇×
: (𝑆 ×𝑄) × (𝐴 ×𝑄) −⇁ D(𝑆 ×𝑄) is defined by

𝑇× ((𝑠, 𝑞), (𝑎, 𝑞′)) ((𝑠 ′, 𝑞′))=
{
𝑇 (𝑠, 𝑎) (𝑠 ′) if (𝑞, 𝐿(𝑠, 𝑎, 𝑠 ′), 𝑞′)∈𝛿
0 otherwise.

The final state 𝐹× ⊆ (𝑆 × 𝑄) × (𝐴 × 𝑄) × (𝑆 × 𝑄) is defined by

((𝑠, 𝑞), (𝑎, 𝑞′), (𝑠 ′, 𝑞′)) ∈ 𝐹× if, and only if, (𝑞, 𝐿(𝑠, 𝑎, 𝑠 ′), 𝑞′) ∈ 𝐹

and𝑇 (𝑠, 𝑎) (𝑠 ′) > 0. A strategy 𝜎× on the product defines a strategy

𝜎 on the MDP with the same value, and vice versa. Note that for a

stationary 𝜎×, the strategy 𝜎 may need memory. End-components

and runs of the product MDP are defined just like for MDPs.

A run ofM×A is accepting if inf (𝑟 )∩𝐹× ≠ ∅. We define the syn-
tactic satisfaction probabilities PSatMA ((𝑠, 𝑞), 𝜎×) as the probability
of accepting runs, i.e.

Pr
M×A
𝜎× (𝑠, 𝑞)

{
𝑟 ∈ RunsM×A

𝜎× (𝑠, 𝑞) : inf (𝑟 ) ∩ 𝐹× ≠ ∅
}

Similarly, we define PSatMA (𝑠) as the optimal probability over the

product, i.e. sup𝜎×
(
PSatMA ((𝑠, 𝑞0), 𝜎×)

)
. For a deterministic A the

equality PSatMA (𝑠) = PSemM
A (𝑠) holds; however it is not guaran-

teed for nondeterministic Büchi automata as the optimal resolution

of nondeterministic choices may require access to future events.

This motivates for the definition of a good-for-MDP nondetermin-

isitc Büchi automata. A Büchi automatonA is good for MDPs (GFM),

if PSatMA (𝑠0) = PSemM
A (𝑠0) holds for all MDPs M and starting

states 𝑠0 [31]. Note that every 𝜔-regular objective can be expressed

as a GFM automaton [31]. A popular class of GFM automata is

suitable limit-deterministic Büchi automata [32, 34]. This paper

considers only GFM Büchi automata.

The satisfaction of an𝜔-regular objective given as a GFM automa-

ton A by an MDP M can be formulated in terms of the accepting

maximal end-components of the productM×A, i.e. the maximal

end-component that contains an accepting transition from F×. The
optimal satisfaction probabilities and strategies can be computed by

computing the accepting maximal end-component of M ×A and

then maximizing the probability to reach states in such components.

The optimal strategies are positional on M ×A and characterize a

finite memory strategy overM maximizing satisfaction probability

of the learning objective given by A.

Reinforcement Learning. Given an MDP M, reward machine R,

and an optimization objective (discounted or average reward), an

optimal strategy can be computed in polynomial time using linear

programming [25]. Similarly, graph-theoretic techniques to find

maximal end-components can be combined with linear program-

ming to compute optimal strategies for 𝜔-regular objectives [34].

However, when the transition/reward structure of the MDP is un-

known, such techniques are not applicable.

Reinforcement learning [15] (RL) is a sampling-based optimiza-

tion approach where an agent learns to optimize its strategy by

repeatedly interacting with the environment relying on the rein-

forcements (numerical reward signals) it receives for its actions.

We focus on model-free approach to RL where the learner com-

putes optimal strategies without explicitly estimating the transition

probabilities and rewards. These approaches are asymptotically

space-efficient [35] than model-based RL and have been shown to

scale well [5, 36]. Some prominent model-free RL algorithms for

discounted and average reward objectives include Q-learning and

TD(𝜆) [15] and Differential Q-learning [21, 37].

In some applications, such as running a maze or playing tic-tac-

toe—the interaction between the agent and the environment natu-

rally breaks into finite length learning sequences, called episodes.

Thus the agent optimizes its strategy by combining its experience

over different episodes. We call such tasks episodic. On the other

hand, for some applications—such as process control and reactive

systems—this interaction continues ad-infinitum and the agent lives

and learns over a single lifetime. We call such tasks continuing.

Problem Statement and Assumptions. This paper develops a
model-free RL algorithm for continuing tasks where the learning

objective is given as an 𝜔-regular objective given as a GFM automa-

ton. Prior solutions [26–29] focused on episodic setting and have

proposed a model-free reduction (does not require access to the
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MDP) from 𝜔-regular objectives to discounted-reward objectives.

Recently several researchers [15, 23] made the case for adopting

average reward formulation for continuing tasks due to several

limitations of discounted-reward RL in continuing tasks. This paper

investigates a model-free reduction from 𝜔-regular objectives to

average-reward objectives in model-free RL.

Problem 1 (𝜔-Regular to Average Reward Translation).

Given an unknown communicating MDPM = (𝑆, 𝑠0, 𝐴,𝑇 ,𝐴𝑃, 𝐿) and
a GFM automaton A = (Σ, 𝑄, 𝑞0, 𝛿, 𝐹 ), the reward translation prob-
lem is to design a reward machine R such that an optimal positional
strategy maximizing the average reward for M×R provides a finite
memory strategy maximizing the satisfaction probability of A inM.

The existing average RL algorithms such asDifferential Q-learning

provide convergence guarantees under the assumption that the

MDPM is communicating [21]. Thus, for the reward translation

to be effective, we need to make sure that the product M ×A is

communicating. Unfortunately, even when M is communicating,

the product M ×A may violate the communicating requirement.

We give a solution for the translation problem for an important

class of properties called absolute liveness [38]. Recall that a property
is absolute liveness if appending an arbitrary finite prefix to an

accepting word produces an accepting word. Formally, a language

𝐿 ⊆ Σ𝜔 is an absolute liveness property if for every𝑤 ∈ 𝐿 and 𝑎 ∈ Σ
we have that 𝑎𝑤 ∈ 𝐿. Note that for an absolute liveness language

𝐿 and for every 𝑥 ∈ Σ∗ we have that 𝑥𝑤 ∈ 𝐿. This implies that

an LTL property 𝜑 is absolute liveness property if 𝜑 is satisfiable

and 𝜑 and F𝜑 are expressively equivalent. For average reward

objectives adding a prefix to a trace should not change the average

value associated with the trace. This is aligned with the satisfaction

of absolute liveness properties. Moreover, since absolute liveness

properties cannot be rejected for any finite word, they preserve the

continual nature of the learning procedure. To solve Problem 1, we

make the following assumption.

Assumption 1. Given an MDP M and 𝜔-automaton A, we as-
sume that: 1)M is communicating; 2) A is a GFM automaton; and
3) A is an absolute liveness property.

3 CONSTRUCTION AND CORRECTNESS
Let us fix a communicating MDP M = (𝑆, 𝑠0, 𝐴,𝑇 ,𝐴𝑃, 𝐿) and an

absolute liveness GFM property A = (Σ, 𝑄, 𝑞0, 𝛿, 𝐹 ) for the rest of
this section. Our goal is to learn a reward machine R such that we

can use an off-the-shelf average reward RL on M × R to compute

an optimal strategy of M against A.

Since the optimal strategies are not positional on M but rather

positional on M×A, it is natural to assume that the reward ma-

chine R takes the structure of A with a reward function providing

positive reinforcement with every accepting transition. Unfortu-

nately, even for absolute liveness GFM automata A, the product

M×A with a communicating MDPM may not be communicating.

Example 1. Assume a communicating MDP𝑀 with at least one
state labeled 𝑎 or 𝑏, and the absolute liveness property 𝜑 = F(G𝑎 ∨
GF𝑏) and its automaton shown in Fig. 1. Observe that any run that
visits one of the two accepting states cannot not visit the other one.
Hence, the product does not satisfy the communicating property.

𝑞0𝑞1 𝑞2 𝑞3
𝑎

𝑏

¬𝑏

𝑏

⊤𝑎 𝑏 ¬𝑏

Figure 1: A Büchi automaton for 𝜑 = F(G𝑎 ∨ GF𝑏)

Reward Machine Construction Let A = (Σ, 𝑄, 𝑞0, 𝛿, 𝐹 ) be an

absolute liveness GFM automaton. Consider RA = (Σ𝜖 , 𝑄, 𝑞0, 𝛿 ′, 𝜌)
where 𝛿 ′(𝑞, 𝑎) = 𝛿 (𝑞, 𝑎) for all 𝑎 ∈ Σ and 𝜖 transitions reset to the

starting state, i.e. 𝛿 ′(𝑞, 𝜖) = 𝑞0. Note that by adding the reset (𝜖)

action from every state ofR to its initial state, the graph structure of

M is strongly connected. The reward function 𝜌 : 𝑄×Σ∪{𝜖}×𝑄→R
is such that

𝜌 (𝑞, 𝑎, 𝑞′) =


𝑐 if 𝑎 = 𝜖

1 if (𝑞, 𝑎, 𝑞′) ∈ 𝐹

0 otherwise.

Lemma 1 (Preservation of Communication). For a communi-
cating MDPM and reward machineRA for an absolute liveness GFM
automaton A, we have that the product M×RA is communicating.

Proof. To show that M×RA is communicating, we need to

show that for arbitrary states (𝑠, 𝑞), (𝑠 ′, 𝑞′) ∈ 𝑆 ×𝑄 reachable from

the initial state (𝑠0, 𝑞0), we have that there is a strategy that can

reach (𝑠 ′, 𝑞′) from (𝑠, 𝑞) with positive probability. Note that since

M is communicating, it is possible to reach (𝑠0, 𝑞′) from (𝑠, 𝑞) for
some 𝑞′ of RA using a strategy to reach 𝑠0 from 𝑠 in M. We can

then use a reset (𝜀) action in RA to reach the state (𝑠0, 𝑞0). Since
(𝑠 ′, 𝑞′) is reachable from the initial state (𝑠0, 𝑞0), we have a strategy
to reach (𝑠 ′, 𝑞′) from (𝑠, 𝑞) with positive probability. □

Lemma 2 (Average and Probability). There exists a 𝑐∗ < 0 such
that for all 𝑐 < 𝑐∗, positional strategies that maximize the average
reward on M × RA will maximize the satisfaction probability of A.

Proof. The proof is in three parts.

(1) First observe that if 𝑐 < 0, then for any average-reward op-

timal strategy inM × RA , the expected average reward is

non-negative. This is so because all other actions except 𝜀 ac-

tions provide non-negative rewards. Hence, any strategy that

takes 𝜀 actions only finitely often, results in a non-negative

average reward.

(2) Let Π∗
be the set of positional strategies in M×RA such

that the 𝜀 actions are taken only finitely often, i.e. no BSCC

of the corresponding Markov chain contains an 𝜀 transition.

Let Π𝜖
be the set of remaining positional strategies, i.e., the

set of positional strategies that visit an 𝜖 transition infinitely

often. Let 0<𝑝min<1 be a lower bound on the expected long-

run frequency of the 𝜖 transitions among all strategies in

Π𝜖
. Let 𝑐∗ = −1/𝑝min. Observe that for every policy 𝜎 ′ ∈ Π𝜖

,

the expected average reward is negative and cannot be an

optimal strategy in M × RA . To see that, let 0 < 𝑝 ≤ 1 be

the the long-run frequency of the 𝜖 transitions for 𝜎 and let
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0 ≤ 𝑞 < 1 be the long-run frequency of visiting accepting

transitions for 𝜎 . The average reward for 𝜎 is

AvgM×RA
𝜎 (𝑠0, 𝑞0) = 𝑝 · 𝑐 + 𝑞 · 1 + (1 − 𝑝 − 𝑞) · 0

≤ 𝑝 · 𝑐 + 𝑞 · 1 + (1 − 𝑝 − 𝑞) · 1
= 𝑝 · 𝑐 + (1 − 𝑝)
≤ 𝑝 · 𝑐∗ + (1 − 𝑝)
= −𝑝/𝑝min + (1 − 𝑝)
≤ −1 + (1 − 𝑝) ≤ −𝑝.

Since every optimal policy must have a non-negative average

reward, no policy in Π𝜖
is optimal for 𝑐 < 𝑐∗.

(3) Now consider an optimal policy 𝜎∗ in Π∗
. We show that this

policy also optimizes the probability of satisfaction of A.

There are two cases to consider.

(a) If the expected average reward of 𝜎∗ is 0, then under no

strategy it is possible to reach an accepting transitions

(positive reward transition) in M × RA . Hence, every

policy is optimal in M against A, and so is 𝜎∗.
(b) If the expected average reward of 𝜎∗ is positive, then no-

tice that for every BSCC of the Markov chain ofM ×RA
under 𝜎∗, the average reward is the same. This is so be-

cause otherwise, there is a positional policy that reaches

the BSCC with the optimal average from all the other

BSCCs with lower averages, contradicting the optimality

of 𝜎∗. Since for an optimal policy 𝜎∗, every BSCC provides

the same positive average, every BSCCmust contain an ac-

cepting transition. Hence, every run of the MDPM under

𝜎∗ will eventually dwell in an accepting component and

in the process will see a finitely many 𝜖 (reset) transitions.

For any such given run 𝑟 , consider the the suffix 𝑟 ′ of the
run after the last 𝜖 transition is taken and let 𝑟 = 𝑤𝑟 ′ for
some finite run𝑤 . Since 𝐿(𝑟 ′) is an accepting word in A,

and sinceA is an absolute liveness property any arbitrary

prefix𝑤 ′
to this run 𝑟 ′ is also accepting. This implies that

the original run 𝑟 is also accepting for A. It follows that

for such a strategy 𝜎∗, the probability of satisfaction of A
is 1, making 𝜎∗ an optimal policy for M against A. □

Since our translation from 𝜔-regular objective to reward ma-

chines is model-free, the following theorem is immediate.

Theorem 1 (Convergence of Model-free RL). Differential
𝑄-learning algorithm for maximizing average reward objective on
M × RA will converge to a strategy maximizing the probability
of satisfaction of A for a suitable value of 𝑐 . Moreover, the product
construction M × RA can be done on-the-fly and it is model-free.

As an example, consider the property FG𝑎 and an MDP with

two states and all transitions between states are available as de-

terministic actions (Fig. 2). Only one of the states is labeled 𝑎. An

infinite memory strategy could see 𝑎 for one step, reset, then see

two 𝑎s, reset, then see three 𝑎s and so forth. This strategy will pro-

duce the same average value as the positional strategy which sees

𝑎 forever without resetting. However, the infinite memory strategy

will fail the property while the positional one will not.

Shaping Rewards via Hard Resets. For a Büchi automaton A,

we say that its state 𝑞 ∈ 𝑄 is coaccessible if there exists a path

𝑞0 𝑞1 𝑞2
𝑎 ¬𝑎

⊤ 𝑎 ⊤

(a) Automaton of FG𝑎, dashed lines represent reset transitions

𝑎 ¬𝑎

(b) MDP, each transition represents an action

Figure 2: The two state MDP and a persistence property

starting from that state to a accepting transition. If a state is not

coaccessible then any run of the product M ×A that ends in such

a state will never be accepting, and hence one can safely redirect all

of its outgoing transitions to the initial state with reward 𝑐 (a hard

reset). Such hard resets will promote speedy learning by reducing

the time spent in such states during unsuccessful explorations, and

at the same time adding these resets does not make a non-accepting

run accepting or vice versa. Lemma 1, Lemma 2, and Theorem 1

continue to hold with such hard resets. Introducing hard resets is a

reward shaping procedure in that it is a reward transformation [39]

under which optimal strategies remain invariant.

4 EXPERIMENTAL RESULTS
We implemented the reduction

1
with hard resets presented in Sec-

tion 3. As described, we do not build the product MDP explicitly, and

instead compose it on-the-fly by keeping track of the MDP and au-

tomaton states independently. We use Differential Q-learning [21]

to learn optimal, positional average reward strategies. For our ex-

periments, we have collected a set of communicating MDPs with

absolute liveness properties
2
.

We comparewith two previous approaches for translating omega-

regular languages to rewards: the method of [26] with Q-learning

and the method of [40] with Q-learning. The method of [26] trans-

lates a GFM Büchi automaton into a reachability problem through

a suitable parameter 𝜁 . This reachability problem can be solved

with discounted RL by rewarding reaching the target state and

using a large enough discount factor. The method of [40] uses a

state dependent discount factor 𝛾𝐵 and a GFM Büchi automaton.

By using a suitable 𝛾𝐵 and large enough discount factor, one can

learn optimal strategies for the omega-regular objective.

RQ1. How do previous approaches perform in the continu-
ing setting? The methods of [26, 40] may produce product MDPs

that are not communicating (see Example 1). This means that a

single continuing run of the MDP may not explore all relevant

states and actions. Thus, previous methods are not guaranteed to

converge in this setting. We studied if this behavior affects these

1
The implementation is available at https://plv.colorado.edu/mungojerrie/.

2
Case studies are available at https://plv.colorado.edu/mungojerrie/aamas22.
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prior methods in practice. As a baseline, we include our proposed

approach. Instead of tuning hyperparameters for each method,

where hyperparameters that lead to convergence may not exist,

we take a sampling approach. We select a wide distribution over

hyperparameters for each method and sample 200 hyperparameter

combinations for each method and example. We then train for 10

million steps on each combination. The selected hyperparameter

distribution is 𝛼 ∼ D(0.01, 0.5), 𝜀 ∼ D(0.01, 1.0), 𝑐 ∼ D(1, 200),
𝜂 ∼ D(0.01, 0.5), 𝜁 ∼ D(0.5, 0.995), 𝛾𝐵 ∼ D(0.5, 0.995), and
𝛾 ∼ D(0.99, 0.99999) where D(𝑎, 𝑏) is a log-uniform distribution

from 𝑎 to 𝑏. The end points of these distributions and the train-

ing amount was selected by finding hyperparameters which led to

convergence in the episodic setting for these methods.

Figure 3 shows the resulting distribution over runs. A distribution

entirely at 0 (1) indicates that all sampled runs produced strategies

that satisfy the property with probability 0 (1). For many examples,
prior approaches had no successful hyperparameter combinations,
with distributions centered entirely at 0. However, our proposed
approach always had some hyperparameters that led to optimal,

probability 1, strategies, as indicated by the tails of the distributions

touching the probability 1 region of the plot.

0.00 0.25 0.50 0.75 1.00
Probability of satisfaction

adverse

frozenSmall

frozenLarge

windy

windyStoch

grid5x5

ishift

doublegrid

busyRingMC2

busyRingMC4

Learning comparison without episodic resetting

Average (ours)
Hahn et al.
Bozkurt et al.

Figure 3: Comparison of the distributions of probability of
satisfaction of learned policies across sampled hyperparam-
eters in the continuing setting. For each distribution, the
mean is shown as a circle, and the maximum and minimum
are shown as vertical bars. We compare our proposed reduc-
tion, the reduction of [26] with Q-learning, and the reduction
of [40] with Q-learning. Episodic resetting was not used.

RQ2. How does our method compare to previous approaches
when we allow episodic setting? By allowing episodic resetting,

we can now find hyperparameters for previous methods that lead

to convergence. We tuned all hyperparameters by hand to mini-

mize training time, while verifying with a model checker that the

produced strategies are optimal. Table 1 shows learning times, as

well as hyperparameters for our reduction. We report the number

of states reachable in the MDP and the product, learning times

averaged over 5 runs, the reset penalty 𝑐 , the 𝜀-greedy exploration

rate 𝜀, the Differential Q-learning learning rates 𝛼 and 𝜂, as well as

the number of training steps. Note that we do not do any episodic

resetting when training with our reduction. This means that the RL

agent must learn to recover from mistakes during training, while

previous approaches are periodically reset to a good initial state.

Our reduction using Differential Q-learning is competitive with previ-
ous approaches while not being reliant on episodic resetting.

5 RELATEDWORK
The development and use of formal reward structures for RL have

witnessed increased interest in recent years. For episodic RL, logics

have been developed over finite traces of agent behavior, including

LTL𝑓 and Linear Dynamic Logic (LDL𝑓 ) [41, 42]. These logics have

equivalent automaton and reward machine representations that

have catalyzed a series of efforts on defining novel reward shaping

functions to accelerate the convergence of RL algorithms subject to

formal specifications [9, 43, 44]. These methods leverage the graph

structure of the automaton to provide an artificial reward signal to

the agent. More recently, dynamic reward shaping using LTL𝑓 has

been introduced as a means to both learn the transition values of a

given reward machine and leverage these values for reward shaping

and transfer learning [45]. There has also been work on learning

or synthesizing the entire structure of such reward machines from

agent interactions with the environment by leveraging techniques

from satisfiability and active grammatical inference [7, 8, 13, 14, 46].

For the infinite-trace settings, LTL has been extensively used to

verify properties and synthesize policies formally using the mathe-

matical model of a system [22, 30, 47–51]. Considering the general-

ity of the results in terms of structure of the underlying MDP, most

of the research focuses on discounted reward structures. Despite the

simplicity of discounted Markov decision problems, the discounted

reward structure (unlike average reward) prioritizes the transient

response of the system. However, application of the average reward

objective because of the restriction over the structure of the MDP

is limited. The work [52] proposes a policy iteration algorithm for

satisfying properties of the form GF𝜙 ∧𝜓 for a communicating

MDP almost surely. The work [53] proposes a value iteration algo-

rithm for solving the average reward problem for multichain MDPs,

where the algorithm first computes the optimal value for each of

strongly connected components and then weighted reachability to

find the optimal policy. The work [54] provides a linear program for

policy synthesis of multichain MDPs with steady-state constraints.

In the last few years, researchers have started developing data-

driven policy synthesis techniques in order to satisfy temporal

properties. There is a large body of literature in safe reinforcement

learning (RL) (see e.g. [55–57]). The problem of learning a policy to

maximize the satisfaction probability of a temporal property using

discounted RL is studied recently [27, 28, 40, 58–61]. The work [26]
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Name states prod. time time
†

time
‡ 𝑐 𝜀 𝛼 𝜂 train-steps

adverse 202 507 8.51 7.09 12.56 -150 0.2 10M

frozenSmall 16 64 0.99 20.23 9.88 500k

frozenLarge 64 256 4.07 3.88 8.79 0.02 0.02 3M

windy 123 366 1.40 1.81 2.61 0.95 0.5 0.05 1M

windyStoch 130 390 2.97 3.91 2.53 0.5 2M

grid5x5 25 100 0.62 1.12 1.02 0.5 200k

ishift 4 29 0.03 0.01 0.02 10k

doublegrid 1296 5183 16.43 3.45 3.09 -2 0.5 0.05 0.01 12M

busyRingMC2 72 288 0.03 0.03 0.03 0.01 10k

busyRingMC4 2592 15426 6.08 3.94 2.33 0.01 1.5M

Table 1: Learning results and comparison. Hyperparameters used for our reduction are shown. Blank entries indicate that
default values were used. The default parameters are 𝑐 = −1, 𝜀 = 0.1, 𝛼 = 0.1, and 𝜂 = 0.1. Times are in seconds. Superscript †

indicates results from Q-learning with reduction from [26], while superscript ‡ indicates Q-learning with reduction from [40].
Results for † and ‡ required episodic resetting. All hyperparameters were tuned by hand.

by using a parameterized augmented MDP provides an RL-based

policy synthesis for finite MDPs with unknown transition probabil-

ities. It shows that the optimal policy obtained by RL for the reacha-

bility probability on the augmentedMDP gives a policy for the MDP

with a suitable convergence guarantee. In [40] authors provide a

path-dependent discounting mechanism for the RL algorithm based

on a limit-deterministic Büchi automaton (LDBA) representation

of the underlying omega-regular property, and prove convergence

of their approach on finite MDPs when the discounting factor goes

to one. An LDBA is also leveraged in [28, 60, 61] for discounted-

reward model-free RL in both continuous- and discrete-state MDPs.

The LDBA is used to define a reward function that incentivizes the

agent to visit all accepting components of the automaton. These

works use episodic discounted RL with discount factor close to one

to solve the policy synthesis problem. There are two issues with the

foregoing approaches. First, because of the episodic nature of the

algorithms they are not applicable in continuing settings. Second,

because of high discount factors in practice these algorithm are

difficult to converge. On the other hand, recent work on reward

shaping for average reward RL has been explored based on safety

properties to be satisfied by the synthesized policy [62]. In contrast

to the solution proposed in this paper, the preceding approach re-

quires knowledge of the graph structure of the underlying MDP

and does not account for absolute liveness properties.

There is a rich history of studies in average reward RL [20, 63].

Lack of stopping criteria for multichain MDPs affect the gener-

ality of model-free RL algorithms. In this way, all model-free RL

algorithms put some restrictions on the structure of MDP (e.g. er-

godicity [64, 65] or communicating property). The closest line of

work to this work is to use average reward objective for safe RL. The

work [66] proposes a model-based RL algorithm for maximizing

average reward objective with safety constraint for communicating

MDPs. It is worth noting that in multichain setting, the state-of-the-

art learning algorithms use model-based RL algorithms. The work

[67] studies satisfaction of 𝜔-regular properties using data-driven

approaches. The authors introduce an algorithm where the opti-

mality of the policy is conditioned to not leaving the corresponding

maximal end component which leads to a sub-optimal solution.

The authors provide PAC analysis for the algorithm as well. De-

spite all the efforts of using data-driven approaches for satisfying

the 𝜔-regular properties, there is a gap in using average reward

model-free RL algorithms for satisfying temporal properties.

This paper is an attempt to close this gap by proposing a model-

free average reward RL algorithm for a subclass of LTL properties

called absolute liveness properties. We claim this subclass captures

a large class of interesting properties and are suitable for average

reward RL. Furthermore, the eventual satisfaction semantics of an

arbitrary omega-regular or LTL specification 𝜙 can be captured by

an absolute liveness property F𝜙 .

6 CONCLUSION
This work addressed the problem of synthesizing policies that sat-

isfy a given absolute liveness omega-regular property in the con-

tinuing setting. Our key contribution is a model-free translation

from the omega-regular specification to an average reward objec-

tive, enabling the use of off-the-shelf average reward RL. This is in

contrast to existing methods in the literature that use discounted,

episodic learning, which require the ability to reset the underly-

ing environment and is restrictive in some settings. Our approach

avoids this episodic learning and learns the optimal policy in one

life-long episode without resetting. Furthermore, the proposed solu-

tion does not require access to a model of the environment nor to its

graph structure, thereby avoiding a common assumption made in

the literature on requiring the computation of end components for

synthesis of policies subject to some omega-regular specification.

For our experiments, we applied Differential Q-learning to a

range of case studies and showed that the proposed approach is

successful in converging to optimal strategies under the raised as-

sumptions. In particular, our experiments showed that the proposed

approach is superior to previous methods in the continuing setting.

This lends credence to the important and understudied idea that

average reward RL is better-suited for continuing task settings than

the more popular discounted RL. For future work, we will explore

the use of function approximation in the hopes that average reward

RL can experience the same success for continuing tasks that its

discounted RL counterpart has witnessed in episodic settings.
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deterministic Büchi automata for linear temporal logic. In International Conference
on Computer Aided Verification (CAV), pages 312–332. Springer, 2016.

[33] Jan Kretínský, Tobias Meggendorfer, and Salomon Sickert. Owl: A library for 𝜔-

words, automata, and LTL. In International Symposium on Automated Technology
for Verification and Analysis (ATVA), volume 11138 of LNCS, pages 543–550.
Springer, 2018.

[34] ErnstMoritz Hahn, Guangyuan Li, Sven Schewe, Andrea Turrini, and Lijun Zhang.

Lazy probabilistic model checking without determinisation. In International
Conference on Concurrency Theory (CONCUR), pages 354–367, 2015.

[35] Alexander L Strehl, Lihong Li, Eric Wiewiora, John Langford, and Michael L

Littman. Pac model-free reinforcement learning. In Proceedings of the 23rd
international conference on Machine learning, pages 881–888, 2006.

[36] D. Silver et al. Mastering the game of Go with deep neural networks and tree

search. Nature, 529:484–489, January 2016.

[37] Yi Wan, Abhishek Naik, and Richard S Sutton. Learning and planning in average-

reward Markov decision processes. arXiv preprint arXiv:2006.16318, 2020.
[38] A Prasad Sistla. Safety, liveness and fairness in temporal logic. Formal Aspects of

Computing, 6(5):495–511, 1994.
[39] Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward

transformations: Theory and application to reward shaping. In ICML, volume 99,

pages 278–287, 1999.

[40] Alper Kamil Bozkurt, Yu Wang, Michael M Zavlanos, and Miroslav Pajic. Control

synthesis from linear temporal logic specifications using model-free reinforce-

ment learning. In 2020 IEEE International Conference on Robotics and Automation
(ICRA), pages 10349–10355. IEEE, 2020.

[41] Giuseppe De Giacomo and Moshe Vardi. Synthesis for LTL and LDL on finite

traces. In Twenty-Fourth International Joint Conference on Artificial Intelligence,
2015.

[42] Alberto Camacho, Jorge A Baier, Christian Muise, and Sheila A McIlraith. Fi-

nite LTL synthesis as planning. In Twenty-Eighth International Conference on
Automated Planning and Scheduling, 2018.

[43] Giuseppe De Giacomo, Luca Iocchi, Marco Favorito, and Fabio Patrizi. Founda-

tions for restraining bolts: Reinforcement learning with LTLf/LDLf restraining

specifications. In Proceedings of the International Conference on Automated Plan-
ning and Scheduling, volume 29(1), pages 128–136, 2019.

[44] Rodrigo Toro Icarte, Toryn Klassen, Richard Valenzano, and Sheila McIlraith.

Using reward machines for high-level task specification and decomposition in

reinforcement learning. In International Conference on Machine Learning, pages
2107–2116, 2018.

[45] Alvaro Velasquez, Brett Bissey, Lior Barak, Andre Beckus, Ismail Alkhouri, Daniel

Melcer, and George Atia. Dynamic automaton-guided reward shaping for monte

carlo tree search. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35(13), pages 12015–12023, 2021.

[46] Zhe Xu, Ivan Gavran, Yousef Ahmad, Rupak Majumdar, Daniel Neider, Ufuk

Topcu, and Bo Wu. Joint inference of reward machines and policies for rein-

forcement learning. In Proceedings of the International Conference on Automated
Planning and Scheduling, volume 30, pages 590–598, 2020.

[47] H.A.P. Blom and J. Lygeros. Stochastic Hybrid Systems: Theory and Safety Critical
Applications. Number 337 in Lecture Notes in Control and Information Sciences.

Springer Verlag, Berlin Heidelberg, 2006.

[48] Rupak Majumdar, Kaushik Mallik, and Sadegh Soudjani. Symbolic controller

synthesis for Büchi specifications on stochastic systems. In Hybrid Systems:
Computation and Control (HSCC), New York, NY, USA, 2020. ACM.

Main Track AAMAS 2022, May 9–13, 2022, Online

740



[49] Abolfazl Lavaei, Fabio Somenzi, Sadegh Soudjani, Ashutosh Trivedi, and Majid

Zamani. Formal controller synthesis for continuous-space MDPs via model-free

reinforcement learning. In International Conference on Cyber-Physical Systems
(ICCPS), pages 98–107, 2020.

[50] Hansol Yoon, Yi Chou, Xin Chen, Eric Frew, and Sriram Sankaranarayanan. Pre-

dictive runtime monitoring for linear stochastic systems and applications to

geofence enforcement for UAVs. In International Conference on Runtime Verifica-
tion. Springer, 2019.

[51] Sofie Haesaert and Sadegh Soudjani. Robust dynamic programming for temporal

logic control of stochastic systems. IEEE Transactions on Automatic Control,
66(6):2496–2511, 2020.

[52] Xuchu Ding, Stephen L Smith, Calin Belta, and Daniela Rus. Optimal control of

Markov decision processes with linear temporal logic constraints. IEEE Transac-
tions on Automatic Control, 59(5):1244–1257, 2014.

[53] Pranav Ashok, Krishnendu Chatterjee, Przemysław Daca, Jan Křetínskỳ, and
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