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ABSTRACT

In response to COVID-19, many countries have mandated social
distancing and banned large group gatherings in order to slow
down the spread of SARS-CoV-2. These social interventions along
with vaccines remain the best way forward to reduce the spread of
SARS CoV-2. In order to increase vaccine accessibility, states such
as Virginia have deployed mobile vaccination centers to distribute
vaccines across the state. When choosing where to place these sites,
there are two important factors to take into account: accessibility
and equity. We formulate a combinatorial problem that captures
these factors and then develop efficient algorithms with theoret-
ical guarantees on both of these aspects. Furthermore, we study
the inherent hardness of the problem, and demonstrate strong im-
possibility results. Finally, we run computational experiments on
real-world data to show the efficacy of our methods.
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1 INTRODUCTION

The COVID-19 pandemic continues to cause immense social, health,
and economic impact globally. As of writing this paper, the U.S.
alone has seen over 850,000 deaths and over 65 million confirmed
cases; see [1] for the latest numbers. Vaccines have proven to be
very effective in reducing the health burden of the pandemic and
continue to be the best strategy to control disease spread and poten-
tially end the pandemic in its current form. Despite the effectiveness,
administering COVID-19 vaccines to all eligible individuals in the
population continues to be a challenge. As of February 2022, only
64% of the eligible population is fully vaccinated in the United States
[3]. Furthermore, there is a significant disparity in vaccination rates
between demographics—the rate among Whites was 1.2 times that
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of African Americans and 1.1 times that of Hispanic people. The
reasons why some people have not been vaccinated include dis-
trust and skepticism regarding COVID-19, accessibility issues, and
concerns about the cost [2]. Lottery schemes, mandates, vaccine
clinics, and other strategies have been implemented to increase
the vaccination rate with varying levels of success. Since cost and
accessibility remain a challenge for a fraction of the population,
especially minorities and people in poorer neighborhoods, mobile
vaccine clinics have been an important part of the public health
response strategy of government agencies. In this paper, we study
the problem of deploying mobile vaccine administration sites with
the goal of improving the accessibility of vaccines to individuals.

Deploying vaccination clinics is a form of a facility location
problem [7, 11], referred to as the 𝑘-supplier problem, in which a
limited set of 𝑘 facilities needs to be placed so that every person
(i.e., a client) is “close” to a facility; a common metric to measure
closeness is the maximum distance between a client and their clos-
est facility, though many other notions have been studied. Facility
location problems are well understood, and efficient approxima-
tion algorithms and practical heuristics exist. However, deploying
vaccine clinics leads to a novel facility location problem (referred
to as the MobileVaccClinic problem) since people (clients) are
mobile rather than stationary. Suppose each person 𝑝 visits a set 𝑆𝑝
of locations during the day; then it suffices to deploy a clinic close
to at least one location in 𝑆𝑝 . Our contributions are the following:

• We formalize the MobileVaccClinic problem for modeling
the deployment of mobile vaccine clinics in a way that takes
into account human mobility patterns (by considering the
distance to a facility from any of the locations visited by a
person), fairness (by requiring that at least a fraction of peo-
ple in each demographic group have a nearby clinic), outliers
(by allowing partial coverage), and capacity constraints (by
restricting the number of people assigned to each clinic). We
show that this problem is much harder than the standard 𝑘-
supplier problem and getting any bounded polynomial-time
approximation to the minimum distance is not possible, thus
motivating bicriteria algorithms.

• We design two approximation algorithms. The first is a fixed-
parameter tractable algorithm that gives a 3-approximation,
where the parameterization is on the number 𝑢 of locations
where people travel. Note that even this is non-trivial, since
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the possible locations S where we can place facilities is still
variable, so there are still

( |S |
𝑘

)
possible solutions. The second

algorithm, based on covering problems, is a (1, log𝑛 + 1)-
bicriteria one, where 𝑛 is the number of people. This means
that if we violate the budget on the number of vaccine centers
by a log𝑛+1multiplicative factor, we can find a solution that
is optimal. Finally, we extend our algorithms to have fairness
guarantees in both the original and outliers formulation of
the problem.

• We evaluate our algorithms for a realistic population of a
county in Virginia. We find that our algorithms generally
give a significant improvement over natural baselines. In
particular, we see many shortcomings of only considering
a client’s home (rather than their entire travelling route),
emphasizing the importance of our problem formulation.
Additionally, our algorithms allow us to compute a tradeoff
between the maximum distance to a clinic and the number of
clinics; this naturally enables us to give a recommendation
to the government on the most cost-effective budget pol-
icy. Finally, the solutions computed by our algorithm have a
useful “kernel” property—as the budget is increased, the lo-
cations which were picked for a lower budget are still part of
the solution. This implies that an incrementally constructed
solution (which is how such facilities would be deployed in
practice since the budget is not known ahead of time) will
still be good.

We remark that though our framework is motivated by the cur-
rent COVID-19 pandemic, it can be generally applied to both epi-
demiological and non-epidemiological settings. Examples within
healthcare include placing testing and treatment units (as deployed
during the Ebola crisis) and delivering healthcare in rural settings
for resource-limited countries. Beyond healthcare, the placement of
mobile distribution centers arises in disaster-management settings.
For instance, shelters need to be set up for individuals evacuating
during a hurricane or forest fire, who might need food and other
basic survival kits. During such large events, mobile sites are also
used to place security posts and information kiosks.

2 PRELIMINARIES

Recall that we wish to place vaccination centers such that vaccines
are more accessible to the population. This question is often for-
mulated as an appropriate variant of the facility location problem,
which is well-studied in the operations research literature (see Re-
lated Work). In our paper, we introduce a new variant that follows
a recent line of work on integrating the mobility patterns of the
population into disease models [8, 25]. As is standard, we will use
the distance from a vaccination center as the metric for defining
accessibility. The key change, however, is that clients will be rep-
resented by a set of locations that they visit (within a time period)
instead of just one point. Though this will make the problem much
harder to solve efficiently, it will more strongly correlate with the
likelihood of a person going to a vaccine center.

Problem Statement:We are given a set of locations C in a met-
ric space characterized by the distance function 𝑑 : C × C ↦→ R≥0.
We additionally have a set of𝑛 individuals/clientsP. Each individual
𝑝 ∈ P is associated with a set 𝑆𝑝 ⊆ C, which we can interpret as the

Figure 1: An example of MobileVaccClinic. The differ-

ent colors represent different people and the circles repre-

sent the locations they visit (with the bottom three being

their homes). In this case, the blue location in the middle is

an optimal location to place a vaccination center. If we in-

stead only considered homes in the problem formulation,

we would place the vaccination center in the green circle

marked with a star, which would require people to deviate

from their normal travels much more when getting a vac-

cine.

set of locations 𝑝 visits throughout the day. Finally, the input also
includes a positive integer 𝑘 constraining the number of facilities
we can place, and a set S ⊆ C containing the locations where we
are allowed to place facilities. The goal of MobileVaccClinic is to
choose a set 𝐹 ⊆ S with |𝐹 | ≤ 𝑘 to place facilities, such that for ev-
ery 𝑝 ∈ P we have 𝑑 (𝑆𝑝 , 𝐹 ) ≤ 𝑅, for the minimum 𝑅 possible. Here,
we use the standard notation where 𝑑 (𝑆, 𝐹 ) = min𝑗 ∈𝑆,𝑗 ′∈𝐹 𝑑 ( 𝑗, 𝑗 ′).
Intuitively, this objective tries to minimize the maximum distance
between the set of facilities placed and the locations visited by any
client. We also consider three natural extensions:

• Outliers: in order to achieve herd immunity, we only need
to vaccinate a large portion of the population (rather than
every single person). In order to model this, we can take as
input a parameter 𝑞, and seek to provide for only ⌊𝑞𝑛⌋ of the
clients, thus ignoring the remaining ones. Formally, the new
objective is to minimize 𝑅 such that |{𝑝 ∈ P : 𝑑 (𝑆𝑝 , 𝐹 ) ≤
𝑅}| ≥ ⌊𝑞𝑛⌋.

• Fairness: many studies have shown that COVID-19 dispro-
portionately affects some demographic groups [24]. To coun-
teract this, we seek to guarantee that different demographic
groups have similar accessibilities to vaccines. As an example,
when we solve the outliers formulation, we can guarantee
that we are covering the same proportion of each demo-
graphic group when deciding the facility placements.

• Capacity: it is natural to assume that the number of vaccines
that can be stored in each mobile facility is limited, say at
most 𝐿. Therefore, in this setting, we need to guarantee that
every chosen facility will have at most 𝐿 people assigned to
it.
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3 RELATEDWORK

Due to its applications in a large number of domains, facility loca-
tion and broader location theory is a very well-studied area; see,
e.g., the surveys by [4, 7, 11]. The general goal in this family of prob-
lems is to deploy facilities to provide the best possible service to a
set of clients. A huge number of objectives have been considered,
along with a plethora of variations such as fairness variants and
online or stochastic versions. The MobileVaccClinic problem we
study here is a generalization of the well-known 𝑘-center problem,
where the goal is to open at most 𝑘 centers while minimizing the
maximum distance of a point to its closest center. For this simple
clustering setting, there exist efficient 2-approximation algorithms
[12, 16]. Furthermore, it is shown that unless P=NP this is the best
achievable approximation ratio [17].

Location theory problems have also been considered in the area
of healthcare, e.g., [4, 10, 21, 22]. A lot of this work has been focused
on placing mobile clinics or temporary facilities to ensure good
service, especially in resource-poor countries. As mentioned in [4],
the healthcare domain poses new challenges for location theory,
such as uncertainty, reliability, operation efficiency, patient safety,
and cost-effectiveness. Prior work has generally not considered
the mobility of clients at a detailed scale, which provides more
flexibility in deploying facilities. Our formulation of MobileVacc-
Clinic explicitly models human mobility, thus providing a realistic
framework for public health agencies in their response efforts.

4 HARDNESS RESULT

For our hardness result, we use the following problem studied in
[6], called 𝛾-Colorful 𝑘-Center or 𝛾C𝑘C for short. This problem is a
generalization of the outliers version of 𝑘-center — in addition to
the classical constraints, colors (representing demographic groups)
are assigned to each client and the problem requires that a sufficient
number of points of each color is covered. The formal definition is
given below:

Definition 4.1. Let 𝛾 ∈ Z≥1 be the number of colors, 𝑘 ∈ Z≥1 be
the budget, C be a set of points in a metric space, and 𝑑 : C × C −→
R≥0 be the distance function on C. For each ℓ ∈ [𝛾], let Cℓ ⊆ C be
the points with color ℓ and let𝑚ℓ ∈ Z≥1 be the number of points
with color ℓ which need to be covered. 𝛾C𝑘C asks for the minimum
radius 𝑅 together with a set 𝐹 ⊆ C with |𝐹 | ≤ 𝑘 , such that at least
𝑚ℓ points of Cℓ are covered within distance 𝑅 by 𝐹 . Formally, if
𝐵(𝐹, 𝑅) = { 𝑗 ∈ C : 𝑑 ( 𝑗, 𝐹 ) ≤ 𝑅} then we want |𝐵(𝐹, 𝑅) ∩ Cℓ | ≥ 𝑚ℓ

for every ℓ ∈ [𝛾].

In [6] the authors prove the following hardness result, which we
use to prove a hardness result for our problem later on.

Lemma 4.2. When 𝛾 is not a constant, there exist instances of 𝛾C𝑘C

with𝑚ℓ = 1 for all ℓ ∈ [𝛾], such that if 𝑅∗ is the optimal value of the

instance, the following hold:

• For any 𝜌 > 0, it is NP-hard to find 𝐹 ⊆ C with |𝐹 | ≤ 𝑘 and

|𝐵(𝐹, 𝜌𝑅∗) ∩ Cℓ | ≥ 𝑚ℓ for all ℓ . In words, it is NP-hard to

devise any approximation algorithm for 𝛾C𝑘C.

• For any 𝜌 > 0 and 𝜖 ∈ (0, 1), it is NP-hard to find 𝐹 ⊆ C
with |𝐹 | ≤ (1 − 𝜖) ln𝛾 · 𝑘 and |𝐵(𝐹, 𝜌𝑅∗) ∩ Cℓ | ≥ 𝑚ℓ for

every ℓ ∈ [𝛾]. In words, it is NP-hard to devise any bicriteria

approximation for 𝛾C𝑘C, whose chosen centers will be at most

(1 − 𝜖) ln𝛾 · 𝑘 .
• These problematic instances consist of points on a line.

Remark 4.3. Regarding the second statement in Lemma 4.2, the

authors of [6] show a bicriteria hardness result in terms of log |C| and
not ln𝛾 . However, a closer look into their proof reveals that the claim
mentioned above follows trivially. We choose to present this form of

the claim because it better fits our narrative later on in the paper.

Theorem 4.4. There exists a bicriteria preserving reduction of the

problematic instances of 𝛾C𝑘C described in Lemma 4.2 to instances of

MobileVaccClinic with |P | = 𝛾 . Specifically, any (𝜌, 𝛼)-bicriteria
approximation forMobileVaccClinic translates to a (𝜌, 𝛼)-bicriteria
approximation for the problematic instances of 𝛾C𝑘C.

Proof. Let (C, C1, . . . , C𝛾 , 𝑘,𝑚1, . . . ,𝑚𝛾 ) be a problematic in-
stance of 𝛾C𝑘C as described in Lemma 4.2, and recall that this
instance has 𝑚ℓ = 1 for all ℓ ∈ [𝛾]. We will now construct an
instance of MobileVaccClinic as follows. The metric space for
MobileVaccClinic will be the same as in the 𝛾C𝑘C problem. That
is, we assume we have points C with a distance function 𝑑 on them.
For every ℓ ∈ [𝛾] construct a client 𝑝ℓ , and set 𝑆𝑝ℓ = Cℓ . The set of
locations S for MobileVaccClinic where we can place facilities
will be the set of locations C of 𝛾C𝑘C, and the value 𝑘 will stay the
same for the two problems.

Consider now the optimal solution 𝐹 ∗ of the 𝛾C𝑘C instance and
its corresponding value 𝑅∗. We claim that 𝐹 ∗ is a feasible solution
for the constructedMobileVaccClinic instance, and its value for
that is exactly the same. This is easy to see because |𝐹 ∗ | ≤ 𝑘 ,
|𝐵(𝐹 ∗, 𝑅∗) ∩ Cℓ | ≥ 1 for every ℓ ∈ [𝛾], and Cℓ are exactly the
locations visited by client 𝑝ℓ . Hence if 𝑅𝑂𝑃𝑇 is the value of the
optimal solution to the the constructedMobileVaccClinic instance,
we have 𝑅𝑂𝑃𝑇 ≤ 𝑅∗.

Take now any (𝜌, 𝛼)-bicriteria solution 𝐹 forMobileVaccClinic.
At first we trivially have |𝐹 | ≤ 𝛼𝑘 . Moreover, for every ℓ we can
express 𝑑 (𝐹, 𝑆𝑝ℓ ) ≤ 𝜌𝑅𝑂𝑃𝑇 (the condition guaranteed by the (𝜌, 𝛼)-
bicriteria solution 𝐹 for MobileVaccClinic) as |𝐵(𝐹, 𝜌𝑅𝑂𝑃𝑇 ) ∩
Cℓ | ≥ 1. Finally, because 𝑅𝑂𝑃𝑇 ≤ 𝑅∗, we have 𝐵(𝐹, 𝜌𝑅𝑂𝑃𝑇 ) ⊆
𝐵(𝐹, 𝜌𝑅∗). Hence, |𝐵(𝐹, 𝜌𝑅∗) ∩ Cℓ | ≥ |𝐵(𝐹, 𝜌𝑅𝑂𝑃𝑇 ) ∩ Cℓ | ≥ 1 for
every ℓ ∈ [𝛾]. The latter concludes the bicriteria preserving reduc-
tion. □

Corollary 4.5. Even when the metric space is the Euclidean line, we

have the following for MobileVaccClinic (unless P=NP):

(1) No approximation algorithm exists.

(2) Any bicriteria approximation algorithmmust use at least 𝑘 ln𝑛
facilities.

5 ALGORITHMS

In this section, we introduce efficient methods which give (approxi-
mately) optimal facility placements, despite the hardness results.
We also show how to extend each of our algorithms to ignore out-
liers, incorporate fairness constraints, and restrict the capacity of
each facility.

Main Track AAMAS 2022, May 9–13, 2022, Online

791



5.1 Fixed-Parameter Tractability

Let 𝑈 =
⋃

𝑝∈P 𝑆𝑝 denote the set of all the locations visited by the
set of clients and 𝑢 = |𝑈 | be the number of locations in this set.
Due to potential privacy concerns, we can assume that the client
locations we have access to only include large public areas in the
county such as malls, shopping centers, etc. Hence, it is reasonable
to conclude that 𝑢 is a fixed parameter, which we assume ranges
from 15 − 30. Given this fixed parameter, we develop an efficient
algorithm for our problem.

The main observation here is the following: consider an instance
of MobileVaccClinic and let 𝐹 ∗ be its optimal solution, whose
maximum radius we denote by 𝑅∗. For each 𝑝 ∈ P, we know that
𝑑 (𝐹 ∗, 𝑆𝑝 ) ≤ 𝑅∗, and hence there must exist a location 𝑖𝑝 ∈ 𝑆𝑝 with
𝑑 (𝑖𝑝 , 𝐹 ∗) ≤ 𝑅∗. See now that {𝑖𝑝 | 𝑝 ∈ P} ⊆ 𝑈 , and therefore
|{𝑖𝑝 | 𝑝 ∈ P}| ≤ 𝑢. The latter implies that we can guess, via an
exhaustive search, the set {𝑖𝑝 | 𝑝 ∈ P} in time at most 2𝑢 (recall
that since 𝑢 is considered a fixed parameter, 2𝑢 is thought of as a
small constant). Let𝐴 be the correct guess for that set; we can think
of 𝐴 as the set of locations through which the optimal solution
covers every client within distance 𝑅∗. Given 𝐴, we see that the
problem of computing 𝐹 ∗ reduces in a straightforward manner to
the well-known 𝑘-supplier problem [16].

In 𝑘-supplier we have a set of pointsX and a set of locationsY in
a metric space with distance function𝑑 . The goal is to choose𝐶 ⊆ Y
with |𝐶 | ≤ 𝑘 , such that the maximum distance of any point in X to
its closest location of 𝑆 is minimized. Hence, after correctly guessing
𝐴, we create an instance of 𝑘-supplier where the points are the ones
in𝐴, and the set of locationsY is S. The previous discussion shows
that 𝐹 ∗ is a solution for this 𝑘-supplier instance, and its maximum
radius will again be 𝑅∗. Moreover, any 𝜌-approximate solution to
the 𝑘-supplier instance will trivially be a 𝜌-approximate solution
for MobileVaccClinic. Using the 3-approximation algorithm from
[16] proves the following theorem.

Theorem 5.1. Algorithm 1 yields a 3-approximation algorithm for

MobileVaccClinic and runs in time 2𝑢 poly(𝑛, |C|).

Algorithm 1 FPT

1: for 𝐴 ∈ 2𝑈 : |𝐴 ∩ 𝑆𝑝 | ≠ 0,∀𝑝 ∈ P do

2: Obtain locations 𝐹𝐴 by running the 𝑘-supplier algorithm on
the appropriate instance discussed above.

3: Calculate the objective value for 𝐹𝐴 .
4: end for

5: Pick the 𝐹𝐴 with the smallest objective value.

Moving forward, we see that the same approach of guessing the
correct set of client locations 𝐴 will also apply in different settings.
In fact, the only thing that may differ is the need for an alternative
𝑘-supplier algorithm that can incorporate the specific constraints
of each unique setting; we survey some of these settings below.

Outliers: Tomodify our algorithm so that it only considers some
fraction 𝑞 of the population, we only need to change the objective
value evaluated in line 3 of Algorithm 1. To improve efficiency, we
can also only consider guesses 𝐴 that contain locations from at
least ⌊𝑞𝑛⌋ clients since the correct guess 𝐴 contains locations from

at least ⌊𝑞𝑛⌋ clients. If we then feed 𝐴 to the 𝑘-supplier algorithm
in the exact same manner before, we will get a 3-approximation.

Corollary 5.2. After changing the objective evaluated in line 3

to the partial objective, Algorithm 1 gives a 3-approximation for

MobileVaccClinic with outliers.

Fairness: Although our algorithm provides an upper bound
guarantee for the maximum distance to a facility, the facility place-
ment may significantly differ between individuals, with some hav-
ing a facility right next to them, while others need to travel the
whole 3𝑅∗ guarantee. Luckily, the vaccine centers can vary from
week to week or even day to day. Thus, we can use a randomized
algorithm such as the one given in [15], to guarantee that the re-
provisioning of facilities over the course of many tries will provide
an improved per-point guarantee on expectation. Hence, we treat
the clients stochastically fairly.

Corollary 5.3. When using the algorithm from [15] instead of a

simple 𝑘-supplier algorithm, Algorithm 1 is able to output a distri-

bution Ω̃ such that ∀𝑝 ∈ P, we have E
𝐹∼Ω̃ [𝑑 (𝑆𝑝 , 𝐹 )] ≤ (1 + 2/𝑒)𝑅∗

and Pr[𝑑 (𝑆𝑝 , 𝐹 ) ≤ 3𝑅∗] = 1.

Capacity: In this case, we assume that each facility we use has a
capacity 𝐿, i.e., at most 𝐿 clients can be assigned to it in any solution.
Once again, the FPT process we described earlier suffices to solve
the problem. Specifically, we can think of the set 𝐴 as the locations
through which the clients of P receive their service. Hence, as we
did for the regular case, we can create an instance of 𝑘-supplier
where the points requiring service are those of𝐴, but this time each
location of Y for the 𝑘-supplier instance will have a capacity 𝐿. In
other words, this will be an instance of capacitated 𝑘-supplier. Fur-
thermore, the optimal solution of capacitated MobileVaccClinic
will be a solution of the same value for the capacitated 𝑘-supplier
instance. Finally, it is also trivial to see that any 𝜌-approximate solu-
tion for capacitated 𝑘-supplier instance, will yield a 𝜌-approximate
solution to capacitated MobileVaccClinic.

Corollary 5.4. When using the algorithm from [5] instead of a

simple 𝑘-supplier algorithm, Algorithm 1 is an 11-approximation for

capacitated MobileVaccClinic.

5.2 Covering Algorithm

In Corollary 4.5, we show that any bicriteria algorithm needs to
open at least 𝑘 ln𝑛 facilities in order to give a bounded approxi-
mation guarantee. Here, we show that this is essentially tight: we
give an algorithm that outputs a set of locations of size at most
𝑘 (ln𝑛 + 1), while guaranteeing that the objective value is at most
that of an optimal solution.

Consider the related problem, which we call ClientCover, in
which instead of optimizing the radius 𝑅 given a budget 𝑘 , we are
given a target radius 𝑅 and want to choose a set 𝐹 ⊆ S which
minimizes |𝐹 | and guarantees that 𝑑 (𝑆𝑝 , 𝐹 ) ≤ 𝑅 for each 𝑝 ∈ P.
Notice that this is just a standard Set Cover problem, where the sets
are {𝑝 ∈ P : 𝑑 (𝑆𝑝 , 𝑗) ≤ 𝑅} for each 𝑗 ∈ S and the universe consists
of the clients P. Using a known greedy algorithm for Set Cover
[26], we have an 𝐻𝑛-approximation algorithm for ClientCover,
where 𝐻𝑛 ≤ ln𝑛 + 1 is the 𝑛-th harmonic number.
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For generality, we will show how any 𝛼-approximation algo-
rithm for Set Cover yields an (1, 𝛼)-bicriteria algorithm for Mobil-
eVaccClinic via a reduction to ClientCover. First, note that the
optimal radius 𝑅∗ for an instance of MobileVaccClinic is always
the distance between some 𝑗 ∈ C and some 𝑖 ∈ S. Hence, there
are at most polynomially many options for it, specifically |C| · |S|.
For each such option 𝑅, we create the corresponding instance of
ClientCover and run the set cover algorithm on it. The final guar-
antees follow from the iteration when 𝑅 = 𝑅∗. Observe at this point
that we can speed up the whole process by performing a binary
search in order to find 𝑅∗, and thus avoid the previously described
exhaustive search.

Algorithm 2 ClientCover Search

1: Binary search on the sorted list {𝑑 (𝑖, 𝑗) : 𝑗 ∈ C, 𝑖 ∈ S}, and let
the current guess be 𝑅:

2: Use 𝑅 to create the proper instance of ClientCover.
3: Obtain 𝛼-approximate solution 𝐹𝑅 for that instance.
4: If |𝐹𝑅 | > 𝛼 · 𝑘 , increase 𝑅; else, decrease 𝑅.
5: Output 𝐹𝑅 for the minimum 𝑅 such that 𝐹𝑅 ≤ 𝛼 · 𝑘 .

Theorem 5.5. Given an 𝛼-approximation algorithm for set cover, Al-

gorithm 2 gives an (1, 𝛼)-bicriteria algorithm for MobileVaccClinic.

Proof. Let 𝑅∗ be the objective value for the optimal solution
𝐹 ∗ ⊆ S of MobileVaccClinic, where |𝐹 ∗ | ≤ 𝑘 . We wish to show
that ClientCover Search finds a radius 𝑅 in the list such that
|𝐹𝑅 | ≤ 𝛼 · 𝑘 and 𝑅 ≤ 𝑅∗. Consider an iteration of the binary search
where the radius guess is 𝑅. Suppose 𝑅 ≥ 𝑅∗; then there must exist
a solution of ClientCover of size at most 𝑘 . The 𝛼-approximation
algorithm will therefore output a set 𝐹𝑅 with 𝐹𝑅 ≤ 𝛼 · 𝑘 and 𝑅 will
decrease. If 𝑅 < 𝑅∗, then we either find a solution with 𝐹𝑅 ≤ 𝛼 · 𝑘 ,
or we increase 𝑅 and move closer to 𝑅∗. Finally, since 𝑅∗ is in the
list {𝑑 (𝑖, 𝑗) : 𝑗 ∈ C, 𝑖 ∈ S}, the binary search necessarily finds some
𝑅 ≤ 𝑅∗ with 𝐹𝑅 ≤ 𝛼 · 𝑘 . □

As in the case of our FPT algorithm, we can easily extend Al-
gorithm 2 in order to accommodate different settings. The only
difference here lies at step 3, where instead of a classic Set Cover
algorithm we can run a different algorithm.

Outliers: In order to modify our algorithm to only consider
some fraction 𝑞 ∈ (0, 1) of the population, we can use some 𝛼-
approximation algorithm for the Partial Set Cover problem, where
the goal is to cover at least a 𝑞-fraction of the universe elements.
Hence, we naturally consider a variant of ClientCover, which
we call Partial ClientCover, that requires only ⌊𝑞𝑛⌋ points to be
covered by balls of radius 𝑅∗. Trivially, Partial ClientCover is a
special case of Partial Set Cover. Then the approach we described
previously remains the same: we can guess the optimal radius 𝑅∗
and obtain an 𝛼-approximate solution 𝐹𝑅∗ for the corresponding
Partial ClientCover instance. This solution will be optimal for
MobileVaccClinicwith outliers, while placing at most 𝛼𝑘 facilities.
In particular, we have the following corollary of Theorem 5.5.

Corollary 5.6. When using the greedy algorithm for Partial Set

Cover [26], Algorithm 2 gives a (1, 𝐻 ⌊𝑞𝑛⌋ )-bicriteria algorithm for

MobileVaccClinic with outliers.

Fairness:When solvingMobileVaccClinic with outliers, the
algorithm may view some demographic groups as outliers more
often than others. To mitigate such possibilities, we can use an
algorithm for the Partition Set Cover problem [18] to guarantee
that a large proportion of each demographic group gets coverage.
For example, we can guarantee that the algorithm considers a pro-
portional number of people from each (demographic) group when
choosing the vaccine center locations. The following approxima-
tion guarantee will then follow directly from [18] and the outliers
reduction before.

Corollary 5.7. Let 𝐶𝑡 ⊆ P for 𝑡 ∈ [𝑟 ] be (not necessarily disjoint)
demographic classes and let 0 ≤ 𝑝𝑡 ≤ |𝐶𝑡 | be the coverage require-
ments for each class. Using the algorithm of [18] at step 3, Algorithm

2 gives a (1,𝑂 (log𝑛) + log 𝑟 )-bicriteria algorithm while satisfying

the coverage constraints.

Capacity: As before, we assume that each facility we use has
capacity 𝐿. We see that our general framework is still applicable:
we can modify our algorithm to satisfy these capacity constraints
by replacing the Set Cover algorithm with a Capacitated Set Cover
algorithm when solving the ClientCover problem. In fact, [27]
shows that a greedy algorithm (similar to the one for Set Cover)
still gives a log𝑛 + 1 approximation algorithm in this more general
case.

Corollary 5.8. When using the greedy algorithm given in [27] for

Capacitated Set Cover, Algorithm 2 gives a (1, log𝑛 + 1)-bicriteria
algorithm while satisfying the capacity constraints.

Budget: In the previous algorithms which solve ClientCover
as a subroutine, we violate the budget constraint 𝑘 by a non-trivial
multiplicative factor, which is a practical consideration that needs to
be addressed. Luckily, it has been shown that the greedy algorithm
and other heuristics for Set Cover have very small approximation
ratios in practice [19]. In fact, many real-life instances of Set Cover
are solved optimally or near optimally by the greedy algorithm
[13]. Given this empirical result (which we also validate for our
instances of the Set Cover problem), we get𝛼 = 1 in our experiments
when running ClientCover Search. In particular, if we solve the
ClientCover problem using a commercial mixed-integer linear
program (MILP) solver [14, 23], we can solve the original problem
to optimality. We emphasize that this is a non-trivial contribution:
directly formulatingMobileVaccClinic as an MILP requires Θ(𝑛3)
constraints, and we cannot even initialize the solver using or-tools.
In contrast, the Set Cover MILP only has Θ(𝑛) constraints, which
can be solved efficiently using commercial solvers. Hence, when
using an MILP solver to solve ClientCover, Algorithm 2 yields a
practical solution for solving MobileVaccClinic optimally.

6 EXPERIMENTS

6.1 Experimental Setup

Data: We run our experiments on the mobility data from Char-
lottesville City and Albemarle County in Virginia. For these coun-
ties, we use synthetic data constructed from the 2019 U.S. population
pipeline (see [9, 20] for details). This dataset was constructed by
tracking the week-long activity of county residents. Each resident
is represented by a sequence of activities, where each activity is de-
scribed by duration, type, and location in the county. The locations
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Table 1: Network Information

Activity Residential Maximum Measured
Clients Locations Locations Activity Diameter (km)

Charlottesville City 33156 5660 10038 9952 8.12
Albemarle County 74253 9619 32981 24506 61.62

are given in geodetic coordinates and are categorized as either a
residential or activity (non-residential) location. From this dataset,
we can extract the locations visited by individuals residing in the
county and set all activity locations as potential facility placements.
A summary of the dataset is given in Table 1.

Baselines: We compare our algorithms with two heuristics:
HomeCenters andMostActive. InMostActive, we open vacci-
nation centers at the 𝑘 most visited locations. We set MostActive
as the baseline because it is related to the current heuristic used by
the Virginia Department of Health. In HomeCenters, we run k-
supplier to place facilities at locations that minimize the maximum
distance from client homes. We compare with this baseline in order
to show the importance of considering mobility when placing the
vaccination centers.

Objective: Recall that our objective is to minimize the maximum
distance any client needs to deviate from their path to reach some
facility. Since our location data is given in the geographic coordinate
system, we approximate the Earth as a sphere and use geodesic
distance as our metric. In Section 6.2, we notice that there is a
sharp drop in the objective value if we only consider 99% of the
population. As a result, we also evaluate the objective value of our
algorithms when 5% of the people are considered outliers.

FPT details:When using FPT in our experiments, we pick 𝑢 =

15 locations that cover the largest portion of the population (as
given by the greedy algorithm for theMaximumCoverage problem).
We then run FPT using only knowledge of these 𝑢 locations. The
locations chosen are all popular public activity locations, so we have
a limited amount of privacy violation. As a result, the performance
of FPT is weaker on the full objective, but remains strong on partial
coverage (the outliers formulation). It is important to note that
even though we limit the knowledge of client-visited locations, FPT
can still choose to place facilities at any activity location in the
dataset. For more details on our implementation of FPT and the
experiments, see our GitHub1.

6.2 Client Coverage Performance Analysis

First, we directly compare the performances between our algo-
rithms and the baselines. Because our objective value is defined by
the maximum distance any client must travel to reach their closest
facility, it does not yield insight into the distribution of travel dis-
tances. For this reason, we also assess how large the radius around
our placed facilities must be to cover proportion 𝑝 of the clients,
for 𝑝 ∈ [0.8, 1.0].

As seen in Figure 2, facility placements from HomeCenters and
ClientCover result in better full objectives while facility place-
ments fromMostActive and FPT result in better partial objectives.
This has a simple explanation: the former two algorithms are forced
1https://github.com/Ann924/MobileFacility

to consider outliers since they directly optimize the objective while
the latter two optimize over only a portion of the population. As
a result, it makes sense to compare HomeCenters with Client-
Cover and FPT withMostActive. We note that if we instead used
the outliers version of HomeCenters and ClientCover, we may
not see this disparity.

Figure 2: Charlottesville k = 10, Albemarle k = 20

6.3 Tradeoff between Radius and Budget

In addition to evaluating the performance of our algorithms at the
current budget, it is important to evaluate the sensitivity of our
algorithms to an increase in budget. That is, we want to know how
much the objective value would decrease if the county allocated
more resources to deploy a greater number of mobile facilities. This
knowledge can influence policy decisions: when an increase budget
yields a sharp decrease in objective (rather than a small decrease),
the government has more incentive to fund another vaccination
center.
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As seen in Figure 3, there is generally a sharp decrease in the
objective valuewhen the budget is less than 6 for Charlottesville and
9 for Albemarle. As the budget increases past those thresholds, the
marginal returns become so diminished that increasing the budget
hardly changes the objective value. This is especially prominent in
the full objective performance of FPT andMostActive. Hence, it
is natural to recommend budgets of 6 and 9 to the Charlottesville
and Albemarle government, respectively.

Additionally, we wish to bring attention to the overall poor
performance of HomeCenters in these experiments. It is consis-
tently outperformed by ClientCover for the full objective and
is outperformed by every algorithm when evaluating the partial
objective. Furthermore, HomeCenters does not exhibit strong bud-
get sensitivity when assessing the 95% objective. On Albemarle, its
performance plateaus around an objective value of 1.5km, which is
more than 3 times larger than the objective of the algorithms that
consider mobility patterns.

A seemingly weird result from the experiment is the tradeoff
curve forHomeCenters. Though there is a general downward trend
in the objective value as the budget increases, there are cases in each
county where increasing the budget results in an increase in the
objective value. This contradictory phenomenon is caused by the
limited correlation between the distance to homes and our objective;
as a result, noise/luck has a considerable effect. The noisiness of
HomeCenters emphasizes the importance of our work of modeling
mobile populations.

Figure 3: Tradeoff between maximum distance needed to

travel and the number of vaccine centers placed. In the 95%

objective plots, ClientCover and HomeCenters are run

with the outliers formulation.

6.4 A Kernel Property

Through our experiments, we notice a nice (empirical) property of
the vaccine center locations selected by some of our algorithms.
Imagine a case where we (the government) have the funds to place
five mobile vaccine centers and we use our algorithms to pick the
five locations to place them. Then, after two weeks, the government
decides that the disease is causing too much economic devastation
and, in turn, funds three more mobile vaccine centers. When we ask

our algorithms to place the eight vaccine centers (approximately)
optimally, it turns out that the eight chosen locations will often
contain the original five chosen locations as a subset. The original
five locations are then called a kernel.

Table 2: Charlottesville Kernel

Most Home Client
Active Center FPT Cover

3 → 4 0 1 1 2
4 → 5 0 1 1 4
5 → 6 0 2 1 5
6 → 7 0 3 2 6
7 → 8 0 0 1 6
8 → 9 0 0 1 5
9 → 10 0 3 1 7

Table 3: Albemarle Kernel

Most Home Client
Active Center FPT Cover

6 → 7 0 3 1 5
7 → 8 0 1 2 6
8 → 9 0 1 2 7
9 → 10 0 1 1 8
10 → 11 0 4 3 5
11 → 12 0 1 1 9
12 → 13 0 1 2 4
13 → 14 0 0 1 7
14 → 15 0 5 2 7
15 → 16 0 1 1 8
16 → 17 0 1 0 12
17 → 18 0 7 0 8
18 → 19 0 2 1 7
19 → 20 0 0 0 8

The ideal kernel property occurs when every set of chosen facil-
ities of size 𝑘 contains the set of chosen facilities for budget 𝑘 − 1.
In order to determine the presence of a kernel for each of our algo-
rithms, we calculate the number of facilities chosen with budget
𝑘 − 1 that are not also chosen with budget 𝑘 . These values populate
Tables 2 and 3, where the leftmost column denotes the budgets com-
pared. By definition, MostActive has the kernel property since
it is a greedy algorithm. Our FPT algorithm also (approximately)
satisfies the kernel property while maintaining a stronger perfor-
mance than the baseline. The remaining two algorithms do not
exhibit the property: both HomeCenters and ClientCover pick
(almost) completely different locations upon increasing the budget.
Because they require less relocation,MostActive and FPT have
advantageous properties when the budget is adaptive and vaccine
distribution is time-consuming.

We recognize that this is not necessarily applicable to our ex-
perimental setting, COVID-19, since transportation of vaccines is
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(relatively) easy in Virginia. However, for the Ebola outbreak in
2014, the kernel property was recognized as an important property
to have since vaccine distribution was a much more costly pro-
cess. Furthermore, we note that our algorithms are not explicitly
designed to have this property; it is only empirically verified.

6.5 Information Constraints

In our previous experiments with ClientCover, we assumed that
we had full knowledge of the locations each person visited through-
out a day. Next, we wish to understand how fine-grained this data
needs to be in order for ClientCover to outperform our other
algorithms; this also addresses privacy concerns raised when using
the exact mobility data of individuals. In order to model loss of
detailed movement patterns, we cluster the locations within a given
radius 𝑟 together and apply ClientCover on the resulting cluster
centers. The details of the clustering algorithm can be found in
our code, but the general idea is to define each location to be a
potential cluster center and then use the greedy set cover algorithm
to pick a minimum set of clusters centers that cover all original
locations with radius 𝑟 . Using this general method for both Char-
lottesville and Albemarle, we vary the radius 𝑟 between 100 and
600 meters to see how much privacy ClientCover can give while
still maintaining a superior performance over the baselines.

Figure 4: ClientCover performance under loss of informa-

tion (k=20)

As we see in Figure 4, clustering with a radius of 0.1–0.48 km
on Charlottesville leads to a gradual increase in the objective value.
At a clustering radius of 0.48 km, there is a sharp increase in the
objective value from the facility placements. Even so, the resulting
objective value is significantly smaller than 2.39 km, as obtained
by MostActive, and 2.52 km, as obtained for FPT. Furthermore,

even by clustering the data with a radius that is 45% of the original
ClientCover objective, we can still perform better than the Home-
Centers baseline. A similar trend occurs for Albemarle where the
change in the solution value is relatively small when clustering from
0.10–0.35 km but grows rapidly after 0.35 km. We conclude that
even when giving some privacy to individuals, ClientCover still
performs much better than FPT, MostActive, and HomeCenters.

7 CONCLUSION

Here, we introduce a generalization of the classical 𝑘-supplier prob-
lem where we consider the mobility of populations when placing
facilities. We show that designing an approximation algorithm for
this variant is NP-Hard, so we turn to fixed-parameter tractability
and bicriteria approximation algorithms to get around our hardness
result. Finally, we experimentally show the efficacy of our algo-
rithms in comparison to natural baselines. Since we have demon-
strated the importance of modeling mobile populations, a natural
next step is to extend other variants of the facility location problem
to this setting as well.
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