
Deep Reinforcement Learning for Active Wake Control
Grigory Neustroev

Delft University of Technology
Delft, the Netherlands
g.neustroev@tudelft.nl

Sytze P. E. Andringa
Delft University of Technology

Delft, the Netherlands
s.p.e.andringa@tudelft.nl

Remco A. Verzijlbergh
Delft University of Technology & Whiffle

Delft, the Netherlands
r.a.verzijlbergh@tudelft.nl

Mathijs M. de Weerdt
Delft University of Technology

Delft, the Netherlands
m.m.deweerdt@tudelft.nl

ABSTRACT
Wind farms suffer from so-called wake effects: when turbines are
located in the wind shadows of other turbines, their power output
is substantially reduced. These losses can be partially mitigated via
actively changing the yaw from the individually optimal direction.
Most existing wake control techniques have two major limitations:
they use simplified wake models to optimize the control strategy,
and they assume that the atmospheric conditions remain stable. In
this paper, we address these limitations by applying reinforcement
learning (RL). RL forgoes the wake model entirely and learns an
optimal control strategy based on the observed atmospheric con-
ditions and a reward signal, in this case the power output of the
farm. It also accounts for random transitions in the observations,
such as turbulent fluctuations in the wind. To evaluate RL for active
wake control, we provide a simulator based on the state-of-the-art
FLORIS model in the OpenAI gym format. Next, we propose three
different state-action representations of the active wake control
problem and investigate their effect on the performance of RL-based
wake control. Finally, we compare RL to a state-of-the-art wake
control strategy based on FLORIS and show that RL is less sensitive
to changes in unobservable data.

CCS CONCEPTS
• Applied computing → Environmental sciences; • Comput-
ing methodologies → Sequential decision making.

KEYWORDS
Deep Reinforcement Learning; Wind Energy; Active Wake Control
ACM Reference Format:
Grigory Neustroev, Sytze P. E. Andringa, Remco A. Verzijlbergh, and Math-
ijs M. de Weerdt. 2022. Deep Reinforcement Learning for Active Wake
Control. In Proc. of the 21st International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2022), Online, May 9–13, 2022, IFAAMAS,
10 pages.

1 INTRODUCTION
Deep reinforcement learning (RL) has been very successful in play-
ing games, ranging from video games [22] to board games such as
chess and Go [49]. While game-playing agents remain an interest-
ing scientific challenge, we should remember to consider problems

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9–13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved.

yaw

tower

nacelle

blade

rotor

Figure 1: Turbine
nomenclature.

Default yaws

Optimized yaws

wind dir.

2.41 MW + 0.73 MW = 3.14 MW

2.01 MW + 1.38 MW = 3.39 MW

Figure 2: Overhead view of twowind
turbines with yaw-based wake con-
trol. Darker areas have slower wind.

driven by real-life applications. These problems, however, bring
both the challenges of the state space size and observability to a
new level: whereas in games the state space can already be astro-
nomical [54], in real-world control problems we must completely
forget about using perfect state representation based on physical
models. Historically, in the field of control, great progress has been
made with models based on domain knowledge. These models pro-
vide a proper balance between expressiveness and computational
efficiency. Open questions in research on RL are whether it can
compete with the state of the art in such domains, under which
conditions this is possible, and what remaining challenges for RL
need to be addressed before it can surpass non-learning models.

An example of a real control problem with an enormous state
space is that of active wake control in a wind farm. When a wind
turbine extracts energy from the wind, it creates a wake area be-
hind its rotor [56]. The wind in this area has reduced velocity and
increased turbulence. If another turbine is positioned in the wake,
these factors have a negative impact on its power output. In large
wind farms, these wake-induced losses can be substantial. For ex-
ample, a study of an off-shore wind farm in Denmark shows a 12%
energy loss due to wake effects [5], another in Canada reports 7%–
13% [24]. As the number of wind farms around the world and their
average size continue to grow [26], so do their wake-induced losses.
Consequently, interest in active wake control is growing.

Early studies of wake effects mitigation focused on per-turbine
control of either pitch [33, 47, 52] or generator torque [29]. Later,
joint farm-level control of turbines has been demonstrated to be

Main Track AAMAS 2022, May 9–13, 2022, Online

944

Table 1: Comparison of the existing studies of reinforcement learning for active wake control

Verstraeten et al. [59] Stanfel et al. [51] Dong et al. [12] this paper
simulator software FLORIS [42] FLORIS SOWFA [14] FLORIS

OpenAI Gym API yes no no yes
included elements wind, turbines wind, turbines wind, turbines wind, turbines, met masts

state space continuous discrete continuous continuous
per-turbine observ. yaw, power yaw yaw, wind speed yaw, lidar measurements
per-met mast observ. — — — atm. measurements
farm-wide observations — — — atm. measurements
atm. measurements wind speed and dir. wind speed and dir. — multiple, see Table 2
partial observability no yes yes yes
noisy observations no yes no yes

action space {−1, 0, 1}𝑛, discrete {−1, 1}𝑛, discrete [−1, 1]𝑛, continuous [−1, 1]𝑛, continuous
representation yaw-based yaw-based yaw-based yaw-based + 2 more

reward based on power deficit power increase time-averaged power total power
transition time-varying data — TI, wind speed internal simul. data multiple, see Table 2

stochastic model — Gaussian noise — multiple
learning algorithm GPRL [45] Q-learning [61] DDPG [31] TD3 [16], SAC [20]

is deep? no no yes yes

an efficient wake control strategy [18, 24]. This is done via active
control of the turbine yaws (i.e., horizontal rotations, see Figure 1).
When a turbine is yawed relative to the incoming wind, it has lower
power output but the wake center shifts [60]. This wake deflection
can be used to improve the power output of down-wind turbines,
increasing the total power production, as shown in Figure 2.

A popular approach to active wake control is to use a simulator
to estimate wake effects for different combinations of turbine yaws.
These simulators use simplified mathematical models of wakes
[10, 27, 28], including e.g. multi-zone [18] models. Optimization is
then done numerically, for example, using gradient ascent.

Some numerical optimization approaches are so simplified that
results are far from optimal, but more detailed models suffer from
being computationally intensive, and therefore not feasible for real-
time use. Machine learning addresses this issue by optimizing the
wind farm control in amodel-freeway.Machine learning techniques
used for wake optimization include game-theoretic control [18, 34],
multi-agent Thompson sampling [57, 58], and—most importantly—
reinforcement learning (RL) [12, 51, 59]. RL is especially suited
for active wake control, as it accounts for the dynamic nature of
the problem by including stochastic transitions between states.
Nevertheless, studies of RL for active wake control remain limited.

In this paper, we investigate the benefits of RL for active wake
control in dynamic atmospheric conditions. To do so, we implement
a dynamic wind farm simulator. Our simulator uses FLORIS for each
stable state, and supports arbitrary transition models between such
states, defined by the user. Its design is driven by real-life wind farm
operation: it supports varying angular velocities of the turbines
and imitates installations not seen in other studies, such as meteo-
rological masts and nacelle-mounted lidar systems. A detailed list
of differences with the existing work on RL for active wake control
is given in Table 1. We provide this simulator in the OpenAI Gym

format [8], a standard for representing RL problems, to facilitate
future research in active wake control from the RL community.

Additionally, we discuss two alternative representations of the
control actions in this problem, not used in other studies. We com-
pare the performances of state-of-the-art RL algorithms for each
representation. Our experiments show that action encoding has a
significant impact on the performance of RL methods.

Finally, we demonstrate the benefits of RL compared to model-
based optimization. Having no explicit model, it is more robust
to changes in unobserved data and to observation noise, which is
especially important for real-life applications.

2 PRELIMINARIES
We begin with providing background information both on state-
of-the-art model-based active wake control—primarily for the RL
community—and on the principles of RL itself—aimed at wind en-
ergy researchers interested in this topic.

2.1 FLORIS Simulator and Optimizer
FLORIS (Flow Redirection and Induction in Steady-State) [42] is a
wake modeling framework which includes many of the state-of-the-
art steady-state models, and tools for analysis and optimization of
wind farm layout and operation. It is open source, computationally
cheap, and implemented in Python; for details please see the work
by Annoni et al. [3].

Various studies highlight the accuracy of FLORIS simulations.
For example, Gebraad et al. [18] apply a FLORIS-based control
strategy in a high-fidelity computational fluid dynamics simulator.
Schreiber et al. [48] perform wind tunnel tests. Fleming et al. [13]
present a field trial on a commercial offshore wind farm. These and
other applications allow us to consider FLORIS as state-of-the-art
in both wake modeling and model-based active wake control.

Main Track AAMAS 2022, May 9–13, 2022, Online

945

Table 2: Atmospheric conditions in FLORIS

measurement default val. description
wind speed 8 m/s

dir. 270 ° from north clockwise
shear 0.12 s−1 change of speed with height
veer 0 °/m change of direction with height

turb. intens. 0.06 coeff. of variation of wind speed
air density 1.225 kg/m3 at 101325 Pa and 15 °C

FLORIS offers various analytical models to compute the wakes,
but it does not explicitly model rapidly changing conditions due to
turbulence and other small-scale atmospheric phenomena. Higher
fidelity tools based on computational fluid dynamics such as large
eddy simulation (LES) can be used for this. Examples of LES include
Simulator for On/Off-Shore Wind Farm Applications (SOWFA) [14],
Dutch Atmospheric Large-Eddy Simulation (DALES) [23], and GPU-
Resident Atmospheric Simulation Platform (GRASP) [19].

Unfortunately, LES require substantial computational power.
To apply their learning method, Dong et al. [12] performed 90
simulations, each of which took approximately 44 hours on 256 CPU
cores. Each simulation consisted of just 1000 seconds of simulated
time. This computational power is far beyond what is practical
for RL, and beyond the reach of an average researcher. Moreover,
not all of the LES models are open source, further limiting their
applicability. As a result, steady-state computationally efficient
simulators like FLORIS are more commonly used.

It is important to distinguish FLORIS the simulator and FLORIS
the controller. A simulation in FLORIS is based on turbine specifica-
tions, such as the amount of power they produce at different wind
speeds, turbine locations in the wind farm, and a set of atmospheric
conditions presented in Table 2. Figure 2 shows a simulation in
FLORIS with the default parameters and two turbines positioned at
a distance of six rotor diameters (6 · 𝐷).

These atmospheric conditions are used together with one of
the wake models to predict steady-state wake locations and the
wind flow throughout the farm. Based on this information, the total
power output of the farm is represented as a function of the yaws
[46]. This function can then be maximized by an optimizer. FLORIS
includes such an optimizer.

FLORIS considers atmospheric conditions as steady, therefore
they are represented by a vector of numbers, like the second column
of Table 2. Since atmospheric conditions change over time, one of
the possible ways to use FLORIS for control in a dynamic system
is to use long-time averages. Another approach is to reinitialize it
each time new conditions are observed, using either historical data
or a simulated multivariate stochastic process.

2.2 Reinforcement Learning
Reinforcement learning is a machine learning technique for map-
ping observations to actions so as to maximize a numerical reward
signal. It focuses on learning from interaction with an environment,
like a simulator. RL agents have explicit goals, can sense aspects
of their environment and influence it via their actions. RL agents
are not told what actions to take but must discover actions that

yield the most reward through trial and error [53]. A model-free
RL system learns an optimal policy by estimating an action value
function which predicts how good each action is in any given state.

Reinforcement learning uses the formal framework of Markov
decision processes. In a Markov decision process, the agent and
environment interact at discrete time steps. At each time step, the
agent receives an observation of the environment’s state and selects
an action. One step later, the agent receives a reward and observes
a new state [53]. These interactions continue, and the agent learns
by evaluating which action led to which state and reward.

Several of the more recent successes of RL, such as Rainbow
[22] and AlphaGo [49], are based on Deep Reinforcement Learning
(DRL). DRL integrates deep learning into RL by representing the
policy or other learned functions by a neural network. DRL is
most effective in problems with a high-dimensional state-space
[15], for example, learning from visual perceptual inputs made
up of thousands of pixels [37]. State-of-the-art deep RL methods
include among others Deep Deterministic Policy Gradient (DDPG)
[31], Twin Delayed Deep Deterministic Policy Gradient (TD3) [16],
and Soft Actor-Critic (SAC) [20]. These algorithms are included in
the major RL libraries [1, 25, 38, 44] and therefore are easier to use
for researchers with less knowledge about deep RL.

All of these are so-called actor-critic methods. They use deep
neural networks to concurrently learn a policy that prescribes ac-
tions to take in each state (the actor), and state-action values that
tell how good the actions chosen by the policy are (the critic).

DDPG updates both the actor and the critic using gradient de-
scent. Its successor TD3 (Twin Delayed DDPG) adds a few tricks
to stabilize the learning process. Namely, it uses two critics (hence
twin learning) and updates the policy less frequently than DDPG
(delayed). Additionally it slightly perturbs the actions to avoid a
phenomenon known as catastrophic forgetting which may happen
in deep neural networks when they stop receiving novel inputs.

SAC uses similar tricks, but has a non-deterministic policy with
entropy regularization. The entropy coefficient controls how much
exploration the policy does, and is usually automatically tuned,
making SAC more adaptive. Since its conception, this algorithm
has been one of the best performing deep RL methods.

2.2.1 RL for active wake control. Table 1 provides an overview of
RL methods applied to active wake control problems.

The works of Verstraeten et al. [59] and Stanfel et al. [51] both
use discrete actions with −1 and 1 standing for clockwise and coun-
terclockwise rotations at a fixed angular velocity. Instead of directly
using the power output of the wind farm as the reward signal, both
use some form of reward shaping to construct a different reward
signal. Both of these methods use non-deep RL. Both methods use
steady-state simulations, with learning done separately per wind
speed and direction. The optimal action is chosen based on current
yaws. Therefore, in both cases transitions between different atmo-
spheric conditions are not modelled, but transitions between yaws
are taken into account.

Instead of neural networks, Verstraeten et al. [59] use Gaussian
Processes RL (GPRL) for state-action value function approximation.
This is paired with knowledge transfer between similarly positioned
turbines to learn the optimal control strategy. This is the only article
that uses multi-agent RL, showing its high efficiency. Stanfel et al.

Main Track AAMAS 2022, May 9–13, 2022, Online

946

[51] use simple Q-learning, but combine it with domain knowledge.
For example, they apply Gaussian blur to the state-action value
function, so that similar states do not have vastly different values.

Research on deep RL for active wake control in dynamically
changing environments remains limited. To the extent of our knowl-
edge, the only such application of deep RL was by Dong et al. [12].
They use an offline version of DDPG to learn from examples gener-
ated in a high-fidelity (LES) simulator, and then use the simulator
to evaluate the resulting policy. Even though the wind speed is
steady, LES accounts for fluctuations in the atmosphere caused by
turbulence, creating stochastic transitions. As mentioned above,
this required substantial computational power, but the results are
sufficiently promising to further explore the use of deep RL for wake
control. To do so, in this paper we analyze alternative action repre-
sentations, two different DRL algorithms, and the performance with
respect to changes in unobserved data and to observation noise.

3 ACTIVE WAKE CONTROL AS
A REINFORCEMENT LEARNING PROBLEM

To be able to apply RL algorithms to the active wake control prob-
lem, we need to define it in terms of time steps, states, actions,
rewards and one-step transitions. While this has been done in pre-
vious studies, the resulting formulations are usually highly abstract
and do not reflect the realities of wind farm operation. For example,
atmospheric measurements are captured directly at the turbine
locations, or are assumed to be uniform across the wind farm. In
practice, various measurement tools positioned throughout the
farm can be used to provide atmospheric information, such as free-
standing meteorological masts or lidar systems. We aim for a more
realistic problem formulation that reflects this.

As mentioned earlier, we treat each time step as having a steady-
state atmospheric conditions. At the end of a time step, the atmo-
spheric conditions change and the control chosen by the agent
is executed, causing a transition to a new state, which is again
assumed to be steady. This process is repeated for a predefined
number of steps 𝑇max. In our definition of the problem, we allow
arbitrary chosen (but equal) time intervals Δ𝑡 between observations
and control events, typically a few seconds.

3.1 State Space
In RL, states describe the current environment as observed by the
agent and contain all the information used by the agent to choose
an action. At any single point of time, the wind farm can be as-
sumed steady and thus can be represented by a FLORIS simulation.
Nevertheless, not all of the simulation data is observable by the
agent. It is thus important to consider what kind of information is
available to the wind farm controller in practice and include only
this information in the state description.

First, we assume that the current yaws𝛾𝑖 of all of the turbines are
known, otherwise controlling them may prove difficult. Addition-
ally, a FLORIS simulation allows to measure atmospheric conditions
presented in Table 2, and the control strategy may depend on these.

In the current implementation of FLORIS, wind speed, direc-
tion, and turbulence intensity (TI) vary across the wind farm and
therefore should be measured at specific points in space. In a real-
world wind farm such measurements come from meteorological

masts or from sensors on the turbines. For example, these can be
nacelle-mounted lidar (light detection and ranging) systems. They
are installed behind the turbine rotor and can measure the wind in
front of it at a distance of 10–300 meters [7, 50].

In contrast, wind shear, veer, and atmospheric density remain
constant across the wind farm and can be defined for the wind farm
as a whole. In real-life systems, this type of measurement exists as
well. For example, some data may come from an external source,
such as a meteorological forecast.

When creating a simulation, the user can specify: (a) the positions
of meteorological masts and the measurements collected there;
(b) which of the turbines are equipped with lidars and what is
measured by them; (c) a list of per-farmmeasurements coming from
an external data source. At runtime, the simulator registers the data
according to this specification, arranges them into a numeric state
vector 𝑠 ∈ R𝑘 and returns this vector to the user. For example, if a
simulation includes three turbines that register their yaws 𝛾𝑖 , 𝑖 ∈
{0, 1, 2} and two masts that register the wind speed𝑀 and direction
𝜙 at their locations, the state is 𝑠 = [𝛾0, 𝛾1, 𝛾2, 𝑀0, 𝜙0, 𝑀1, 𝜙1]⊤ ∈ R7.

In RL, it is common to normalize states. We define ranges of
possible values for each measurement and include an option to
rescale each observation to an interval between 0 and 1.

Finally, to account for imperfections in the measuring equipment
(including yaw measurements), we allow state vector perturbations
by a zero-mean Gaussian noise. This noise is independently drawn
at each time step with a scale parameter defined by the user for
each of the observed variables from a given list. The normalized
observations are then clamped between 0 and 1. If the observa-
tions are not normalized, the noise is rescaled accordingly for each
observed measurement.

3.2 Action Space
Each action 𝑎 = [𝑎0, 𝑎1, . . . , 𝑎𝑛−1]⊤ ∈ [−1, 1]𝑛 is a vector of length
𝑛, where 𝑛 is the number of turbines. Each coordinate 𝑎𝑖 encodes a
yaw change of the 𝑖-th turbine. In FLORIS, when a turbine is rotated
counterclockwise relative to the incoming wind, its yaw is positive,
otherwise it is negative. We use the same convention.

The way that the yaw of the 𝑖-th turbine changes based on the
coordinate 𝑎𝑖 can be different. We consider three possible interpre-
tations of actions, visualized in Figure 3.

3.2.1 Yaw-based action representation. The action tells how much
the turbine yaw should change with respect to the current position.
Zero action means that the turbine should remain still, and ±1 cor-
respond to maximum possible rotations, that is ±𝜔max degrees from
the current position, where 𝜔max is the maximum angular velocity
of the turbine in degrees per time step. This is the representation
used in the previous research on RL for active wake control. In this
representation, if the current yaw angle of the 𝑖-th turbine is 𝛾𝑖 , the
new yaw 𝛾 ′

𝑖
will be 𝛾 ′

𝑖
= 𝛾𝑖 + 𝑎𝑖 · 𝜔max.

3.2.2 Absolute angle representation. The action tells what the opti-
mal yaw should be relative to some static direction. For example,
the most prevalent wind direction can be used. In Figure 3 it is west.
In this case, 0.5 corresponds to south, −1 and +1 to east, and −0.5 to
north. If this desired new yaw is outside of the operational zone of
the turbine, it will turn as far towards it as it can, either clockwise

Main Track AAMAS 2022, May 9–13, 2022, Online

947

0°

90°

180°

270°

0°

90°

180°

270°

0°

90°

180°

270°

Yaw-based Absolute Wind-based

0

−1

1
1/3

0 ±1
−1/18

1/6

−1/2

1/2

0

−1

1

1/9

Figure 3: Action representations. The blue arrow shows the
wind direction (coming from 285°). The white arrow indi-
cates the turbine orientation (250°). The blue sector (top)
shows the desired yaw range (±45° from thewind), and the or-
ange sector (bottom) shows the reachable yaws for an angu-
lar velocity of 30°/step. The overlap (brown) shows the reach-
able yaws, which are the same in all cases.

or counterclockwise, depending on which direction is closer. For
example, if the static direction 𝛼 is 270° as in Figure 3, the next step
yaw will be 𝛾 ′

𝑖
= 𝛼 − 𝑎𝑖 · 180°.

3.2.3 Wind-based action representation. The action is represented
as the optimal yaw relative to the current wind direction 𝜙 mea-
sured at the turbine’s location. The actions of ±1 correspond to
the maximum (desired) yaw relative to the wind. The new yaw is
computed as 𝛾 ′

𝑖
= 𝜙 + 1

2 (𝑎𝑖 + 1) · (𝛾max − 𝛾min) + 𝛾min.

After the new yaw angles 𝛾 ′
𝑖
are calculated, they are adjusted to

satisfy two constraints.
First, turbines cannot rotate faster than their maximum angular

velocity 𝜔max. This constraint is based on physical limitations and
should always be satisfied. In Figure 3, the possible yaws in the next
time step are shown in orange. If the agent selects the new yaw 𝛾 ′

𝑖
to be outside of the interval [𝛾𝑖 −𝜔max, 𝛾𝑖 +𝜔max], it is clipped to fit
inside this interval. For example, if in the absolute representation
the agent chooses any action 𝑎𝑖 smaller than − 1/18, it will result in
the same new turbine orientation of 280°.

Second, the turbine’s yaw relative to the wind should not be too
large. This is because its power output is proportional to the cosine
of the yaw, and drops fast as it turns away from the wind. To ensure
a reasonable operational range, we define minimum 𝛾min and and
maximum 𝛾max yaws. This constraint is shown in blue in Figure 3.
If the turbine is within the desired yaw limits and attempts to leave
them, it will stop. The new yaw is clipped to satisfy this constraint.
In rare cases the turbine may end up outside of the desired yaw
range, for example due to a sudden change in the wind direction. In
the notation of Figure 3, this will result in blue and orange sectors
not overlapping. In this case, the turbine should attempt to return
as fast as possible to the operational yaw range (the blue sector),
but may stay outside of it temporarily. No matter which action is
chosen by the agent, the turbine will perform the same rotation—the
one that minimizes the angle with the wind direction.

After these constraints are applied, the range of the possible
next-step yaws is the same between the three representations. For
example, in Figure 3, the new yaw can only be between 240° and
280°. The only thing that differs between the three representations
is how the new yaws are computed based on the action vector.

3.3 Rewards
At each time step, FLORIS simulator calculates the total power
output 𝑃 of the wind farm in watts, which is the sum 𝑃 =

∑𝑛
𝑖=1 𝑃𝑖

of power outputs 𝑃𝑖 of the individual turbines,

𝑃𝑖 = 1
2𝜌 · 𝐴𝑖 ·𝑀3

𝑖 · 4𝑎𝑥𝑖 (𝑀𝑖) ·
(
1 − 𝑎𝑥𝑖 (𝑀𝑖)

)2 · [· cos𝑝𝑃 𝛾𝑖 .
Here 𝜌 is the air density and 𝑀𝑖 is the wind speed at the turbine,
both of which are atmospheric conditions that may be included
into the state vector and 𝛾𝑖 is the yaw of the 𝑖-th turbine, which
depends on the 𝑖-th coordinate of the action vector. For a more
detailed description of the remaining parameters and the function
𝑎𝑥𝑖 (𝑀𝑖), called the axial induction factor, we refer the reader to the
paper by Gebraad et al. [18]. This equation shows that the reward is
dependent both on the state and the action in a non-linear manner.

3.4 Transitions
When the environment transitions to a new steady state, two things
change in the FLORIS simulator. First, the yaws are adjusted ac-
cording to the action chosen by the agent.

Next, the atmospheric conditions change, resulting in changes
in both the wind flow in the simulation, and in the atmospheric
measurements registered at the next time step. The most obvious
approach is to find a dataset of atmospheric conditions at the desired
granularity and use it to generate transitions.

To create a simple yet realistic wind simulation, we looked at a
publicly available dataset fromHollandse Kust Noord (site B) (HKNB)
wind farm zone in the Netherlands [39]. This dataset was chosen
because it includes all atmospheric parameters used by FLORIS.
Furthermore, it is a practically relevant case, as active wake control
will be investigated for the wind farm at this location [11].

The data is measured at ten-minute intervals, which is typical
for such datasets. Unfortunately, this means that it cannot be used
directly in turbine control experiments, as control typically happens
more frequently. To address this issue, we fit a continuous-time
stochastic process to the data. This allows us to use one time step
for estimation and a different one for simulation.

We use a multivariate Ornstein–Uhlenbeck (MVOU) process
[55]. It is a mean-reverting process, meaning that its parameters
tend to return to long-term average values, for example, single
prevalent direction ormeanwind speed.Moreover, many commonly
used stochastic processes can be seen as particular cases of MVOU
process [36]. For these reasons, Ornstein–Uhlenbeck processes are
used in wind modeling [4, 43]. Additionally, by increasing the mean-
reversion coefficient of wind direction, we can force it to stay stable,
emulating a popular experimental setup with a wind tunnel.

Formally, MVOU process is defined by the following stochastic
differential equation 𝑑x = Θ(m − x) 𝑑𝑡 + S𝑑W𝑡 . In simpler terms,
this process can be described as follows. m is a vector of mean
values to which the process tends to revert. Θ is the drift matrix. It
determines the speed of reversion to the means m.W𝑡 is a multi-
variate Wiener process that adds random noise. S is the diffusion
matrix that determines the noise covariance matrix Σ = SS⊤. A
procedure described by Meucci [35] can be used to estimate the
parameters of this process. When these parameters are known, a
simulation procedure for arbitrary chosen time steps is provided
by Vatiwutipong and Phewchean [55].

Main Track AAMAS 2022, May 9–13, 2022, Online

948

Table 3: Estimated parameters of the wind process. Empty cells correspond to zeros.

drift diffusion
parameter mean log𝜏 log𝑀 𝜙r log𝜏 log𝑀 𝜙r

log turbulence intensity −2.2 × 100 2.5 × 10−3 5.5 × 10−4 −2.3 × 10−6 1.3 × 10−2 −2.1 × 10−4 −4.4 × 10−4
log wind speed 2.3 × 100 −2.1 × 10−5 4.8 × 10−5 5.3 × 10−7 2.2 × 10−3 2.5 × 10−4
wind direction 3.1 × 10−3 −3.6 × 10−3 −8.3 × 10−7 1.6 × 10−1

We then estimated a process for three atmospheric measure-
ments: turbulence intensity 𝜏 , wind speed 𝑀 , and wind direction 𝜙 .
Because turbulence intensity and wind speed cannot be negative,
we applied a logarithmic transformation. For the wind direction,
we applied a rotation so that the mean𝑚𝜙r of the rotated process 𝜙r
is equal to zero. This transformation means that the wind direction
is measured relative to some prevalent direction, which becomes
easier to set in the simulation. Figure 4 shows the wind data used
in estimation and three simulated paths.

After the data transformation, we fitted a MVOU process for
x = [log𝜏, log𝑀,𝜙r]⊤. The estimation procedure requires data
points at equal time intervals. To achieve this, we cropped theHKNB
dataset to the first missing entry. The resulting wind parameters
are presented in Table 3. For wind shear and veer, we used mean
values in the dataset, 0.0094 s−1 and −0.025 °/m respectively.

3.5 OpenAI Gym Implementation
OpenAI Gym [8] is an open-source Python library of benchmark
problems for RL. Each problem in Gym is represented by an envi-
ronment which provides a unified API for RL algorithms to commu-
nicate with, making it the the field standard for RL problems. For
this reason, we implement our simulator as a Gym environment to
make it easier for other RL researchers to use [40]. This environ-
ment supports all of the elements of state and action representation
mentioned in this section, as well as an arbitrary transition function.
We provide four basic variants of the transition model, but users
can define their own, more sophisticated transition models, for
example, using time-varying MVOU processes, or entirely different

5

10

15

sp
ee
d

−66
0

65

di
re
ct
io
n

0.06
0.24

Apr 10 Apr 11 Apr 12

TI

Figure 4: Sample paths of the simulated atmospheric condi-
tions. Black line shows historical data used in estimation.

stochastic models of the wind. If the wind process is not specified,
the environment uses steady wind from FLORIS.

For the MVOU process, the user can provide a list of 𝑛 measure-
ment names, whether the logarithmic transformation needs to be
taken for each of the measurements, the mean vector of length 𝑛,
and two 𝑛×𝑛 matrices of drift and diffusion. For the wind direction,
we additionally use the principal wind direction relative to which
it has been measured. After the direction data is generated, it is
rotated by that angle. This direction is 270° by default, meaning
that the wind comes primarily from the west. This is a common
practice in wake control experiments.

4 EXPERIMENTS
Using ourGym environment, we performed two experiments where
we compare RL to two control strategies. The baseline strategy is to
ignore the wake effects, turning the turbines to face the incoming
wind. The second strategy is given by the FLORIS optimizer. It
optimizes the yaws numerically based on the wind flow model in
the simulation. In contrast, RL needs no such model.

4.1 Action Representation Benchmark
In this experiment, we test the effect of action representation on
the performance of two state-of-the-art RL algorithms: TD3 and
SAC. We omit DDPG even though it is used by [12] because TD3
is its direct successor. The hyperparameters used for each method
are available at https://doi.org/10.4121/19107257. We use a setup
where one meteorological mast and three turbines are positioned
in a line. This single-line layout is commonly used in evaluation of
wake control strategies in a wind tunnel, as it represents the worst
possible scenario because of the many wake interactions.

We use a MVOU process to simulate the wind as described in
Section 3.4, but with a single adjustment: we increase the mean-
reversion rate of wind direction by changing the drift coefficient of
the wind \𝜙r,𝜙r from −8.3×10−7 to 10−2. This forces wind direction
to stay within 270° ± 5° but still change with time. Other parame-
ters remained as listed in Table 3. The dependencies of turbulence
intensity and wind speed on the wind direction are unchanged.

The state space is a vector of length five, which includes the yaw
angles and two measurements provided by the meteorological mast:
wind speed and direction. While turbulence intensity changes over
time, it is not observed by the wind farm operator. For FLORIS, we
used turbulence intensity of 0.12 and wind veer and shear presented
in Table 3. We allowed the turbines to turn at the maximum angular
velocity of 1°/sec. Further, we used the parameters from the NREL
5 MW reference turbines. These and other FLORIS parameters are
taken from the default multi-zone wake model.

Main Track AAMAS 2022, May 9–13, 2022, Online

949

https://doi.org/10.4121/19107257

0.6 0.6 0.6 0.6 0.6 0.6 0.6

0.6 0.6 0.6 0.6 0.6 0.6 0.6

0.6 0.7 0.7 0.6 0.6 0.6 0.7

0.7 0.8 0.8 0.7 0.7 0.5 0.6

0.8 0.9 0.9 0.9 0.9 0.9 0.8

0.2
0.5 0.6 0.7 0.6 0.7 0.7

yaw-based absolute wind-based

SAC
TD

3

baseline = 0

FLORIS = 1

baseline = 0

FLORIS = 1

time

no
rm

al
iz
ed

re
w
ar
d

Figure 5: FLORIS-normalized reward of RL agents for different action representations over one month of simulated time for
SAC (top) and TD3 (bottom). Thin and thick lines represent individual evaluations and means respectively.

f = 0.01 f = 0.03 f = 0.05 f = 0.07

12 24 12 24 12 24 12 24
training time (hours of simulated time)

pe
rfo

rm
an
ce

Figure 6: Rewards in the noisy observations benchmark. The gray line (bottom) is the baseline method, the orange horizontal
line is FLORIS, and the blue lines show the learning progress of SAC.

For each RL method, we trained 10 agents on different random
seeds. To evaluate the performance of the learned policies, we
separated training from evaluation as follows. For training, we
simulated a week of wind farm operation with time intervals of
10 sec. The evaluation of the momentarily learned policy of each
agent is done every twelve hours of simulated time (i.e., 14 times)
in five randomly generated environments. Each such evaluation
lasts for eight hours of simulated time (2880 steps), during which
the total reward is compared against two benchmark strategies:
a baseline in which each turbine faces the incoming wind, and a
model-based control strategy offered by FLORIS.

Because different evaluation environments contain different at-
mospheric conditions, the total power output of these benchmark
strategies changes across environments. To compare, we normalize
the results so that in each evaluation the total reward of the baseline
policy is equal to zero, and of FLORIS to one. In this experiment,
FLORIS has access to the exact simulation model sans turbulence
intensity, justifying how we use it to indicate a 100% performance.

The rescaled results are presented in Figure 5. While the yaw-
based representation may seem to be the most intuitive one, it
performs poorly. The reason behind this is that it often fluctuates
between the extreme yaws, because either positive or negative
actions are chosen too often, leading to a drift in the turbine yaw.

To better understand this effect, consider a situation where the
wind is steady. In the other two representations, the optimal action

is the same for any current yaw. In the yaw-based representation,
however, this is not the case, and if the same action is performed
at all time steps, the turbine keeps turning either clockwise or
counterclockwise until it reaches the end of the desired yaw sector.
Therefore different actions need to be learned for different states.
Assuming that learning constant values is easier for a deep neural
network, other representations will lead to better performance.

The wind-based representation is the best performing one. To
understand why, consider the baseline strategy of always facing
the wind. For any down-wind turbine this is the optimal strategy.
In the wind-based representation, this strategy is yaw-independent,
making it easy to learn. In other representations, the optimal action
depends on the incoming wind direction. These results show how
the performance of RL methods depends on action representation
in the active wake control problem.

Of the two RL agents, SAC performs better than TD3, and learns
almost a perfect strategy in the given timeframe. Interestingly, SAC
sometimes outperforms FLORIS. This is possible because of the
interactions betweenwind speed, direction and turbulence intensity.
While the latter is not observed, its changes can be derived (up to a
noise parameter) from other wind data. We speculate that in some
of the experiments SAC performed so well because it was able to
find a better turbulence representation than the average turbulence
intensity known to FLORIS.

Main Track AAMAS 2022, May 9–13, 2022, Online

950

4.2 Noisy Observations Benchmark
Of the two benchmarks in the previous experiment, SAC outper-
formed TD3, but FLORIS offered a better control strategy most of
the time. This is because it has a perfect model of the environment,
which is not true in practical applications. In this experiment, we
compare RL to FLORIS in the presence of imperfect observations.

To illustrate the capabilities of our simulation environment, we
slightly adjust the experimental setup of the previous section. First,
we remove the mast. Instead, we use per-turbine measurements
of wind speed and direction, and a farm-wide measurement of
turbulence intensity for both FLORIS-based controller and SAC.
Next, we move the second and third turbines by 1/4 ·𝐷 south (down)
and north respectively. This makes the problem harder, as it no
longer has two symmetric solutions. Finally, in this experiment the
time step is 1 second instead of 10 for a more realistic control.

To generate faulty observations, we use four different levels of
noise: 𝜎 ∈ {0.01, 0.03, 0.05, 0.07}, that is, after the observations are
normalized between 0 and 1, we perturb them with a Gaussian
noise 𝜖 ∼ N(0, 𝜎). Only the wind measurements (speed, direction,
turbulence intensity) are perturbed, and the yaws are unchanged.
We train 5 RL agents for 1 day of simulated time (86400 steps). The
evaluations are performed every 2 hours of simulated time (7200
steps) and last for 30 minutes of simulated time (1800 steps). Each
evaluation uses five different environments.

The results of this experiment are presented in Figure 6 and
Table 4. FLORIS-based optimization struggles to outperform the
baseline strategy as the noise scale grows, dropping from 9.5% im-
provement over the baseline to just 0.2%. While SAC also suffers
from the noise in the observations, its performance improvement
is between 8.5% and 7.4%, giving a statistically significant improve-
ment over FLORIS-based control in noisy environments.

5 CONCLUSION
Active wake control is a promising real-life application of RL. On
the one hand, this problem can be very difficult to solve. Its states
are only partially observable, the observations are noisy, and the
state-action space can be extremely large for large wind farms. On
the other hand, emerging research in this domain indicates that the
RL community is well equipped to solve this problem, potentially
saving millions of dollars in energy losses due to wake effects.

To facilitate future research in this direction, we have presented
a new simulator for this problem. It is based on the state-of-the-art
steady-state atmospheric simulator called FLORIS. Our simulator

Table 4: Performance improvement in percent over the base-
line in the noisy observations benchmark. For SAC, the final
learned strategy is used.

FLORIS SAC
noise, 𝜎 mean 95% conf. int. mean 95% conf. int.
0.01 9.54 9.01— 10.11 8.46 7.04— 9.65
0.03 1.24 1.04— 1.42 5.15 0.96— 10.04
0.05 0.42 0.32— 0.50 9.53 8.07— 11.02
0.07 0.23 0.18— 0.29 7.35 5.85— 9.01

includes many aspects of the problem not seen in the RL research
of active wake control before, such as decoupling of measurement
devices from turbines and changes in wind conditions. Our simula-
tor is implemented as an OpenAI Gym environment, is easy to use
off the shelf, and is completely open source.

While previous RL approaches for this wake control all use the
same action encoding, we identified two possible alternatives. We
then experimentally showed that the choice of such an encoding
has a great impact on the performance of learning methods. Inter-
estingly, the most common one—yaw-based—performed the worst
in our experiments. Soft actor-critic, while a golden standard in RL
research, has never been applied to active wake control before, and
we demonstrated that it shows better performance than TD3.

Finally, we showed that in the presence of imperfect observations,
a deep RL agent is capable of learning a better strategy than the
state-of-the-art model-based one.

Deep RL for wake control holds great promise for further refine-
ment: first, FLORIS is steady state, which means it optimizes yaws
only for the particular time the state was measured. RL methods
have techniques to predict the next state and would therefore pick
an action that is best suited for the duration until the next course of
action can be taken. Second, where FLORIS has a fixed set of param-
eters, RL techniques can easily be augmented with other potentially
relevant data picked up by sensors. Especially deep RL techniques
deem to be promising when data gets highly-dimensional. Third,
we expect deep RL techniques to outperform model-based optimal
control such as FLORIS in terms of computational efficiency, which
is especially relevant for big windfarms.

Besides further exploring potential benefits of RL, also some
more technical questions remain. Is there an even better action
encoding system? Or a different state representation? Are there
alternative reward shaping methods? While we investigated some
state-of-the-art deep RL methods, sophisticated alternatives exist.
RAINBOW [22] combines aspects of many existing RL algorithms.
Distributional RL [6] provides an alternative learning paradigm by
using distributions instead of deterministic state-action values.

Practical implementation of active wake control methods comes
with challenges as well. The wind farm operator needs to maxi-
mize power production, but also to minimize structural loads on
the turbines. This can be done via safe RL [17] or multi-objective
RL [32]. Another problem is scalability; perhaps multi-agent RL
[21] can learn to perform active wake control in large-scale wind
farms. Finally, RL requires exploration, which will inevitably cost
money to the wind farm owner. This can be addressed by using
offline RL [2, 30] and learning from the past data, or by using more
sample-efficient methods, such as optimistic RL [9, 41]. Finally, the
evaluation of the performance of RL vs. model-based wind farm
control in more realistic atmospheric environments as present in
field tests and atmospheric LES models remains an open topic.

We hope that this work sparks interest of the RL community
in this problem, and that our results will make it easier for other
researchers to develop new methods for active wake control.

ACKNOWLEDGMENTS
This research received funding from the Netherlands Organization
for Scientific Research (NWO).

Main Track AAMAS 2022, May 9–13, 2022, Online

951

REFERENCES
[1] Joshua Achiam. 2018. Spinning Up in Deep Reinforcement Learning. https:

//github.com/openai/spinningup.
[2] Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. 2020. An Opti-

mistic Perspective on Offline Reinforcement Learning. In Proceedings of the 37th
International Conference on Machine Learning, Hal Daumé and Aarti Singh (Eds.),
Vol. 119. PMLR, Vienna, Austria, 104–114.

[3] Jennifer Annoni, Paul Fleming, Andrew Scholbrock, Jason Roadman, Scott Dana,
Christiane Adcock, Fernando Porte-Agel, Steffen Raach, Florian Haizmann, and
David Schlipf. 2018. Analysis of Control-Oriented Wake Modeling Tools Using
Lidar Field Results. Wind Energy Science 3, 2 (2018), 819–831.

[4] Jonathan Pablo Arenas-López and Mohamed Badaoui. 2020. The Ornstein–
Uhlenbeck Process for Estimating Wind Power under a Memoryless Transforma-
tion. Energy 213, 118842 (2020), 15.

[5] Rebecca Jane Barthelmie, S. Frandsen, K. Hansen, J. Schepers, K. Rados, W. Schlez,
A. Neubert, L. Jensen, and S. Neckelmann. 2009. Modelling the Impact of Wakes
on Power Output at Nysted and Horns Rev. In European Wind Energy Conference,
Vol. 2. WindEurope, Marseille, France, 1351–1373.

[6] Marc G. Bellemare, Will Dabney, and Rémi Munos. 2017. A Distributional Per-
spective on Reinforcement Learning. In Proceedings of the 34th International
Conference on Machine Learning (ICML’17, Vol. 70), Doina Precup and Yee Whye
Teh (Eds.). JMLR.org, Sydney, Australia, 449–458.

[7] Edwin T. G. Bot. 2016. Flow Analysis with Nacelle-Mounted LiDAR. Technical
Report. Energieonderzoek Centrum Nederland.

[8] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-
man, Jie Tang, and Wojciech Zaremba. 2016. OpenAI Gym. https://gym.openai.
com. arXiv:arXiv:1606.01540

[9] Kamil Ciosek, Quan Vuong, Robert Loftin, and Katja Hofmann. 2019. Better
Exploration with Optimistic Actor-Critic. In Advances in Neural Information
Processing Systems, HannaWallach, Hugo Larochelle, Alina Beygelzimer, Florence
d'Alché-Buc, Edward Fox, and Roman Garnett (Eds.), Vol. 32. Curran Associates,
Inc., Vancouver, Canada, 1785–1796.

[10] Antonio Crespo and Julio Hernández. 1996. Turbulence Characteristics in Wind-
Turbine Wakes. Journal of Wind Engineering and Industrial Aerodynamics 61, 1
(1996), 71–85.

[11] CrossWind. 2021. Innovations. Retrieved October 25, 2021 from https://www.
crosswindhkn.nl/innovations.

[12] Hongyang Dong, Jincheng Zhang, and Xiaowei Zhao. 2021. Intelligent Wind
Farm Control via Deep Reinforcement Learning and High-Fidelity Simulations.
Applied Energy 292 (2021), 116928.

[13] Paul Fleming, Jenniger Annoni, Jigar J. Shah, Linpeng Wang, Shreyas Ananthan,
Zhijun Zhang, Kyle Hutchings, Peng Wang, Weiguo Chen, and Lin Chen. 2017.
Field Test of Wake Steering at an Offshore Wind Farm. Wind Energy Science 2, 1
(2017), 229–239.

[14] Paul Fleming, Pieter Gebraad, Jan-Willem vanWingerden, Sang Lee, Matt Church-
field, Andrew Scholbrock, John Michalakes, Kathryn Johnson, and Pat Moriarty.
2013. SOWFA Super-Controller: A High-Fidelity Tool for Evaluating Wind
Plant Control Approaches. In Proceedings of European Wind Energy Association.
European Wind Energy Association, Vienna, Austria, 10.

[15] Vincent François-Lavet, Peter Henderson, Riashat Islam, Marc G. Bellemare,
and Joelle Pineau. 2018. An Introduction to Deep Reinforcement Learning.
Foundations and Trends in Machine Learning 11, 3-4 (2018), 219–354.

[16] Scott Fujimoto, Herke van Hoof, and David Meger. 2018. Addressing Function
Approximation Error in Actor-Critic Methods. In Proceedings of the 35th Interna-
tional Conference on Machine Learning, Jennifer Dy and Andreas Krause (Eds.),
Vol. 80. PMLR, Stockholm, Sweden, 1587–1596.

[17] Javier Garcıa and Fernando Fernández. 2015. A Comprehensive Survey on Safe
Reinforcement Learning. Journal of Machine Learning Research 16, 1 (2015),
1437–1480.

[18] Pieter Gebraad, F. Teeuwisse, J. W. Wingerden, Paul Fleming, S. Ruben, Jason
Marden, and Lucy Pao. 2016. Wind Plant Power Optimization through Yaw
Control Using a Parametric Model for Wake Effects—A CFD Simulation Study.
Wind Energy 19 (2016), 95–114.

[19] Ciaran Gilbert, Jakob Messner, Pierre Pinson, Pierre-Julien Trombe, Remco Verz-
ijlbergh, Pim Dorp, and Harmen Jonker. 2020. Statistical Post-Processing of
Turbulence-Resolving Weather Forecasts for Offshore Wind Power Forecasting.
Wind Energy 23, 4 (2020), 884–897.

[20] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. 2018. Soft
Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a
Stochastic Actor. In Proceedings of the 35th International Conference on Machine
Learning, Jennifer Dy and Andreas Krause (Eds.), Vol. 80. PMLR, Stockholm,
Sweden, 1861–1870.

[21] Pablo Hernandez-Leal, Bilal Kartal, and Matthew E Taylor. 2019. A Survey and
Critique of Multiagent Deep Reinforcement Learning. Autonomous Agents and
Multi-Agent Systems 33, 6 (2019), 750–797.

[22] Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski,
Will Dabney, Daniel Horgan, Bilal Piot, Mohammad Gheshlaghi Azar, and David

Silver. 2018. Rainbow: Combining Improvements in Deep Reinforcement Learn-
ing. Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence 32,
1 (2018), 3215–3222.

[23] Thijs Heus, C. C. van Heerwaarden, H. J. J. Jonker, A. Pier Siebesma, S. Ax-
elsen, K. van den Dries, O. Geoffroy, A. F. Moene, D. Pino, S. R. de Roode, and J.
Vilà-Guerau de Arellano. 2010. Formulation of the Dutch Atmospheric Large-
Eddy Simulation (DALES) and Overview of Its Applications. Geoscientific Model
Development 3, 2 (2010), 415–444.

[24] Michael F. Howland, Sanjiva K. Lele, and John O. Dabiri. 2019. Wind Farm Power
Optimization through Wake Steering. Proceedings of the National Academy of
Sciences 116, 29 (2019), 14495–14500.

[25] Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, and Jeff Braga. 2021.
CleanRL: High-Quality Single-File Implementations of Deep Reinforcement
Learning Algorithms. https://github.com/vwxyzjn/cleanrl/.

[26] Mark Z. Jacobson and Mark A. Delucchi. 2009. A Path to Sustainable Energy by
2030. Scientific American 301, 5 (2009), 58–65.

[27] Niels Otto Jensen. 1983. A Note on Wind Generator Interaction. Technical Report.
Risø National Laboratory. 16 pages.

[28] Ángel Jiménez, Antonio Crespo, and Emilio Migoya. 2010. Application of a LES
Technique to Characterize the Wake Deflection of a Wind Turbine in Yaw. Wind
Energy 13, 6 (2010), 559–572.

[29] Kathryn E. Johnson. 2004. Adaptive Torque Control of Variable Speed Wind
Turbines. Technical Report. National Renewable Energy Laboratory, Golden,
Colorado USA. 107 pages.

[30] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. 2020. Offline Rein-
forcement Learning: Tutorial, Review, and Perspectives on Open Problems. ArXiv
abs/2005.01643 (2020), 43.

[31] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. 2016. Continuous Control
with Deep Reinforcement Learning. In 4th International Conference on Learning
Representations, Yoshua Bengio and Yann LeCun (Eds.). ICLR, San Juan, Puerto
Rico, 10.

[32] Chunming Liu, Xin Xu, and Dewen Hu. 2015. Multiobjective Reinforcement
Learning: A Comprehensive Overview. IEEE Transactions on Systems, Man, and
Cybernetics: Systems 45, 3 (2015), 385–398.

[33] Daria Madjidian and Anders Rantzer. 2011. A Stationary Turbine Interaction
Model for Control of Wind Farms. 18th IFAC World Congress Proceedings Volumes
44, 1 (2011), 4921–4926. 18th IFAC World Congress.

[34] Jason R.Marden, ShalomD. Ruben, and Lucy Y. Pao. 2013. AModel-Free Approach
to Wind Farm Control Using Game Theoretic Methods. IEEE Transactions on
Control Systems Technology 21, 4 (2013), 1207–1214.

[35] Attilio Meucci. 2005. Risk and Asset Allocation (first ed.). Springer, New York.
[36] Attilio Meucci. 2009. Review of Statistical Arbitrage, Cointegration, and Multi-

variate Ornstein–Uhlenbeck. https://ssrn.com/abstract=1404905. , 20 pages.
[37] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei Rusu, Joel Veness,

Marc Bellemare, Alex Graves, Martin Riedmiller, Andreas Fidjeland, Georg Os-
trovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen
King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015.
Human-Level Control through Deep Reinforcement Learning. Nature 518 (02
2015), 529–33.

[38] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard
Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I Jordan,
et al. 2018. Ray: A Distributed Framework for Emerging AI Applications. In 13th
USENIX Symposium on Operating Systems Design and Implementation. USENIX
association, Carlsbad, California United States, 561–577.

[39] Ministry of Economic Affairs Netherlands Enterprise Agency and Climate Policy.
2019. Hollandse Kust Noord (Site B) Dataset. Retrieved September 30 from
https://offshorewind.rvo.nl/file/view/55040229/Processed+data+HKNB.

[40] Grigory Neustroev, Sytze P.E. Andringa, Remco A. Verzijlbergh, and Mathijs M.
de Weerdt. 2022. The Wind Farm Gym. https://github.com/AlgTUDelft/wind-
farm-env. https://doi.org/10.4121/19107257

[41] Grigory Neustroev and Mathijs Michiel de Weerdt. 2020. Generalized Opti-
mistic Q-Learning with Provable Efficiency. In Proc. of the 19th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2020), B. An,
N. Yorke-Smith, A. El Fallah Seghrouchni, and G. Sukthankar (Eds.). International
Foundation for Autonomous Agents and Multiagent Systems, Auckland, New
Zealand, 913–921.

[42] NREL. 2021. FLORIS. Version 2.4. https://github.com/NREL/floris
[43] Sergey Obukhov, Emad M. Ahmed, Denis Y. Davydov, Talal Alharbi, Ahmed

Ibrahim, and Ziad M. Ali. 2021. Modeling Wind Speed Based on Fractional
Ornstein–Uhlenbeck Process. Energies 14, 17 (2021), 5561.

[44] Antonin Raffin, AshleyHill, AdamGleave, Anssi Kanervisto, Maximilian Ernestus,
and Noah Dormann. 2021. Stable-Baselines3: Reliable Reinforcement Learning
Implementations. Journal of Machine Learning Research 22, 268 (2021), 1–8.

[45] Carl Edward Rasmussen and Malte Kuss. 2003. Gaussian Processes in Reinforce-
ment Learning. In Advances in Neural Information Processing Systems, Sebastian
Thrun, Lawrence Saul, and Bernhard Schölkopf (Eds.), Vol. 16. MIT Press, Van-
couver and Whistler, British Columbia, Canada, 751–758.

Main Track AAMAS 2022, May 9–13, 2022, Online

952

https://github.com/openai/spinningup
https://github.com/openai/spinningup
https://gym.openai.com
https://gym.openai.com
https://arxiv.org/abs/arXiv:1606.01540
https://www.crosswindhkn.nl/innovations
https://www.crosswindhkn.nl/innovations
https://github.com/vwxyzjn/cleanrl/
https://ssrn.com/abstract=1404905
https://offshorewind.rvo.nl/file/view/55040229/Processed+data+HKNB
https://github.com/AlgTUDelft/wind-farm-env
https://github.com/AlgTUDelft/wind-farm-env
https://doi.org/10.4121/19107257
https://github.com/NREL/floris

[46] Andreas Rott, Bart Doekemeijer, Janna Kristina Seifert, Jan-Willem van Winger-
den, and Martin Kühn. 2018. Robust Active Wake Control in Consideration of
Wind Direction Variability and Uncertainty. Wind Energy Science 3, 2 (2018),
869–882.

[47] Gerard Schepers and S. P. van der Pijl. 2007. Improved Modelling of Wake
Aerodynamics and Assessment of New Farm Control Strategies. Journal of
Physics: Conference Series 75, 012039 (2007), 8.

[48] Johannes Schreiber, E. M. Nanos, Filippo Campagnolo, and Carlo L. Bottasso.
2017. Verification and Calibration of a Reduced Order Wind FarmModel byWind
Tunnel Experiments. Journal of Physics: Conference Series 854, 012041 (2017), 11.

[49] David Silver, Aja Huang, Christopher Maddison, Arthur Guez, Laurent Sifre,
George Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalch-
brenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu,
Thore Graepel, and Demis Hassabis. 2016. Mastering the Game of Go with Deep
Neural Networks and Tree Search. Nature 529 (2016), 484–489.

[50] Matt Smith, Michael Harris, John Medley, and Chris Slinger. 2014. Necessity is
the Mother of Invention: Nacelle-Mounted Lidar for Measurement of Turbine
Performance. Energy Procedia 53 (2014), 13–22. EERA DeepWind’ 2014, 11th
Deep Sea Offshore Wind R&D Conference.

[51] Paul Stanfel, Kathryn Johnson, Christopher J. Bay, and Jennifer King. 2021. Proof-
of-Concept of a Reinforcement Learning Framework for Wind Farm Energy
Capture Maximization in Time-Varying Wind. Journal of Renewable and Sustain-
able Energy 13, 4 (2021), 14.

[52] Maarten Steinbuch, W. W. de Boer, O. H. Bosgra, S. A. W. M. Peters, and J. Ploeg.
1988. Optimal Control of Wind Power Plants. Journal of Wind Engineering and
Industrial Aerodynamics 27, 1 (1988), 237–246.

[53] Richard S. Sutton and Andrew G. Barto. 2018. Reinforcement Learning: An Intro-
duction (second ed.). MIT Press, Cambridge, UK.

[54] John Tromp and Gunnar Farnebäck. 2006. Combinatorics of Go. In 5th Interna-
tional Conference on Computers and Games, David et al Hutchison (Ed.). Springer,
Turin, Italy, 84–99.

[55] Pat Vatiwutipong and Nattakorn Phewchean. 2019. Alternative Way to Derive
the Distribution of the Multivariate Ornstein–Uhlenbeck Process. Advances in
Difference Equations 2019, 276 (2019), 7.

[56] L. Nord-Jan Vermeer, Jens Sørensen, and Antonop Crespo. 2003. Wind turbine
wake aerodynamics. Progress in Aerospace Sciences 39, 6 (2003), 467–510.

[57] Timothy Verstraeten, Eugenio Bargiacchi, Pieter J. K. Libin, Jan Helsen,
Diederik M. Roijers, and Ann Nowé. 2020. Multi-Agent Thompson Sampling for
Bandit Applications with Sparse Neighbourhood Structures. Scientific Reports 10,
6728 (2020), 13.

[58] Timothy Verstraeten, Pieter-Jan Daems, Eugenio Bargiacchi, Diederik M. Roijers,
Pieter J.K. Libin, and Helsen Jan. 2021. Scalable Optimization for Wind Farm
Control Using Coordination Graphs. In Proceedings of the 20th International Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS 2021). IFAAMAS,
online, 1362–1370.

[59] Timothy Verstraeten, Pieter Libin, and Ann Nowé. 2020. Fleet Control Using
Coregionalized Gaussian Process Policy Iteration. In Proceedings of the 24th
European Conference on Artificial Intelligence (ECAI 2020), Giuseppe De Giacomo,
Alejandro Catala, Bistra Dilkina, Michela Milano, Senen Barro, Alberto Bugarin,
and Jerome Lang (Eds.), Vol. 325. IOS Press, Santiago de Compostela, Spain,
1571–1578.

[60] Jan Willem Wagenaar, L. A. H. Machielse, and J. G. Schepers. 2012. Controlling
Wind in ECN’s Scaled Wind Farm. In Proceedings of Europe Premier Wind Energy
Event (EWEA 2012), Vol. 1. EWEA, Copenhagen, Denmark, 161–168.

[61] Christopher John Cornish HellabyWatkins. 1989. Learning from Delayed Rewards.
PhD Thesis. King’s College, Cambridge, UK.

Main Track AAMAS 2022, May 9–13, 2022, Online

953

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 FLORIS Simulator and Optimizer
	2.2 Reinforcement Learning

	3 Active Wake Control as a Reinforcement Learning Problem
	3.1 State Space
	3.2 Action Space
	3.3 Rewards
	3.4 Transitions
	3.5 OpenAI Gym Implementation

	4 Experiments
	4.1 Action Representation Benchmark
	4.2 Noisy Observations Benchmark

	5 Conclusion
	Acknowledgments
	References

