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ABSTRACT
To overcome incompatibility issues, kidney patients may swap

their donors. In international kidney exchange programmes (IKEPs),

countries merge their national patient-donor pools. We consider a

recent credit system where in each round, countries are given an

initial kidney transplant allocation which is adjusted by a credit

function yielding a target allocation. The goal is to find a solution

in the patient-donor compatibility graph that approaches the target

allocation as closely as possible, to ensure long-term stability of the

international pool. As solutions, we use maximum matchings that

lexicographically minimize the country deviations from the target

allocation. We first give a polynomial-time algorithm for computing

suchmatchings.We then perform, for the first time, a computational

study for a large number of countries. For the initial allocations we

use, besides two easy-to-compute solution concepts, two classical

concepts: the Shapley value and the nucleolus. These are hard to

compute, but by using state-of-the-art software we show that they

are now within reach for IKEPs of up to fifteen countries. Our

experiments show that using lexicographically minimal maximum

matchings instead of ones that only minimize the largest deviation

from the target allocation (as previously done) may make an IKEP

up to 52% more balanced.
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1 INTRODUCTION
For kidney patients, kidney transplantation is still the most effective

treatment. However, a kidney transplantation might not be possible

due to blood-type or tissue-type incompatibilities between a patient

and a willing donor. The solution is to place all patient-donor pairs
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(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9–13,
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in one pool such that donors can be swapped. A kidney exchange
programme (KEP) is a centralized program where the goal is to find

an optimal kidney exchange scheme in a given pool of patient-donor

pairs.

Recently, national KEPs started to collaborate, leading to a num-

ber of international KEPs. In 2016, the first international kidney

exchange took place, between Austria and Czech Republic [17].

In 2018, Italy, Spain and Portugal started to collaborate. In 2019,

Scandiatransplant, an organization for sharing deceased organs

among six Scandinavian countries, started an international KEP

involving Swedish and Danish transplant centers. Even though

overall solutions will improve, individual rationality might not be

guaranteed, that is, individual countries could be worse off. To im-

prove the stability of an international KEP, the following question is

therefore highly relevant: What kind of fairness must we guarantee
to ensure that all countries in an international KEP place all their
patient-donor pairs in an international pool?

Individual rationality [4, 5] and fairness versus optimality [3, 15,

25, 35] were initially studied for national KEPs, in particular in the

US. However, the US situation is different from many other coun-

tries. The US has three nationwide KEPs (UNOS, APD, NKR) [2],

and US hospitals work independently and compete with each other.

Hence, US hospitals tend to register only the hard-to-match pairs

to the national KEPs. As a consequence, the aforementioned papers

focused on mechanisms that give incentives for hospitals to register

all their patient-donor pairs at the KEP.

Our Setting. We consider the setting of European KEPs which

are scheduled in rounds, typically once in every three months [11].

Unlike the US setting, this setting allows a search for optimal ex-

change schemes. The search can be done in polynomial time for

2-way exchanges (matchings), but is NP-hard if 3-way exchanges

are permitted [1]. Below we discuss existing work for this setting.

Known Results. Carvalho and Lodi [18] used a 2-round system

for ensuring stability of international KEPs with 2-way exchanges

only: in the first round each country selects an internal matching,

and in the second round a maximum matching is selected for the

international exchanges. They gave a polynomial-time algorithm

for computing a Nash-equilibrium that maximizes the total number

of transplants, improving the previously known result of [19] for

two countries.

Sun et al. [34] also considered 2-way exchanges only. They de-

fined so-called selection ratios using various lower and upper target
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numbers of kidney transplants for each country. In their setting, a

solution is considered to be fair if the minimal ratio across all coun-

tries is maximized. They also required a solution to be a maximum

matching and individually rational. They gave theoretical results

specifying which models admit solutions with all three properties

and they provided polynomial-time algorithms for computing such

solutions, if they exist.

Klimentova et al. [29] introduced a credit system, where the

number of kidney transplants for a country is specified by a “fair”

target number for that country. The differences between the ac-

tual number of transplants for a country and its target number

are used as credits for the next round. In their simulations, they

allowed 3-way exchanges for four countries and considered the

potential and benefit values as target allocations, the latter yield-

ing slightly more balanced solutions. Biró et al. [10] compared the

benefit value with the Shapley value. In their simulations, for three

countries allowing 3-way exchanges, they found that the Shapley

value produced smaller deviations from the targets on average. Biró

et al. [12] considered credit-based compensation systems from a the-

oretical point of view. They only allowed for 2-way exchanges but

unlike [10, 29], with the possibility of having weights for represent-

ing transplant utilities. They gave a polynomial-time algorithm for

finding a maximum matching that minimizes the largest deviation

from a target allocation. They also showed that the introduction of

weights makes the problem NP-hard.
Our Contribution. In Section 2 we explain the credit system

of [10, 12, 29] and our settings.We only allow 2-way exchanges (just

as [18, 19, 34], but unlike [10, 29]) and do not consider weights (just

as [10, 29]). In Section 3, we generalize the above polynomial-time

result of [12] by giving a polynomial-time algorithm for computing

a maximum matching that lexicographically minimizes the country
deviations from a given target allocation. In Section 4 we comple-

ment this result with a simulation for up to even fifteen countries in
contrast to the previous studies [10, 29] for 3–4 countries, and we

do this both for equal and varying country sizes. Our motivation

is twofold. Firstly, international KEPs have a growing number of

countries. Secondly, we aim to measure the effect of using maxi-

mum matchings that are lexicographically minimal, which requires

a large number of countries. Motivated by the promising results

for the Shapley value [10], we also considered the effect of using

more widely accepted solution concepts from Cooperative Game

Theory. Hence, we chose to take as target allocation the Shapley

value and the nucleolus and compare these against the benefit value

and the contribution value, a natural variant of the benefit value

(see Section 2).

As mentioned, we only allow 2-way exchanges and do not con-

sider weights: if 3-way exchanges [1] or weights [12] are allowed,

the problem becomes NP-hard, and with the current technology it

is not possible to perform a study on such a large scale as ours. We

note that some countries, such as France and Hungary, are legally

bound to using only 2-way exchanges.

Our experiments show that a credit system using lexicographi-

cally minimal maximum matchings instead of ones that minimize

the largest deviation make an international KEP up to 52% more bal-

anced, without decreasing the overall number of transplants. The

exact improvement depends on the solution concept used. Choosing

the latter is up to the policy makers of the international KEP. From
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Figure 1: A directed compatibility graph (left) whichwemake
undirected (right). Here,M = {𝑀}, where 𝑀 = {𝑖1𝑖2, 𝑗1 𝑗2}. If
𝑉1 = {𝑖1, 𝑖2, 𝑖3} and 𝑉2 = { 𝑗1, 𝑗2}, then 𝑠1 (𝑀) = 𝑠2 (𝑀) = 2.

our experiments, however, the Shapley value turned out, again, to

yield the best results, namely on average a (relative) deviation of

up to 0.52% from the target allocation (whereas the other three

solution concept stay within 1.23%).

2 OUR MODEL
We model a KEP as follows. A compatibility graph is a directed

graph 𝐷 = (𝑉 , 𝐸) with an arc weighting 𝑤 . Each vertex in 𝑉 is a

patient-donor pair, and there is an arc from patient-donor pair 𝑖 to

patient-donor pair 𝑗 if the donor of pair 𝑖 is compatible with the

patient of pair 𝑗 . The associated weight𝑤𝑖 𝑗 indicates the utility of

the transplantation. An exchange cycle is a directed cycle 𝐶 in 𝐷 .

The weight of a cycle 𝐶 is the sum of the weights of its arcs. An

exchange scheme 𝑋 is a union of pairwise vertex-disjoint exchange

cycles in 𝐷 . The weight of 𝑋 is the sum of the weights of its cycles.

The goal is to find an exchange scheme of maximumweight, subject

to a fixed exchange bound ℓ , which is an upper bound on the length

of the exchange cycles that may be used.

We obtain an international KEP by partitioning 𝑉 into sets

𝑉1, . . . ,𝑉𝑛 , where 𝑛 is the number of countries involved and 𝑉𝑝
is the set of patient-donor pairs of country 𝑝 . The objective is still

to find an exchange scheme of 𝐷 that has maximum weight subject

to the exchange bound ℓ . In this setting, we must now in addition

ensure that the countries accept the proposed exchange schemes.

Assumptions. We set ℓ = 2 and 𝑤 ≡ 1. As ℓ = 2, we can make

𝐷 undirected by adding an edge between two vertices 𝑖 and 𝑗 if

and only if (𝑖, 𝑗) and ( 𝑗, 𝑖) are in 𝐴 (see Figure 1). So, from now on,

compatibility graphs are undirected.

We now explain the recent credit system from [12, 29] for inter-

national KEPs, which run in rounds. Let 𝑁 = {1, . . . , 𝑛} be the set
of countries and for some ℎ ≥ 1, let 𝐷ℎ be the compatibility graph

in round ℎ with vertex set of countries 𝑉ℎ
1
, . . . ,𝑉ℎ

𝑛 . Let 𝜇ℎ be the

size of a maximum matching in 𝐷ℎ , so 2𝜇ℎ is the maximum number

of kidney transplants possible in round ℎ. As we optimize social

welfare, we define an allocation for round ℎ as a vector 𝑥ℎ ∈ R𝑁
with 𝑥ℎ (𝑁 ) = 2𝜇ℎ , where we write 𝑥

ℎ (𝑆) = ∑
𝑝∈𝑆 𝑥

ℎ
𝑝 for a subset

𝑆 ⊆ 𝑁 . Thus, 𝑥ℎ𝑝 describes the share of 𝑥ℎ (𝑁 ) = 2𝜇ℎ that is allo-

cated to country 𝑝 . We can only allocate integer numbers (kidneys),

but nevertheless we do allow allocations 𝑥ℎ to be non-integer, as

we will explain later.

Assume that we are given a “fair” allocation 𝑦ℎ for round ℎ ≥
1, together with a credit function 𝑐ℎ : 𝑁 → R, which satisfies∑

𝑝∈𝑁 𝑐ℎ𝑝 = 0; we let 𝑐1 ≡ 0 and define 𝑐ℎ for ℎ ≥ 2 below. For
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𝑝 = 1, . . . , 𝑛, we set 𝑥ℎ𝑝 = 𝑦ℎ𝑝 + 𝑐ℎ𝑝 . Then 𝑥ℎ is an allocation, as 𝑦ℎ is

an allocation and

∑
𝑝∈𝑁 𝑐ℎ𝑝 = 0. We call 𝑥ℎ the target allocation and

𝑦ℎ the initial allocation for round ℎ.

We now define 𝑐ℎ for ℎ ≥ 2. Let Mℎ
be the set of all maxi-

mum matchings of 𝐷ℎ . As we optimize social welfare, we choose

a matching 𝑀ℎ ∈ Mℎ
. The set {(𝑖, 𝑗) ∈ 𝐸 | 𝑖 𝑗 ∈ 𝑀ℎ, 𝑗 ∈ 𝑉ℎ

𝑝 }
consists of all kidney transplants in round ℎ that involve patients

in country 𝑝 (with donors both from country 𝑝 and other coun-

tries). We let 𝑠𝑝 (𝑀ℎ) denote the size of this set, or equivalently,
𝑠𝑝 (𝑀ℎ) = |{ 𝑗 ∈ 𝑉ℎ

𝑝 | 𝑖 𝑗 ∈ 𝑀ℎ}| (see Figure 1). We now compute a

new credit function 𝑐ℎ+1 by setting 𝑐ℎ+1𝑝 = 𝑥ℎ𝑝 − 𝑠𝑝 (𝑀ℎ) and note

that

∑
𝑝∈𝑁 𝑐ℎ+1𝑝 = 0, as required. For round ℎ + 1, a new initial

allocation 𝑦ℎ+1 is given. For 𝑝 = 1, . . . , 𝑛, we set 𝑥ℎ+1𝑝 = 𝑦ℎ+1𝑝 + 𝑐ℎ+1𝑝

and repeat the process. Note that 𝑐ℎ𝑝 =
∑ℎ−1
𝑡=1 (𝑦𝑡𝑝 − 𝑠𝑝 (𝑀𝑡 )) for a

country 𝑝 and round ℎ ≥ 2, so credits are in fact the accumulation

of the deviations from the initial allocations.

We now specify our choices for the initial allocations 𝑦ℎ and

maximum matchings𝑀ℎ ∈ Mℎ
.

Choosing the initial allocation y. As mentioned, we use a coop-

erative game-theoretic perspective. A (cooperative) game is a pair
(𝑁, 𝑣), where 𝑁 is a set {1, . . . , 𝑛} of players and 𝑣 : 2

𝑁 → R+ is
a value function with 𝑣 (∅) = 0. A coalition is a subset 𝑆 ⊆ 𝑁 . If

𝑣 (𝑁 ) is maximum over all partitions of 𝑁 , then the players have

an incentive to form the grand coalition 𝑁 . The central problem

is then how to distribute 𝑣 (𝑁 ) amongst the players in such a way

that players are not inclined to leave the grand coalition. In this

context, an allocation is a vector 𝑥 ∈ R𝑁 with 𝑥 (𝑁 ) = 𝑣 (𝑁 ). A
solution concept prescribes a set of “fair” allocations for cooperative
games, where the notion of fairness depends on context. The core of
a game (𝑁, 𝑣) consists of all allocations 𝑥 ∈ R𝑁 with 𝑥 (𝑆) ≥ 𝑣 (𝑆)
for every 𝑆 ⊆ 𝑁 . Core allocations offer no incentive for a group of

players to leave the grand coalition 𝑁 and form a coalition on their

own, so they ensure that 𝑁 is stable. However, games may have an

empty core.

For an allocation 𝑥 and a coalition ∅ ≠ 𝑆 ≠ 𝑁 in a game (𝑁, 𝑣), we

define the excess 𝑒 (𝑆, 𝑥) := 𝑥 (𝑆) − 𝑣 (𝑆) and obtain the excess vector
𝑒 (𝑥) ∈ R2𝑛−2 by ordering the 2

𝑛 − 2 in a non-decreasing sequence.

The nucleolus of a game (𝑁, 𝑣) is the unique allocation [33] that

lexicographically maximizes 𝑒 (𝑥) over the set of allocations 𝑥 with

𝑥𝑝 ≥ 𝑣 ({𝑝}) for every 𝑝 ∈ 𝑁 (note that the latter set of allocations

is nonempty for generalized matching games). The nucleolus is a

core allocation if the core is nonempty. The Shapley value 𝜙 (𝑁, 𝑣)
of a game (𝑁, 𝑣), which does not necessarily belong to the core, is

defined by setting for every 𝑝 ∈ 𝑁 ,

𝜙𝑝 (𝑁, 𝑣) =
∑︁

𝑆⊆𝑁 \{𝑝 }

|𝑆 |!(𝑛 − |𝑆 | − 1)!
𝑛!

(
𝑣 (𝑆 ∪ {𝑝}) − 𝑣 (𝑆)

)
. (1)

The surplus of a game (𝑁, 𝑣) is surp = 𝑣 (𝑁 )−∑𝑝∈𝑁 𝑣 ({𝑝}). For 𝑝 ∈
𝑁 we can allocate 𝑣 ({𝑝}) +𝛼𝑝 · surp for some 𝛼 with

∑
𝑝∈𝑁 𝛼𝑝 = 1.

We obtain the benefit value [29] if for each 𝑝 ∈ 𝑁 ,

𝛼𝑝 =
𝑣 (𝑁 ) − 𝑣 (𝑁 \ {𝑝}) − 𝑣 ({𝑝})∑

𝑝∈𝑁 (𝑣 (𝑁 ) − 𝑣 (𝑁 \ {𝑝}) − 𝑣 ({𝑝}))
.

𝑖1 𝑖2

𝑖3𝑖4

𝑖1 𝑖2

𝑖3

Figure 2: A compatibility graph with a set 𝑁 = {1, 2, 3} of
three countries. Suppose in round 1 (left) 𝑉1 = {𝑖1}, 𝑉2 =

{𝑖2, 𝑖3} and 𝑉3 = {𝑖4} and in round 2 (right) 𝑉1 = {𝑖1}, 𝑉2 = {𝑖2}
and 𝑉3 = {𝑖3}. Using the Shapley value yields in round 1, in
the notation of the credit system, 𝑥1 = 𝑦1 = ( 2

3
, 8
3
, 2
3
), 𝑀1 =

{(𝑖1, 𝑖2), (𝑖3, 𝑖4)} (the thick edges in the left graph), 𝑠 (𝑀1) =
(1, 2, 1) and 𝑐2 = 𝑦1 − 𝑠 (𝑀1) = (− 1

3
, 2
3
,− 1

3
), and in round 2,

𝑦2 = ( 4
3
, 1
3
, 1
3
), 𝑥2 = 𝑦2 + 𝑐2 = (1, 1, 0), 𝑀2 = {(𝑖1, 𝑖2)} (the thick

edge in the right graph) and 𝑐3 = 𝑥2 − 𝑠 (𝑀2) = (0, 0, 0). Using
the nucleolus yields the same for round 1, but in round 2,
𝑦2 = (2, 0, 0), and hence 𝑥2 = 𝑦2 + 𝑐2 = ( 5

3
, 2
3
,− 1

3
),𝑀2 = {(𝑖1, 𝑖2)}

and 𝑐3 = 𝑥2 − 𝑠 (𝑀2) = ( 2
3
,− 1

3
,− 1

3
).

We obtain the contribution value by setting for each 𝑝 ∈ 𝑁 ,

𝛼𝑝 =
𝑣 (𝑁 ) − 𝑣 (𝑁 \ {𝑝})∑

𝑝∈𝑁 (𝑣 (𝑁 ) − 𝑣 (𝑁 \ {𝑝}))
.

A generalized matching game [12] is a game (𝑁, 𝑣) on an undi-

rected graph 𝐷 = (𝑉 , 𝐸) with an edge weighting𝑤 and a partition

(𝑉1, . . . ,𝑉𝑛) of 𝑉 . For 𝑆 ⊆ 𝑁 , we let 𝑉 (𝑆) = ⋃
𝑝∈𝑆 𝑉𝑝 . The value

𝑣 (𝑆) of coalition 𝑆 is the maximum weight of a matching in the

subgraph of𝐷 induced by𝑉 (𝑆). If𝑤 ≡ 1, then 𝑣 (𝑆) is the maximum

size of a matching in the subgraph of 𝐷 induced by 𝑉 (𝑆). In par-

ticular 𝑣 (𝑁 ) = 𝜇, where 𝜇 is the size of a maximum matching in 𝐷 .

If 𝑉𝑝 = {𝑝} for 𝑝 = 1, . . . , 𝑛, then we obtain the classical matching
game (see, for example, [13, 22, 26, 27, 30]).

In our setting, 𝑁 is a set of countries. So, player 𝑝 ∈ 𝑁 represents

country 𝑝 , which has set of patient-donor pairs 𝑉𝑝 and size |𝑉𝑝 |.
Recall also that we set𝑤 ≡ 1. For the initial allocation 𝑦 in a round

we consider four solution concepts of the corresponding general-

ized matching game: two computationally involved ones, namely

the nucleolus and the Shapley value and two easy-to-compute ones,
namely the benefit value and the contribution value. Recall that

𝑥 (𝑁 ) = 2𝜇 for an allocation 𝑥 , as we count the number of kid-

ney transplants instead of the number of patient-donor swaps. To

resolve this incompatibility, we simply multiply the allocations

prescribed by the above four solution concepts by two.

Choosing the solution 𝑴 . Recall that in order to optimize social

welfare we choose a maximum matching in each round. Ideally,

each country 𝑝 should receive a number of kidney transplantations

for its patients that is close to its target allocation 𝑥 for the round

under consideration. In [12] a polynomial-time algorithmwas given

for finding a maximum matching𝑀 that minimizes

𝑑1 := max

𝑝∈𝑁
{|𝑥𝑝 − 𝑠𝑝 (𝑀) |}.

Let 𝛿 (𝑀) = ( |𝑥𝑝1 − 𝑠𝑝1 (𝑀) |, . . . , |𝑥𝑝𝑛 − 𝑠𝑝𝑛 (𝑀) |) be the vector ob-
tained by reordering the components |𝑥𝑝 −𝑠𝑝 (𝑀) | non-increasingly.
We say that 𝑀 is lexicographically minimal for an allocation 𝑥 if

𝛿 (𝑀) is lexicographically minimal over all matchings𝑀 ∈ M. Note
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that every lexicographically minimal matching inM is a matching

that minimizes max𝑝∈𝑁 {|𝑥𝑝 − 𝑠𝑝 (𝑀) |}, but the reverse might not

be true. In each round of our credit-based model we propose to take

a maximum matching that is lexicographically minimal; see Fig-

ure 2 for an example. In the next section, we show how to compute

such a matching in polynomial time.

Remark. Recall that 𝑐ℎ𝑝 =
∑ℎ−1
𝑡=1 (𝑦𝑡𝑝 − 𝑠𝑝 (𝑀𝑡 )) for a country 𝑝 and

round ℎ ≥ 2. Hence, credits for a country can build up over time

evenwith our choice of fair target allocations. For instance, consider

the example in Figure 2. Suppose every future round looks the same

as round 2 and the nucleolus is used as the target allocation. Then,

𝑐ℎ
𝑖1
= 𝑐ℎ−1

𝑖1
+ 1 for ℎ ≥ 3. However, these situations did not occur in

any of our experiments where we used the credit function.

3 COMPUTING A LEXICOGRAPHICALLY
MINIMAL MAXIMUMMATCHING

Let (𝑁, 𝑣) be a generalized matching game with a set 𝑉 of patient-

donor pairs. LetM be the set of maximum matchings in the corre-

sponding compatibility graph 𝐷 , and let 𝑥 be an allocation. We will

show how to compute a maximum matching fromM that is lexi-

cographically minimal for 𝑥 . We need the 𝑂 ( |𝑉 |3)-time algorithm

from [12] which computes for a set of closed intervals 𝐼1, . . . 𝐼𝑛 , a

maximum matching 𝑀 ∈ M with 𝑠𝑝 (𝑀) ∈ 𝐼𝑝 for 𝑝 = 1, . . . , 𝑛 or

finds that such a matching does not exist (the algorithm constructs

in linear time an auxiliary graph 𝐺 ′ on 𝑂 ( |𝑉 |) vertices and then

finds a maximum weight perfect matching of𝐺 ′ in𝑂 ( |𝑉 |3) time by

using Edmonds’ algorithm [24]). Now suppose we are given a set

of intervals 𝐼1, . . . 𝐼𝑛 , some of which are open instead of closed. Let

𝐼𝑝 be an open interval. Recall that the 𝑠-values are sizes of subsets

of matching edges and thus are integers. Hence, we may replace 𝐼𝑝
by the largest closed interval with integer end-points contained in

𝐼𝑝 if this closed interval exists. If not, then a matching𝑀 ∈ M with

𝑠𝑝 (𝑀) ∈ 𝐼𝑝 does not exist. In other words, we found the following:

Corollary 3.1. For a generalized matching game (𝑁, 𝑣) with set
𝑉 of patient-donor pairs and (not necessarily closed) intervals 𝐼1, . . . 𝐼𝑛 ,
we can find in 𝑂 ( |𝑉 |3) time a matching 𝑀 ∈ M with 𝑠𝑝 (𝑀) ∈ 𝐼𝑝
for each 𝑝 ∈ {1, . . . , 𝑛} or find that such a matching does not exist.

Using Corollary 3.1, our algorithm Lex-Min computes for a gen-

eralized matching game (𝑁, 𝑣) and allocation 𝑥 , values 𝑑1, . . . , 𝑑𝑡
with 𝑑1 > . . . > 𝑑𝑡 for some integer 𝑡 ≥ 1, and returns a matching

𝑀 ∈ M that is lexicographically minimal for 𝑥 .

Lex-Min

input : a generalized matching game (𝑁, 𝑣) and allocation 𝑥

output : a lexicographically minimal matching𝑀 ∈ M for 𝑥 .

Step 1. Compute the smallest number 𝑑1 ≥ 0 such that there exists

a matching𝑀 ∈ M with |𝑥𝑝 − 𝑠𝑝 (𝑀) | ≤ 𝑑1 for all 𝑝 ∈ 𝑁 .

Step 2. Compute a minimal set 𝑁1 ⊆ 𝑁 (with respect to set inclu-

sion) such that there exists a matching𝑀 ∈ M with

|𝑥𝑝 − 𝑠𝑝 (𝑀) | = 𝑑1 for all 𝑝 ∈ 𝑁1

|𝑥𝑝 − 𝑠𝑝 (𝑀) | < 𝑑1 for all 𝑝 ∈ 𝑁 \ 𝑁1 .

Step 3. Proceed in a similar way for 𝑡 ≥ 1:

• while 𝑁1 ∪ · · · ∪ 𝑁𝑡 ≠ 𝑁 do
– 𝑡 ← 𝑡 + 1.

– 𝑑𝑡 ← smallest 𝑑 such that there exists a matching𝑀 ∈ M
with

|𝑥𝑝 − 𝑠𝑝 (𝑀) | = 𝑑 𝑗 for all 𝑝 ∈ 𝑁 𝑗 , 𝑗 ≤ 𝑡 − 1
|𝑥𝑝 − 𝑠𝑝 (𝑀) | ≤ 𝑑𝑡 for all 𝑝 ∈ 𝑁 \ (𝑁1 ∪ · · · ∪ 𝑁𝑡−1).

– 𝑁𝑡 ← inclusion minimal subset of 𝑁 \ (𝑁1 ∪ · · · ∪ 𝑁𝑡−1)
such that there exists a matching𝑀 ∈ M with

|𝑥𝑝 − 𝑠𝑝 (𝑀) | = 𝑑 𝑗 for all 𝑝 ∈ 𝑁 𝑗 , 𝑗 ≤ 𝑡 − 1
|𝑥𝑝 − 𝑠𝑝 (𝑀) | = 𝑑𝑡 for all 𝑝 ∈ 𝑁𝑡

|𝑥𝑝 − 𝑠𝑝 (𝑀) | < 𝑑𝑡 for all 𝑝 ∈ 𝑁 \ (𝑁1 ∪ · · · ∪ 𝑁𝑡 ).

Step 4. Return a matching 𝑀 ∈ M with |𝑥𝑝 − 𝑠𝑝 (𝑀) | = 𝑑 𝑗 for all

𝑝 ∈ 𝑁 𝑗 and all 𝑗 ∈ {1, . . . , 𝑡}.

We say that the countries in a set𝑁 \(𝑁1∪· · ·∪𝑁𝑡−1) are unfinished
and that a country is finished when it is placed in some 𝑁𝑡 . Note

that Lex-Min terminates as soon as all countries are finished. We

can now prove our theoretical result.

Theorem 3.2. The Lex-Min algorithm computes a lexicographi-
cally minimal matching in 𝑂 (𝑛 |𝑉 |3 log |𝑉 |) time for a generalized
matching game (𝑁, 𝑣) with an allocation 𝑥 .

Proof. We first prove the correctness of Lex-Min. Let (𝑁, 𝑣) be
a generalized matching game and let 𝑥 be an allocation. Let 𝑀 be

the matching fromM that is returned by Lex-Min. We claim that𝑀

is a lexicographically minimal matching for 𝑥 . In order to prove this,

let𝑀∗ ∈ M be a lexicographically minimal matching. Since both𝑀

and𝑀∗ are maximum matchings, we have𝑀∗ = 𝑀 ⊕ P ⊕ C, where
P and C are sets of even alternating paths and (even) alternating

cycles, respectively. Wemake the additional assumption that among

all the lexicographically minimal matchings inM,𝑀∗ is chosen as

closest to𝑀 in the sense that |P | + |C| is as small as possible.

We claim that C = ∅. Otherwise, we would switch𝑀∗ to another
maximum matching along an alternating cycle 𝐶 ∈ C. This yields
a new matching 𝑀∗ ⊕ 𝐶 ∈ M which is again lexicographically

minimal, as the switch does not affect any 𝑠𝑝 (𝑀∗). Moreover,𝑀∗⊕𝐶
is closer to𝑀 , contradictioning our choice of𝑀∗. Hence, there exists
a disjoint union of paths 𝑃1, . . . , 𝑃𝑘 such that𝑀∗ = 𝑀 ⊕ 𝑃1 ⊕ · · · ⊕
𝑃𝑘 . We claim that each 𝑃 𝑗 has endpoints in different countries;

otherwise switching from𝑀∗ to𝑀 along 𝑃 𝑗 would not affect any

𝑠𝑝 (𝑀∗) and so again would lead to a new lexicographically minimal

matching closer to𝑀 .

Let 𝑑∗
1
> 𝑑∗

2
> . . . denote the different values of |𝑥𝑝 − 𝑠𝑝 (𝑀∗) |

and let 𝑁 ∗
𝑗
⊆ 𝑁 denote the corresponding sets of players 𝑝 ∈ 𝑁

with |𝑥𝑝 − 𝑠𝑝 (𝑀∗) | = 𝑑∗
𝑗
. We prove by induction on 𝑡 that for every

𝑡 , it holds that 𝑑∗𝑡 = 𝑑𝑡 and 𝑁 ∗𝑡 = 𝑁𝑡 , which implies that 𝑀∗ = 𝑀

and thus 𝑀 is lexicographically minimal. Let 𝑡 = 1. In Claims 1

and 2, we prove that 𝑑∗
1
= 𝑑1 and 𝑁 ∗

1
= 𝑁1.

Claim 1: 𝑑∗
1
= 𝑑1.

Proof : As 𝑀∗ is lexicographically minimal, 𝑑∗
1
≤ 𝑑1. If 𝑑

∗
1
< 𝑑1,

then 𝑑1 was not chosen as small as possible, since𝑀 = 𝑀∗ satisfies
|𝑥𝑝 − 𝑠𝑝 (𝑀) | ≤ 𝑑∗

1
for every 𝑝 ∈ 𝑁 . Hence 𝑑∗

1
= 𝑑1. ⋄

Claim 2: 𝑁 ∗
1
= 𝑁1.

Proof : If 𝑁 ∗
1
⊊ 𝑁1, then 𝑁1 is not minimal, as |𝑥𝑝 −𝑠𝑝 (𝑀∗) | ≤ 𝑑∗

1
=

𝑑1 for 𝑝 ∈ 𝑁 ∗
1
and |𝑥𝑝 − 𝑠𝑝 (𝑀∗) | < 𝑑∗

1
= 𝑑1 for 𝑝 ∈ 𝑁 \ 𝑁 ∗

1
. This
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contradicts Step 2 of Lex-Min. Hence, 𝑁 ∗
1
⊈ 𝑁1. Let 𝑝0 ∈ 𝑁 ∗

1
\ 𝑁1.

So, |𝑥𝑝0 −𝑠𝑝0 (𝑀∗) | = 𝑑∗
1
= 𝑑1 > |𝑥𝑝0 −𝑠𝑝0 (𝑀) |. There are two cases.

Case 1. 𝑠𝑝0 (𝑀∗) = 𝑥𝑝0 + 𝑑∗1 .
Then 𝑠𝑝0 (𝑀∗) > 𝑠𝑝0 (𝑀) ≥ 0, so there exists an even path, say, 𝑃1
starting in 𝑉𝑝0 with an 𝑀∗-edge and ending in some 𝑉𝑝1 with an

𝑀-edge. Recall that the endpoints of 𝑃1 are in different countries,

hence 𝑝1 ≠ 𝑝0. Note that replacing𝑀
∗
by𝑀∗ ⊕ 𝑃1 would decrease

𝑠𝑝0 (𝑀∗) and increase 𝑠𝑝1 (𝑀∗).
Assume first that 𝑠𝑝1 (𝑀∗) ≥ 𝑠𝑝1 (𝑀). As 𝑃1 ends in𝑉𝑝1 , we have

𝑠𝑝1 (𝑀) ≥ 1. Hence, there exists an alternating path, say 𝑃2, that

starts with an𝑀∗-edge in𝑉𝑝1 and ends with an𝑀-edge in some𝑉𝑝2 ,

𝑝2 ≠ 𝑝1. If 𝑝2 = 𝑝0, then𝑀∗ ⊕ 𝑃1 ⊕ 𝑃2 would be lexicographically

minimal and closer to𝑀 , a contradiction. Hence 𝑝2 ∉ {𝑝0, 𝑝1} and
in case 𝑠𝑝2 (𝑀∗) ≥ 𝑠𝑝2 (𝑀), wemay continue to construct a sequence

𝑝0, 𝑝1, 𝑝2, ... in this way. Note that whenever we run into a cycle,

that is, when 𝑝𝑠 = 𝑝𝑟 for some 𝑟 > 𝑠 , then we get a contradiction

by observing that 𝑀∗ ⊕ 𝑃𝑟+1 ⊕ · · · ⊕ 𝑃𝑠 is also lexicographically

minimal (indeed switching 𝑀∗ to 𝑀 along 𝑃𝑟+1, . . . , 𝑃𝑠 does not

affect any 𝑠𝑝 (𝑀∗)) and closer to𝑀 . Hence, eventually, our sequence

𝑝0, 𝑝1, . . . , 𝑝𝑟 must end up with 𝑠𝑝𝑟 (𝑀∗) < 𝑠𝑝𝑟 (𝑀). We then derive

that 𝑠𝑝𝑟 (𝑀∗ ⊕ 𝑃1 ⊕ · · · ⊕ 𝑃𝑟 ) ≤ 𝑠𝑝𝑟 (𝑀) ≤ 𝑥𝑝𝑟 +𝑑1. If 𝑝𝑟 ∉ 𝑁1, then

we even get 𝑠𝑝𝑟 (𝑀∗ ⊕ 𝑃1 ⊕ · · · ⊕ 𝑃𝑟 ) ≤ 𝑠𝑝𝑟 (𝑀) < 𝑥𝑝𝑟 +𝑑1. We now

define the matching 𝑀 ′ := 𝑀∗ ⊕ 𝑃1 ⊕ · · · ⊕ 𝑃𝑟 . Note that 𝑀
′
is a

maximum matching closer to𝑀 . To obtain a contradiction with our

choice of𝑀∗ we show that𝑀 ′ is lexicographically minimal.

We first consider 𝑝 = 𝑝𝑟 . We have 𝑠𝑝𝑟 (𝑀 ′) = 𝑠𝑝𝑟 (𝑀∗) + 1 ≥
𝑥𝑝𝑟 −𝑑1 +1 > 𝑥𝑝𝑟 −𝑑1. Combining this with the upper bound found

above, we obtain

𝑥𝑝𝑟 − 𝑑1 < 𝑠𝑝𝑟 (𝑀 ′) ≤ 𝑥𝑝𝑟 + 𝑑1 if 𝑝𝑟 ∈ 𝑁1 (2)

𝑥𝑝𝑟 − 𝑑1 < 𝑠𝑝𝑟 (𝑀 ′) < 𝑥𝑝𝑟 + 𝑑1 if 𝑝𝑟 ∉ 𝑁1 .

For 𝑝 = 𝑝0, we have that 𝑠𝑝0 (𝑀 ′) = 𝑠𝑝0 (𝑀∗) − 1 = 𝑥𝑝0 + 𝑑1 − 1,

where the last equality holds because 𝑝0 ∈ 𝑁 ∗
1
. Hence, we have

|𝑠𝑝0 (𝑀 ′) − 𝑥𝑝0 | = 𝑑1 − 1. (3)

From (2) and (3) and the fact that |𝑠𝑝 (𝑀 ′) − 𝑥𝑝 | = |𝑠𝑝 (𝑀∗) − 𝑥𝑝 |
if 𝑝 ∉ {𝑝0, 𝑝𝑟 }, we conclude that either 𝑀 ′ is lexicographically
minimal, which yields our contradiction, or 𝑝𝑟 ∈ 𝑁1 and 𝑠𝑝𝑟 (𝑀 ′) =
𝑥𝑝𝑟 +𝑑1. Assume that the latter case holds. Then we have 𝑠𝑝𝑟 (𝑀∗) =
𝑠𝑝𝑟 (𝑀 ′) −1 = 𝑥𝑝𝑟 +𝑑1−1. However, then𝑀∗ and𝑀 ′ are symmetric

with respect to 𝑝0 and 𝑝𝑟 , namely, |𝑠𝑝0 (𝑀∗)−𝑥𝑝0 | = 𝑑1 = |𝑠𝑝𝑟 (𝑀 ′)−
𝑥𝑝𝑟 | and |𝑠𝑝𝑟 (𝑀∗) − 𝑥𝑝𝑟 | = |𝑑1 − 1| = |𝑠𝑝0 (𝑀 ′) − 𝑥𝑝0 |. Combining

these equalities with the fact that |𝑠𝑝 (𝑀 ′) − 𝑥𝑝 | = |𝑠𝑝 (𝑀∗) − 𝑥𝑝 |
if 𝑝 ∉ {𝑝0, 𝑝𝑟 } implies that 𝑀 ′ is lexicographically minimal, the

contradiction. Hence,𝑁 ∗
1
\𝑁1 = ∅. As𝑁 ∗

1
⊈ 𝑁1, we obtain𝑁

∗
1
= 𝑁1.

Case 2. 𝑠𝑝0 (𝑀∗) = 𝑥𝑝0 − 𝑑∗1 .
In this case we have 𝑠𝑝0 (𝑀∗) < 𝑠𝑝0 (𝑀). Hence, there must ex-

ist an alternating path 𝑃1 that starts in 𝑉𝑝0 with an 𝑀-edge and

that ends in some 𝑉𝑝1 with an𝑀∗-edge. Just as in Case 1, it holds

that 𝑝1 ≠ 𝑝0. If 𝑠𝑝1 (𝑀∗) ≤ 𝑠𝑝1 (𝑀), we may continue with an al-

ternating path 𝑃2 starting from 𝑉𝑝1 and ending in some 𝑉𝑝2 with

𝑝2 ∉ {𝑝0, 𝑝1}, and continuing in this way we eventually end up

with a sequence 𝑝0, 𝑝1, . . . , 𝑝𝑟 such that 𝑠𝑝𝑟 (𝑀∗) > 𝑠𝑝𝑟 (𝑀). Then
𝑀 ′ := 𝑀∗ ⊕ 𝑃1 · · · ⊕ 𝑃𝑟 has 𝑠𝑝0 (𝑀 ′) = 𝑠𝑝0 (𝑀∗) + 1 and 𝑠𝑝𝑟 (𝑀 ′) =
𝑠𝑝𝑟 (𝑀∗) − 1. By the same arguments as in Case 1, we prove that

𝑀 ′ is a maximum matching that is lexicographically minimal and

that is closer to 𝑀 than 𝑀∗ is. This contradicts our choice of 𝑀∗,
proving Claim 2. ⋄
Now let 𝑡 ≥ 2. Assume that 𝑑∗

1
= 𝑑1, . . . , 𝑑

∗
𝑡−1 = 𝑑𝑡−1 and 𝑁 ∗

1
=

𝑁1, . . . , 𝑁
∗
𝑡−1 = 𝑁𝑡−1. By using the same arguments as in the proof

of Claim 1, we find that 𝑑∗𝑡 = 𝑑𝑡 . By using the same arguments as

in the proof of Claim 2, we find that 𝑁 ∗𝑡 ⊈ 𝑁𝑡 . We will now show

that 𝑁 ∗𝑡 = 𝑁𝑡 . We consider a country 𝑝0 ∈ 𝑁 ∗𝑡 \ 𝑁𝑡 and split the

proof into two cases similar to Cases 1 and 2 for the case 𝑡 = 1,

namely when 𝑠𝑝0 (𝑀∗) = 𝑥𝑝0 + 𝑑∗𝑡 and 𝑠𝑝0 (𝑀∗) = 𝑥𝑝0 − 𝑑∗𝑡 . We will

only show the first case in detail, as the proof of the other case is

similar. Hence, from now on we assume that 𝑠𝑝0 (𝑀∗) = 𝑥𝑝0 + 𝑑∗𝑡 .
We know that 𝑝0 ∈ 𝑁 ∗𝑡 , so 𝑝0 ∉ 𝑁 ∗

1
∪· · ·∪𝑁 ∗

𝑡−1 = 𝑁1∪· · ·∪𝑁𝑡−1.
Hence 𝑠𝑝0 (𝑀) ≤ 𝑥𝑝0 +𝑑𝑡 , and 𝑝0 ∉ 𝑁𝑡 implies 𝑠𝑝0 (𝑀) < 𝑥𝑝0 +𝑑𝑡 , so
that 𝑠𝑝0 (𝑀∗) > 𝑠𝑝0 (𝑀). So there is an alternating path 𝑃1 starting in
𝑉𝑝0 with an𝑀

∗
-edge and ending in some𝑉𝑝1 with an𝑀-edge. Again,

we may assume that 𝑝1 ≠ 𝑝0. If 𝑠𝑝1 (𝑀∗) ≥ 𝑠𝑝1 (𝑀), then there must

be some alternating path 𝑃2 starting in 𝑉𝑝1 with an 𝑀∗-edge and
leading to some 𝑉𝑝2 with 𝑝2 ∉ {𝑝0, 𝑝1} and so on, until eventually

we obtain a sequence 𝑝0, 𝑝1, . . . , 𝑝𝑟 with 𝑠𝑝𝑟 (𝑀∗) < 𝑠𝑝𝑟 (𝑀).
As before, we let𝑀 ′ := 𝑀∗⊕𝑃1 · · · ⊕𝑃𝑟 and note that𝑀 ′ ∈ M is

closer to𝑀 than𝑀∗ is. Hence, to obtain a contradiction, it remains

to show that𝑀 ′ is lexicographically minimal. As 𝑝0 ∉ 𝑁1∪· · ·∪𝑁𝑡 ,

we find that 𝑠𝑝0 (𝑀 ′) = 𝑠𝑝0 (𝑀∗) − 1 ≥ 𝑠𝑝0 (𝑀) > 𝑥𝑝0 − 𝑑𝑡 . On the

other hand, 𝑠𝑝0 (𝑀 ′) < 𝑠𝑝0 (𝑀∗) = 𝑥𝑝0 + 𝑑𝑡 . Hence

|𝑠𝑝0 (𝑀 ′) − 𝑥𝑝0 | < 𝑑𝑡 . (4)

Now consider 𝑝 = 𝑝𝑟 . We first rule out that 𝑝𝑟 ∈ 𝑁1 ∪ · · · ∪ 𝑁𝑡−1.
Assume to the contrary that 𝑝𝑟 ∈ 𝑁 𝑗 for some 𝑗 ∈ {1, . . . , 𝑡 − 1}.
Then as lower boundwe have 𝑠𝑝𝑟 (𝑀 ′) = 𝑠𝑝𝑟 (𝑀∗)+1 ≥ 𝑥𝑝𝑟 −𝑑 𝑗+1 >

𝑥𝑝𝑟 − 𝑑 𝑗 , and as upper bound, 𝑠𝑝𝑟 (𝑀 ′) = 𝑠𝑝𝑟 (𝑀∗) + 1 ≤ 𝑠𝑝𝑟 (𝑀) ≤
𝑥𝑝𝑟 + 𝑑 𝑗 . Hence,

|𝑠𝑝𝑟 (𝑀 ′) − 𝑥𝑝𝑟 | ≤ 𝑑 𝑗 . (5)

Inequality (5), together with (4) and the fact that |𝑠𝑝 (𝑀 ′) − 𝑥𝑖 | =
|𝑠𝑝 (𝑀∗) − 𝑥𝑝 | for 𝑝 ∉ {𝑝0, 𝑝𝑟 } shows that 𝑀 ′ is lexicographically
smaller than𝑀∗, a contradiction. Hence, 𝑝𝑟 ∉ 𝑁1 ∪ · · · ∪ 𝑁𝑡−1.

We now have 𝑠𝑝𝑟 (𝑀) ≤ 𝑥𝑝𝑟 +𝑑𝑡 if 𝑝𝑟 ∈ 𝑁𝑡 and 𝑠𝑝𝑟 (𝑀) < 𝑥𝑝𝑟 +𝑑𝑡
if 𝑝𝑟 ∉ 𝑁𝑡 . Hence, we can repeat the arguments that we used for

the case where 𝑡 = 1 to obtain our contradiction. This completes

the correctness proof of Lex-Min.
Running time analysis. As 𝑥𝑝 is fixed and 𝑠𝑝 (𝑀) is an integer be-

tween 0 and |𝑉 |/2, there are𝑂 ( |𝑉 |) values for |𝑥𝑝 − 𝑠𝑝 (𝑀) |. Hence,
we can find 𝑑𝑡 by binary search in 𝑂 (log |𝑉 |) time. This requires

𝑂 (log |𝑉 |) applications of Corollary 3.1, each of which taking time

𝑂 ( |𝑉 |3). Thus finding 𝑑𝑡 takes 𝑂 ( |𝑉 |3 log |𝑉 |) time. Each time we

find 𝑑𝑡 , the number of finished countries increases by at least one.

Hence, the total running time of Lex-Min is 𝑂 (𝑛 |𝑉 |3 log |𝑉 |). □

4 THE SIMULATIONS
Our goals are to examine the benefits of using Lex-Min instead of a
maximummatching that minimizes the largest country deviation𝑑1
from the target allocation 𝑥 (we find such a matching by only

performing Step 1 of Lex-Min) and to test the effect of several

(sophisticated) solution concepts. We therefore perform simulations

for a large number of countries, as we explain below.
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Simulation instances. Using the generator [32] (an updated ver-

sion of [36], which was commonly used (see e.g. [16, 20, 28, 31]) but

nowadays (e.g. in [21]) replaced by [32]) we obtain 100 compatibil-

ity graphs 𝐷1, . . . , 𝐷100, each with roughly 2000 vertices. We then

construct 100 compatibility graphs 𝐷1

1
, . . . , 𝐷1

100
for round 1, where

for 𝑖 ∈ {1, . . . , 100}, 𝐷1

𝑖
is a subgraph of 𝐷𝑖 of size roughly 500.

So, a quarter of the patient-donor pairs will enter the program

in round 1. The remaining patient-donor pairs will be added as

vertices to the compatibility graph randomly, by a uniform dis-

tribution between the remaining rounds. Our code is available in

GitHub repository [7], along with the data from [32] describing the

compatibility graphs and the seeds used for the randomization.

We perform simulations for 𝑛 countries with 𝑛 = 4, . . . , 15. We

had set 𝐷1, . . . , 𝐷100 to have size roughly 2000 to be able to go up to

𝑛 = 15 (due to similar results for a simulation with a size of 1000 for

up to 𝑛 = 10, we believe our choice of 2000 is robust). For every 𝑛,

we first divide the vertices of each 𝐷𝑖 in an arbitrary but equal

way between the countries, so countries have the same size. For

𝑖 ∈ {1, . . . , 100}, we set𝐷1

𝑖
(𝑛) = 𝐷1

𝑖
. Then, for each𝐷1

𝑖
(𝑛) we start a

6-year international KEP with quarterly matching rounds, that is, a

simulation that consists of 24 rounds in total. In this way we obtain

24 compatibility graphs 𝐷1

𝑖
(𝑛), . . . , 𝐷24

𝑖
(𝑛) for each simulation.

Let𝑀
𝑗
𝑖
(𝑛) be the maximummatching that we compute for𝐷

𝑗
𝑖
(𝑛).

If 𝑗 ≤ 23, then we construct 𝐷
𝑗+1
𝑖
(𝑛) as follows. First, we remove

the vertices matched by𝑀
𝑗
𝑖
(𝑛); the corresponding patient-donor

pairs have been helped. If 𝑗 ≥ 4, we also remove those vertices from

𝐷
𝑗
𝑖
(𝑛) that are not in𝑀

𝑗
𝑖
(𝑛) but that do belong to 𝐷

𝑗−3
𝑖
(𝑛). This is

because patients may seek for alternative treatment or may have

deceased after one year in the KEP. Finally, we add the vertices

that correspond to the patient-donor pairs that were assigned, in

advance of the simulation, to enter the program in round 𝑗 + 1.
A simulation instance consists of the data needed to generate a

graph 𝐷1

𝑖
(𝑛) and its successors 𝐷2

𝑖
(𝑛), . . . , 𝐷24

𝑖
(𝑛), together with

specifications for the initial allocation 𝑦 and maximum matching𝑀

to be used in each round. We computed these choices as follows.

Initial allocations. Recall from Section 2 that we consider the

Shapley value, nucleolus, benefit value and contribution value as

initial allocations. These solution concepts are defined in terms of

values 𝑣 (𝑆) of the generalized matching game (𝑁, 𝑣) on a compati-

bility graph 𝐷
𝑗
𝑖
(𝑛). Recall that for a coalition of countries 𝑆 ⊆ 𝑁 ,

𝑣 (𝑆) is the size of a maximum matching in the subgraph of 𝐷
𝑗
𝑖
(𝑛)

induced by the vertices of the countries of 𝑆 . We compute the size

of a maximum matching efficiently, using the package of [23]. The

contribution value and benefit value can now be efficiently com-

puted, using their definitions. For the Shapley value, we were still

able to implement a naive approach relying directly on (1). How-

ever, computing the nucleolus of a generalized matching game

is highly nontrivial for the number of countries we consider: we

had to use the Lexicographical Descent method of [9]. This is the

state-of-the-art method in nucleolus computation. It breaks down

the computation of the nucleolus into 𝑂 (𝑛) linear programs (LPs),

which still have exponential size, but can be handled easier through

the solution of small dual relaxations combined with easily gener-

ated primal feasible starting points. In this way we are able to deal

with significantly larger instances than in previous approaches.

Solutions. As mentioned, we aim to examine the benefits of using

solutions (maximum matchings) prescribed by Lex-Min instead

of those that give us a deviation of 𝑑1 from the target allocation.

For the latter it suffices to perform only the first step of Lex-Min.
In both cases we apply Corollary 3.1. As explained in Section 3

(see also [12]), applying Corollary 3.1 requires solving a maximum

weight perfect matching problem; we used the package of [23].

Credit system. To distinguish between the effect of Lex-min and

the effect of 𝑐 we run the same simulations for these four scenarios:

(1) lexmin+c:𝑀 is the maximummatching returned by Lex-Min
and 𝑥 = 𝑦 + 𝑐 .

(2) lexmin:𝑀 is the maximum matching returned by Lex-Min
and 𝑥 = 𝑦.

(3) d1+c:𝑀 is a maximummatching minimizing 𝑑1 and 𝑥 = 𝑦+𝑐 .
(4) d1:𝑀 is a maximum matching minimizing 𝑑1 and 𝑥 = 𝑦.

Computational environment and scale. We ran all simulations

on a desktop PC with Intel Core i7-6700 3.4 GHz CPU and 8 GB

of RAM, running on Windows 10 OS and C++ implementation in

Visual Studio. Our code [7] use the open-source code [6] of the

Lexicographical Descent method for computing the nucleolus. The

scale of our experiments for international KEPs is unprecedented: the
total number of simulations we ran is equal to 4×4×12×100 = 19200

(namely, four initial allocations 𝑦; four scenarios; twelve country

sizes 𝑛; and 100 initial compatibility graphs 𝐷𝑖 ).

Evaluation measure. To measure balancedness we do as follows.

After the 24 matching runs of a single instance, we will have a total

target allocation 𝑥∗, which is defined as the sum of the 24 target

allocations, and a maximum matching 𝑀∗, which is the union of

the chosen matchings in each of the 24 matching runs. Note that

the total number of kidney transplants is 2|𝑀∗ |. We now define

the total relative deviation as

∑
𝑝∈𝑁 |𝑥∗𝑝−𝑠𝑝 (𝑀∗) |

2 |𝑀∗ | . Recall that for each

triple that consists of a country set size, choice of allocation and

choice of scenario, we run 100 instances. We take the average of

the 100 relative deviations. This gives us the average total relative
deviation. We use this measure to take into account the scale of the

international KEP. We also took the maximum relative deviation,
which is defined as

max𝑝∈𝑁 |𝑥∗𝑝−𝑠𝑝 (𝑀∗) |
2 |𝑀∗ | , leading to the average max-

imum relative deviation. In both cases, exactly the same conclusions

can be drawn; see the arXiv version of our paper [8] for details.

Results and Evaluation. Figure 3 shows our main results. Our

main conclusion from Figure 3 is that lexmin+c yields the lowest
average total relative deviation for all four initial allocation 𝑦, with

larger differences when the number of countries is growing. From

Figure 3 we can also compute the relative improvement of lexmin+c
over d1+c. For example, for 𝑛 = 15, this percentage is (2.54 −
1.23)/2.54 =52% for the nucleolus, whereas for the other solution

concepts it is 41% (Shapley value); 48% (contribution value); and

48% (benefit value). Considering the average improvement over

𝑛 = 4, . . . , 15 yields percentages of 48% (nucleolus); 33% (Shapley

value); 44% (contribution value) and 40% (benefit value).

As mentioned, the choice for initial allocation is up to the policy

makers of the international KEP. However, from Figure 4 we see that

the Shapley value in the lexmin+c scenario consistently provides the
smallest deviations from the target allocations (0.52% for 𝑛 = 15),

while the contribution value for𝑛 ≤ 12 and the nucleolus for𝑛 ≥ 13
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Figure 3: Average total relative deviations where 𝑛 is ranging from 4 to 15.
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Figure 4: Displaying the four lexmin+c graphs of Figure 3 in one plot.

perform the worst. We now evaluate a number of other aspects of

our experiments (see [8] for the details):

(1) We also tested the scenario of using arbitrary maximum

matchings. As expected, this makes the kidney exchange

scheme significantly more unbalanced, with average total

relative deviations above 14% for all four initial allocations 𝑦.
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(2) From Figure 3 we can compare lexmin+c with lexmin, and
d1+c with d1 to see that using 𝑐 has a substantial effect.

However, using lexmin+c is the best: whilst lexmin ensures

that allocations stay close to the target allocations, the role

of 𝑐 is to keep the deviations small and to guarantee fairness

for the participating countries over a long time period.

(3) In Section 2, we gave an example where credits build up

over time infinitely. However, this behaviour did not happen

in any of our 24-round simulations (as argued above). We

performed a refined analysis to verify if such behaviour could

be expected if the number of rounds is larger than 24. We

did not see any such indication.

(4) The computational time saved by d1+c compared to lexmin+c
is negligible. As for the other computation requirements,

while the exponential explosion in generating the cooperative

games (that is, computing the 2
𝑛
values 𝑣 (𝑆)) is dominating

after a while, building the compatibility graph took most of

the time initially (up to 𝑛 = 12).

(5) Cooperation between countries leads to a significantly larger

number of total kidney transplants than non-cooperation,

especially when more countries are participating.

(6) In our cooperative setting, we still maximize total welfare

and therefore choose maximum matchings. However, we

note that a change in parameter may result in a change in

maximummatching size (total number of kidney transplants).

However, these differences turned out to be negligible (be-

tween 0.01% and 0.1% on average).

(7) Lex-min computes at most 𝑛−1 𝑑 𝑗 -values, and in our experi-

mentswe actually found instanceswhere𝑑𝑛−1 was computed

even for 𝑛 = 10.

(8) We also performed a coalitional stability check to see if the

initial allocations and solutions (actual allocations) are in the

core of the associated generalized matching game. We found

a high and similar level of stability for all four scenarios

that is slightly decreasing when the number of countries is

increasing. Although the Shapley value provides consistently

the smallest deviations (see Figure 4), Table 1 shows that the

nucleolus and the benefit values provide higher levels of

coalitional stability (measured in the distance of violating

a core inequality) not only at the level of initial allocations,

but even with respect to the actual number of transplants.

Varying country sizes.We repeated our whole experimental study

for varying country sizes with ratio small:medium:large=1:2:3. It

turned out that we can draw exactly the same conclusions.

5 CONCLUSIONS
We extended the theoretical study of Biró et al. [12] on credit sys-

tems in international KEPs by proving that we can even compute,

in polynomial time, a maximum matching that is lexicographically

minimal with respect to the country deviations from target alloca-

tions. Our experiments showed that using these solutions leads to a

significant improvement especially when the number of countries

is large. This is relevant, as international KEPs, such as Eurotrans-

plant, are under development and others, such as Scandiatransplant,

are expected to grow.

Table 1: Average distances, over 𝑛 ranging from 4 to 15, of
accumulated initial allocations 𝑦 =

∑
24

ℎ=1
𝑦ℎ and accumulated

number of kidney transplants 𝑠 =
∑
24

ℎ=1
𝑠 (𝑀ℎ) (where 𝑀ℎ is

the chosenmatching in period ℎ) respectively, from violating
a core inequality of the accumulated generalized matching
games under the lexmin+c scenario. The accumulated general-
ized matching game is obtained from the generalized matching
games (𝑁, 𝑣ℎ) on compatibility graphs 𝐷ℎ for ℎ = 1, . . . , 24 by
setting 𝑣 =

∑
24

ℎ=1
𝑣ℎ . For example, by using the Shapley value

as the initial allocation, every coalition has a minimum guar-
anteed surplus of 50.39 kidney transplants on average by
participating in the international KEP.

Allocations Shapley Nucleolus Benefit Contribution

Initial 50.46 53.34 53.40 48.15

Transplants 50.39 53.10 53.19 48.13

We also advocate the use of lexicographically minimal matchings

as we now have a polynomial-time algorithm for computing them.

Moreover, our simulations show that computing them instead of

maximum matchings that only minimize the maximum deviation

indeed does not require any significant additional computational

time (see [8]). A challenging part of our project was to compute

the nucleolus of generalized matching games consisting of up to

fifteen countries. For this we used the method of [9].

Future Research.All the above findings for 2-way exchange cycles
are also interesting to research for a setting with ℓ-way exchange

cycles for ℓ ≥ 3. The previous experimental studies [10, 29] for ℓ = 3

only considered 3–4 countries. To do meaningful experiments for

a large number of countries, a new practical approach is required

to deal with the computational hardness of computing optimal

solutions (recall the aforementionedNP-hard result of [1] for ℓ ≥ 3).

We also plan to consider directed compatibility graphs with

weights 𝑤 (𝑖, 𝑗) on the arcs (𝑖, 𝑗) representing the utility of trans-

plant (𝑖, 𝑗). Computing a maximum-weight solution that minimizes

the weighted country deviation 𝑑1 now becomes NP-hard [12].

However, we could still consider the set of maximum-size solutions

as our setM instead of the set of maximum-weight solutions. Then

we can find a maximum-weight matching that lexicographically

minimizes the original country deviations |𝑥𝑝 − 𝑠𝑝 (𝑀) |. The main

challenge is to set weights𝑤 (𝑖, 𝑗) appropriately, since optimization

policies may vary widely in national KEPs: in Europe, maximiz-

ing the number of transplants is the first objective (cf. our setting

in which 𝑤 ≡ 1) but further scores are based on different objec-

tives, such as improving the quality of the transplants, easing the

complexity of the logistics or giving priority to highly sensitized

patients; see [14] for further details.
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