
Learning Parameterized Families of Games
Madelyn Gatchel

University of Michigan

Ann Arbor, USA

gatchel@umich.edu

Bryce Wiedenbeck

Davidson College

Davidson, USA

brwiedenbeck@davidson.edu

ABSTRACT
Nearly all simulation-based games have environment parameters

that affect incentives in the interaction but are not explicitly incor-

porated into the game model. To understand the impact of these

parameters on strategic incentives, typical game-theoretic analysis

involves selecting a small set of representative values, and con-

structing and analyzing separate game models for each value. We

introduce a novel technique to learn a single model representing a

family of closely related games that differ in the number of symmet-

ric players or other ordinal environment parameters. Prior work

trains a multi-headed neural network to output mixed-strategy

deviation payoffs, which can be used to compute symmetric Y-Nash

equilibria. We extend this work by making environment parameters

into input dimensions of the regressor, enabling a single model to

learn patterns which generalize across the parameter space. For

continuous and discrete parameters, our results show that these gen-

eralized models outperform existing approaches, achieving better

accuracy with far less data. This technique makes thorough analysis

of the parameter space more tractable, and promotes analyses that

capture relationships between parameters and incentives.

KEYWORDS
Simulation-Based Games; EquilibriumComputation; Deep Learning

ACM Reference Format:
Madelyn Gatchel and Bryce Wiedenbeck. 2023. Learning Parameterized

Families of Games. In Proc. of the 22nd International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2023), London, United
Kingdom, May 29 – June 2, 2023, IFAAMAS, 9 pages.

1 INTRODUCTION
Game-theoretic analysis uses mathematical models to investigate

incentives in multi-agent systems. Like all forms of mathematical

modeling, this relies on numerous simplifying assumptions, but the

constraints that arise from describing utilities and computing equi-

libria uniquely complicate game-theoretic modeling and analysis.

In particular, the unobservability of utilities and out-of-equilibrium

counterfactuals contributes to a preference in the field for seeking

generalized insight from abstract games rather than placing too

much trust in precisely tailored numerical models. One consequence

of this imbalance is that game theory has, to its detriment, thus far

derived less benefit than other fields from advances in data science,

simulation, and machine learning. In this paper, we introduce a

machine-learning-based approach to game-theoretic analysis that

helps to bridge the gap between theoretical and numerical methods.

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents

and Multiagent Systems (www.ifaamas.org). All rights reserved.

In pencil-and-paper approaches to game theory, researchers

often analyze abstract classes of games and describe general prop-

erties of their equilibria. In contrast, existing computational tools

typically focus on representing and solving a particular numerical

instantiation, what we call a game instance, and may therefore strug-

gle to demonstrate robust results or provide adequate comparative

analyses. Our new approach uses a neural network to represent a

parameterized family of game instances, enabling a rich variety of

computational methods which generalize game-theoretic modeling

and analysis across some space of environment parameters. By

learning parameterized families, we provide a tractable computa-

tional model that can capture a greater portion of the expressiveness

that would otherwise be the domain of purely theoretical analysis.

This work is motivated by the setting of simulation-based games

[22] (SBGs), where a multi-agent interaction of interest is modeled

via an agent-based simulation, and data from those simulations is

used to construct a normal-form game. In typical SBGs the underly-

ing agent-based model has many free parameters. Examples include

the number of background traders in a study of latency arbitrage

by high-frequency traders [20], the recovery rate in a model of

debt consolidation among financial institutions [13], or the prob-

ability of defaults in a simulation of credit network liquidity [2].

In some cases, appropriate values for environment parameters can

be chosen by empirical validation, but much more often, several

possible settings for a parameter are plausible, and may require

deliberate exploration. In each example above, distinct normal-form

game models were constructed from separate sets of simulation

data and analyzed independently for multiple values of the given

parameter. Further, all of these simulation-based models have many

other parameters of potential strategic relevance, and it seems likely

that they were under-explored due to this burden of constructing

entirely new SBGs.

Our method builds on the work of Sokota et al. [14], who demon-

strated that a neural network mapping symmetric mixed strategies

to deviation payoffs—the expected utilities for unilateral deviators—

could be learned from sampled payoff data and could stand in

for a normal-form payoff matrix in computing Y-Nash equilibria.

Fundamentally, this is made possible by player symmetries in the

environment, which are exhibited by nearly all large SBGs. Our

core insight is that this approach can extend far beyond repre-

senting a single normal-form game by making other parameters

of the studied interaction endogenous to the learned model. We

show that by training a neural network to map symmetric mixed

strategies and environment parameters to deviation payoffs, we can

produce a single model that generalizes over a family of games,

which can dramatically reduce the sample complexity of certain

comparisons and enables other altogether new analyses. Our results

show that this generalized model achieves better accuracy than

existing approaches, using significantly less data.

Session 3D: Learning in Games

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1044

2 RELATEDWORK
This paper extends a long line of work on improving methods for

analyzing simulation-based games, and connects with a range of

studies applying machine learning techniques to game theory. It

also addresses a clear need for better approaches to generalizing

across environment parameters in simulation-based games.

2.1 Simulation-Based Games
In a typical simulation-based game, an agent-based model is used

to capture the dynamics of the environment being studied, and

different possible behaviors of the agents in that environment can

be simulated [22].
1
An analyst implements a set of strategies that

could govern agent behavior, and then a single run of the simulator

assigns a strategy to each agent and produces a noisy sample of the

payoffs for that particular profile of strategies. We take as given that

the analyst has access to such an agent-based model, or some other

function that maps an arbitrary pure-strategy profile to a (possibly

noisy) sample of each player’s payoff. Of note, purely observational

payoff data does not in general suffice, because our method requires

sampling specific profiles on demand.

In principle, these simulations could be used to fill out a normal-

form payoff matrix by sampling every possible profile enough times

to produce accurate payoff estimates for that matrix cell; this ap-

proach was used by early simulation-based game studies [9]. How-

ever, this exhaustive sampling approach rapidly becomes infeasible

as the model grows, because the number of profiles in a symmetric

game grows combinatorially, and for any variation in environment

parameters, an entirely new payoff matrix must be constructed.

2.2 Varying Environment Parameters
2.2.1 Simulation-Based Games. Essentially all simulation-based

games employ agent-based models where certain parameters of the

simulated environment can be varied, and many examples in the

literature include variations over some parameter prominently in

their analysis. For example, Wah and Wellman [20] construct an

SBG to analyze the effects of latency arbitrage in financial markets.

The authors analyze the same game with a variable number of

background traders (24, 58, 238), but construct three independent

model instances via player reduction [26] and analyze each one

separately because the number of players is a parameter outside

the scope of their game model. For each instance, they find role-

symmetric equilibria in the game and then evaluate background-

trader surplus and latency arbitrageur profit. In another study [19],

the same authors compare the welfare of traders in frequent call

markets versus continuous double auctions. They analyze four

separate instances, varying the number of agents (8, 14, 42) and the

mean-reversion parameter (^ = 0.05, 0.01).

Mayo and Wellman [13] use multi-agent simulation to model

portfolio compression of debt cycles in a financial network as a

strategic decision among firms. They define the recovery rate, 𝛼 ,

as “the fraction of assets an insolvent node is able to recover and

use to pay back creditors, with the remaining assets being lost to

default." They construct separate game-theoretic models for 𝛼 ∈
{0, 0.1, 0.3, 0.5, 0.7, 1.0}, and study the effect of the recovery rate on

the incentives to compress debt cycles.

1
Also known as empirical games [21] or black-box games [28].

Other simulation-based game examples include Wellman et al.

[23], who evaluate complex network routing protocols, Dandekar

et al. [2], who study the formation of credit networks, and Mayer

et al. [12] who explore prices in simultaneous sealed-bid auctions.

Wellman et al. analyze separate instances that vary the number of

non-attacking nodes (clients, ISPs, roots, and servers). Dandekar

et al. analyze instances that vary the probability that a debtor will

default, and the availability of information about those defaults.

Mayer et al. vary buyer’s valuation distributions and degree of

substitutability among the resources being sold. In all of these

cases, the authors had to build separate models from distinct data

sets for each game instance.

2.2.2 Other Variable-Parameter Games. Game-theoretic analyses

that generalize over variable environment parameters are also com-

mon outside of simulation-based game settings. Tuffin and Maillé

[17] model TCP sessions with variable cost and between 2 and 10

users. Thompson et al. [16] model voting in plurality elections with

between 3 and 96 voters, and find different trends with even or odd

numbers of players. Fatima [4] compares sequential and simultane-

ous auctions by varying the number of objects and bidders. Hanaki

and Rouchier [6] study information in Cournot competition and

vary the number of ignorant and informed agents. In all of these

examples, the environment parameters are parameters of the model,

meaning the authors have to construct separate game instances for

each distinct parameter combination they want to consider. Ling

et al. [11] study games with varied parameters, but focus on two-

player zero-sum games and address parameter uncertainty from

the agent’s perspective as opposed to the analyst’s.

2.3 Methods for Simulation-Based Games
In the vast majority of simulation-based game studies, sampling

from the agent-based simulator is the primary bottleneck, so the

literature on simulation-based game theory includes a wide range

of approaches for improving data efficiency. Some tools employ sta-

tistical methods such as control variates [9] and bootstrapping [25]

to reduce the number of samples required to confidently estimate a

profile’s payoffs. Others focus on iteratively exploring the space of

possible strategies [2, 8] to identify equilibria from partial payoff

matrices. Games with a large number of players have been tackled

via player-reduction approaches [24, 26] which analyze a small

game that is hoped to roughly approximate a larger one. Various

attempts [1, 7] have been made to derive theoretical bounds on

sample complexity. We prioritize the practicality of our approach

for SBGs over these sorts of theoretical guarantees that have limited

applicability to large and complex game families.

Several machine learning methods have also been proposed for

simulation-based games. Some of these aim to identify compact

structure, such as role symmetry [5], a graphical game [3] or both

[10], underlying a particular data set. But they can only help in

the event that such structure is present but not known in advance.

Others aim to learn models that can replace the payoff matrix data

structure, such as Vorobeychik et al. [18] who propose regression

approaches for learning payoff functions in games with real-valued

strategies, and Wiedenbeck et al. [27] who use Gaussian process

regression to learn the utility function in symmetric games with a

large number of players.

Session 3D: Learning in Games

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1045

Most directly relevant is the work of Sokota et al. [14], who

use a neural network to learn a mapping from role-symmetric

mixed-strategy profiles to deviation payoffs. They exploit the player

symmetries common in simulation-based settings to learn the de-

viation payoff function in games with a large number of players.

This learned deviation payoff function is used in Nash-finding algo-

rithms to identify role-symmetric approximate equilibria in SBGs

without constructing an explicit payoff table. Our approach extends

that of Sokota et al. [14], adding environment parameters as an

input to the network and allowing us to model parameterized game

families.

3 BACKGROUND
A normal-form game consists of a set of players, indexed by 𝑖 , a set

of strategies 𝑆𝑖 for each player, and a utility function for each player:

𝑢𝑖 :

∏
𝑖 𝑆𝑖 → R. A game is symmetric if any permutation of the

player set yields the same game, and role-symmetric if there exists a
non-trivial partition of the player set into roles where permutations

within a role yield the same game. Our learning technique relies on

symmetries, and in this paper we focus on symmetric games, but

all our methods also apply under role symmetry.

Exploiting symmetry, we can rewrite the model to be indepen-

dent of players’ identities. A symmetric normal-form game, Γ, has a
number of players 𝑝 and one strategy set 𝑆 , indexed by 𝑗 , common

to all players. The utility function shared by all players depends

only on an individual’s choice of strategy and the aggregate choice

of strategies by others, so it can be represented by a separate payoff

function 𝑢 𝑗 for each strategy 𝑗 ∈ 𝑆 that maps opponent profiles to
utilities. An opponent profile ®𝑠 is an integer vector of dimension |𝑆 |
representing the number of other players selecting each strategy.

The set of all opponent profiles ®𝑆 is thus an integer simplex:

®𝑆 =

{
®𝑠 ∈ Z |𝑆 | : ®𝑠 𝑗 ≥ 0,

∑
𝑗 ®𝑠 𝑗 = 𝑝 − 1

}
and the payoff function for each strategy maps this integer simplex

to the reals: 𝑢 𝑗 : ®𝑆 → R.
The main solution concept used to predict behavior in normal-

form games is the mixed-strategy Nash equilibrium. A mixed strat-

egy 𝜎 is a probability distribution over a player’s strategies, and

a Nash equilibrium is a mixed strategy for each player where no

player can increase their expected utility by unilaterally deviating

to any other strategy. In symmetric and role-symmetric games,

analysts are often interested in symmetric or role-symmetric Nash

equilibria, where all identical players play the same mixed strategy.

In a symmetric game, a symmetric mixed-strategy profile ®𝜎 is a

probability distribution over 𝑆 , according to which all 𝑝 players

(or sometimes all 𝑝 − 1 opponents) independently randomize their

actions. Note that 𝜎 and ®𝜎 have the same dimension, but the vector-

accent emphasizes that in a symmetric profile, many players are

following the same mixed strategy.

A symmetric mixture ®𝜎 is a Nash equilibrium if a unilateral de-

viator’s expected utility for playing any pure strategy is no higher

than their expected utility for playing 𝜎 = ®𝜎 , when all opponents

play according to ®𝜎 . To express this mathematically, we extend

our notation for utility functions to map symmetric mixed-strategy

profiles to deviation payoffs—the expected utility of playing strat-

egy 𝑗 against opponents playing ®𝜎 . This expectation 𝑢 𝑗 (®𝜎) is a

probability-weighted sum of 𝑢 𝑗 (®𝑠) over all opponent profiles:

𝑢 𝑗 (®𝜎) =
∑︁
®𝑠∈ ®𝑆

Pr(®𝑠 | ®𝜎)𝑢 𝑗 (®𝑠) (1)

We define 𝑢 : Δ |𝑆 | → R |𝑆 | (with no subscript) as a function that

produces a vector of the deviation payoff for each strategy, given

a symmetric mixed-strategy profile ®𝜎 from the |𝑆 |-dimensional

probability simplex Δ |𝑆 | . We can then express the Nash equilibrium

condition in terms of deviation payoffs: a symmetric mixed-strategy

profile ®𝜎 is a Nash equilibrium if ∀𝑗 ∈ 𝑆 , we have 𝑢 𝑗 (®𝜎) ≤ 𝜎 ·𝑢 (®𝜎),
where the dot product of 𝜎 and 𝑢 gives the expected utility of

playing the same mixed strategy as everyone else.

It is also useful to define regret, the maximum gain achievable

by deviating from ®𝜎 to any strategy 𝑗 ∈ 𝑆 , as:
𝜖 (®𝜎) = max

𝑗∈𝑆
𝑢 𝑗 (®𝜎) − 𝜎 ·𝑢 (®𝜎)

A Nash equilibrium has 𝜖 (®𝜎) = 0, but in practice, analysts generally

identify Y-equilibria—mixtures with 𝜖 (®𝜎) ≤ Y, for suitably small Y.

3.1 New Terminology
The premise of this work is that for settings which vary an en-

vironment parameter, we can construct and learn a single game-

theoretic model and then perform analyses to characterize trends

for the entire game family. We capture this idea by first defining an

instance, which is a normal-form game Γ with fixed environment

parameters. Next, a parameterized game family is a set of game

instances that are related by one or more ordinal parameters of the

environment. Formally, we define a parameterized game family as

𝛾 (𝑉) = {Γ(𝑣) : 𝑣 ∈ R} for some environment parameter variable

𝑉 . Many environments will have multiple variable environment

parameters of interest, and our method can simultaneously gener-

alize across all of them, but for our initial validation we focus on

parameterized game families with one varied parameter.

A symmetric mixed-strategy profile ®𝜎 can be played by any

number of symmetric players (regardless of environment parameter

values), but because the utility functions vary with the environment

parameter 𝑉 , we need to specify 𝑉 = 𝑣 to compute regrets and

identify equilibria. The deviation payoff 𝑢 𝑗 (®𝜎, 𝑣) for Γ(𝑣) ∈ 𝛾 (𝑉) is
the expected utility of a unilateral deviator playing strategy 𝑗 ∈ 𝑆
while all other opponents randomize according to ®𝜎 , and is still

calculated by equation 1. In a parameterized game family 𝛾 (𝑉),
the regret 𝜖 (®𝜎, 𝑣) of a given mixture, as well as other functions of

equilibrium, varies as a function of𝑉 , and as a result, a mixture may

be an Y-Nash equilibrium for certain values of 𝑉 and not others.

4 LEARNING GAME FAMILIES
We hypothesize that game instances which are related by a com-

mon environment parameter likely have related payoff and devi-

ation payoff functions. With this hypothesis, we learn a mapping

from symmetric mixed strategies and environment parameter 𝑉 to

deviation payoffs in a parameterized game family. Our approach

generalizes that of Sokota et al. [14] by adding the environment

parameter as an input dimension of the model. This enables a sin-
gle model to learn patterns which generalize across the parameter

space. In Section 4.1 we describe how to construct, train and refine

this variable-parameter learning model.

Session 3D: Learning in Games

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1046

Figure 1: The neural net for variable-parameter learning
(VPL) maps symmetric mixtures ®𝜎 and environment parame-
ter values 𝑉 = 𝑣 to deviation payoff vectors 𝑢 (®𝜎, 𝑣).

4.1 Approximating Deviation Payoffs
We use data from an agent-based simulator or other black-box

game model to train a neural network on the mapping 𝑢 (®𝜎, 𝑣) from
a symmetric mixed-strategy profile ®𝜎 and environment parameter

𝑣 to the vector of deviation payoffs [𝑢 𝑗 (®𝜎, 𝑣) : 𝑗 ∈ 𝑆]. We adapt

the technique developed by Sokota et al. [14] by adding the en-

vironment parameter 𝑉 as an input dimension. Additionally, in

the variable-parameter learning (VPL) model each strategy head

has a skip connection from the input layer. We verified experimen-

tally (not shown) that these skip connections slightly improved

VPL performance. Figure 1 shows a general architecture for our

variable-parameter neural network on a hypothetical game with 3

strategies. Note that ®𝜎 𝑗 denotes the probability that the 𝑗 th strategy

is played according to ®𝜎 and that 𝑢 𝑗 (®𝜎, 𝑣) denotes the deviation

payoff of strategy 𝑗 in instance 𝑉 = 𝑣 , the expected utility a player

receives by playing strategy 𝑗 when all opponents follow ®𝜎 . Observe
the added input dimension for the environment parameter and the

input layer skip connections for each strategy head.

The variable-parameter learning procedure is described in Al-

gorithm 1. For input samples, we draw mixtures ®𝜎 ∼ Dir(®𝛼) from
a Dirichlet distribution with ®𝛼 < 1; this helps to ensure accurate

estimates for small-support profiles. To generate the associated en-

vironment parameter values, we randomly select values 𝑣 uniformly

across the entire parameter space. For neighborhood sampling, near

each returned candidate Nash equilibrium ®𝜎∗ with associated en-

vironment parameter value 𝑣∗, we draw neighborhood mixtures

®𝜎′ ∼ Dir(®𝛼 = 𝜔 ®𝜎 · ®𝜎∗ + 1) where 𝜔 ®𝜎 >> 1. We draw normalized
neighborhood environment parameter values 𝑣 ′ from a Beta (or

other) distribution centered around 𝑣∗.

4.1.1 Targeted resampling in parameter space. Sokota et al. [14]

demonstrated the importance of targeted resampling in the strategy-

space neighborhood of candidate equilibria. Because of our hypoth-

esis that neighboring game instances have similar payoff functions

(and therefore equilibria), we also conduct targeted resampling in

the neighborhood of the associated environment parameter value.

4.1.2 Avoiding Duplicate Queries. Unlike past approaches to sim-

ulation-based game analysis [14, 27], we avoid deliberately repeat-

ing queries to the simulator on the same profile. While this would

Algorithm 1 Finding Y-equilibria for a parameterized game family.

AppxNashEq(𝛾 (𝑉), initQueries, resampQueries, numIters):

([®𝜎], [𝑣]) ← initSamples(𝛾 (𝑉), initQueries)
[®𝑠] ← sampleOppProfiles([®𝜎], [𝑣])
[®𝑢] ← simulator([®𝑠], [𝑣])
data← ([®𝜎], [𝑣], [®𝑢])
regressor.fit(data)

repeat
([®𝜎∗], [𝑣∗]) ← findNash(regressor) // parallelized
([®𝜎′], [𝑣 ′]) ← sampleNbhd([®𝜎∗], [𝑣∗], resampQueries)
[®𝑠′] ← sampleOppProfiles([®𝜎], [𝑣])
[®𝑢′] ← simulator([®𝑠′], [𝑣 ′])
data← data + ([®𝜎′], [𝑣 ′], [®𝑢′])
regressor.fit(data)

until numIters

return ([®𝜎∗], [𝑣∗]) ← findNash(regressor)

increase the accuracy of payoff estimates for that profile, we find
that—given a limited sampling budget and the tiny fraction of mix-

tures being sampled in a typical game—additional queries are better

allocated for a wider range of profiles.

4.1.3 Intermediate Regret Check. Because regret varies as a func-
tion of parameter𝑉 , a symmetric mixed strategy may be an approx-

imate equilibrium in one instance but not others. As a result, we

propose two modifications during the refinement process: filtering

out returned candidate Nash that fall below some intermediate

regret threshold for the associated instance, and having no interme-

diate regret filter. The intuition is that we do not want to use too

many more queries for areas of the simplex which are less likely

to contain Y-Nash equilibria. However, we also not want to have

too strict of an intermediate regret filter such that the refinement

process favors some game instances more than others. We evaluate

these two algorithm variants in Section 5.2.

4.1.4 Parallelized Nash-Finding. After the model is trained, we

run a Nash-finding algorithm using the learned deviation payoff

function. This Nash-finding algorithm is run in parallel by using the

neural network’s batch processing to compute deviation payoffs for

many mixtures at once, even for different game instances. Given

a matrix whose columns correspond to (®𝜎, 𝑣) vectors, the neural
network can output a matrix of deviation payoff estimates in time

proportional to the size of the network as opposed to the size of

the exponentially larger underlying normal-form game family. This

matrix of deviation payoffs is then used to update the mixtures, also

in parallel, as specified by the particular Nash-finding algorithm.

The Nash-finding algorithm returns a matrix of candidate equilibria

and associated parameter values. To our knowledge, this is the first

algorithm in the literature that can compute approximate Nash

equilibria in parallel for an entire game family.

4.1.5 Analyzing the Learned Model. After the last iteration, the an-
alyst can use the newly refined model to construct a set of candidate

equilibria for the parameterized game family𝛾 (𝑉). First, the analyst
could run the Nash-finding algorithm using the learned deviation

Session 3D: Learning in Games

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1047

(a) Number of Players: 90-100 (b) ER Threshold: 0.15-0.25

Figure 2: For both of the most difficult cases: (a) variable number of players and (b) a continuous environment parameter, a
single Variable-Parameter Learning (VPL) model outperforms a collection of Fixed-Parameter Learning (FPL) [14] models on
both classes of random games given identical training data. This suggests that the VPL model is more data efficient, utilizing
payoff information from neighboring game instances to approximate deviation payoffs with greater accuracy.

payoff function to find approximate equilibria for each instance

(as described above). Then they could apply any of the techniques

proposed in Section 6 that use this set of candidate equilibria to

perform analysis that generalizes across the parameter space.

5 EXPERIMENTS
The goal of our experiments is to validate that our variable-parameter

learning (VPL) model can adequately learn the deviation payoff

function for parameterized families of games. Since our method is

the first to handle an entire game family, and prior work [14] is

the current best approach for learning a single instance, our pri-

mary experiments compare our VPL model against a collection of

fixed-parameter learning (FPL) models. The next experiment vali-

dates our approach to adapting the model refinement from [14] to

the variable-parameter setting. Additional experiments with wider

ranges of player counts (e.g., 50-100) and Erdős-Renyi threshold

values (e.g., 0-1) confirm that VPL models continue to perform well,

even as the parameter range width increases.

To serve as proxy for simulator data in all experiments, we gener-

ate random symmetric additive (or multiplicative) polynomial-sine

bipartite action-graph games with additive function nodes (BAG-

GFN) as used in prior literature [14, 27]. These random games have

complex but learnable payoff functions, particularly compared to

common game distributions in related literature: substantially more

challenging than congestion games, but much more structured than

uniform random games. Refer to Appendices A and B for more de-

tails on random game generation and justification.
2

Our experiments vary two key parameters of these types of

games, chosen to represent some of the most relevant and challeng-

ing simulation-based game settings. First, we vary the number of

players in the game. Because FPL and all previousmethods are based

around approximating a normal-form game, the number of players

determines the dimension of the underlying data, meaning that

2
All appendices may be found in the arXiv version: https://arxiv.org/pdf/2302.12969.pdf

changing the number of players always requires starting over from

scratch with zero carry-over of data. Second, we vary a continuous

parameter: the Erdős-Renyi probability threshold used to determine

edge inclusion in the underlying bipartite action-function graph.

5.1 Comparison to Existing Work
Because the number of simulator queries is most often the bot-

tleneck in SBG studies, we first use identical training sets when
comparing VPL and FPL techniques. In particular, we compare a

single VPL model trained on the entire parameter space against

the performance of several FPL models, one trained for each game

instance. Thus the VPL model trains on the entire training set and

the training dataset is partitioned so that each FPL model gets the

appropriate data per instance. We evaluate the performance of the

two techniques measured by the deviation payoff accuracy relative

to the underlying game family. We assess model performance on

100 games from two classes: additive and multiplicative polynomial-

sine games, each with 5 strategies. For a given game class, both

models are evaluated on the same 100 games with identical training

sets for each game. For example, if the total amount of data is 55,000

then the VPL model is trained with 55,000 training examples and

each of the 11 FPL neural networks is trained with 5,000 training

examples.

The FPL architecture is identical to that described in [14], and

consists of a multi-headed neural network with 128-, 64-, and 32-

node dense hidden layers and a head for each strategy with a 16-

node dense layer followed by a linear layer. The VPL architecture

consists of a multi-headed neural network with 256-, 128- and 64-

dense hidden layers and a head for each strategy with a 32-node

dense layer followed by a linear layer. Refer to Figure 1 to see the

general VPL architecture visualization. The hyperparameters for

the two models were optimized separately, and for expediency, hy-

perparameters were tuned using other randomBAGGFN games. In a

simulation-based game, such tuning would be performed on a hold-

out set, which is validated in [14]. All 11 FPL neural networks use

Session 3D: Learning in Games

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1048

identical hyperparameters, but tuning them independently yields

negligible improvement.

For each instance, we measure network performance on 495

mixtures corresponding to points on a lattice that evenly covers

the simplex. We evaluate both models on all 11 instances of the

parameterized game family. For each mixture we compute the error

between the predicted deviation payoff and the ground truth devia-

tion payoff for each strategy, and compute the mean absolute error

across the 5 strategies and average across mixtures. These errors

are computed on normalized deviation payoffs, so the average MAE

tells us approximately what percentage we can expect our learned

deviation payoffs to differ from the calculated deviation payoffs

for each strategy. For all experiments we compute 95% confidence

intervals for the deviation payoff error for each instance. For each

model, we use the mean of MAEs from 495 mixtures for all 100 ran-

domly generated games. Note that many of the confidence intervals

are too small to show up in the plot.

Figure 2a shows FPL and VPL performance on additive and mul-

tiplicative polynomial-sine games with 5 function nodes, an Erdős-

Renyi probability threshold of 0.2, and 90 to 100 players. Observe

that increasing the training data size by the same amount for both

models results in a greater increase in accuracy for FPL, but VPL

still achieves better overall accuracy. This suggests that VPL is able

to utilize neighboring instance payoff data to better approximate

deviation payoffs, even with a smaller amount of training data.

Figure 2b shows FPL and VPL performance on additive and

multiplicative polynomial-sine games with 50 function nodes, 100

players, and an Erdős-Renyi probability threshold ranging from

0.15 to 0.25. The increase from 5 to 50 function nodes in these

random games results in 10 times as many possible edges compared

to the games from Sokota et al. Even with this increased complexity

and greater variation among neighboring game instances, our VPL

method is able to generalize well across the parameter space.

Not surprisingly, for both varied parameters as the amount of

data per instance increases, the deviation payoff error for both

models decreases. VPL clearly outperforms FPL on both classes of

games given the exact same training data, and FPL’s performance

doesn’t approach VPL’s until the data-per-instance available to FPL

approaches the total amount of data used by VPL. These results

suggest that a VPL model is more sample efficient than a collection

of FPL models, because it can also make use of data from neighbor-

ing instances to improve learning in areas of the simplex for which

it has fewer samples. In Appendix C, Figure ?? validates that this
trend is consistent across instances. Based on these results, we con-

clude our variable-parameter learning model is the better approach

to learning the deviation payoff function for a parameterized family

of games.

5.2 Model Refinement Validation
Sokota et al. [14] demonstrated the importance of targeted resam-

pling in the neighborhood of candidate equilibria as a supplement

to deviation payoff learning. Model refinement for parameterized

game families also involves refinement over the space of the vari-

able parameter, which is a non-trivial extension given that regret

varies as a function of 𝑣 , so an approximate equilibrium in one

Figure 3: Partitioning the training data across several iter-
ations of targeted model refinement reduces approximate
equilibrium regret error compared to no model refinement
with the same total amount of training data.

game instance may not be an approximate equilibrium in others.

We consider two variations of refinement: one where the mixtures

from the Nash-finding algorithm are filtered by a maximum regret

threshold (as estimated by the model) prior to neighborhood sam-

pling and another where all resulting mixtures are included. The

number of neighborhood samples for each candidate equilibrium is

adjusted accordingly (higher for filtered mixtures) to ensure that

both refined models train on approximately the same amount of

data as the model with no refinement.

We examine whether and how model refinement can improve

the accuracy of equilibrium computations across the parameter

space by measuring the absolute error of regret estimates for our

reported equilibrium candidates. We compare the two refined VPL

model variants to a model without refinement which trains on the

same total amount of data, but gathered all at once rather than in

refinement stages. For this experiment, we use replicator dynamics

[15] as the Nash-finding algorithm. We run a large number of repli-

cator dynamics updates in parallel from different initial mixtures

for a fixed number of iterations.

For this experiment, the three models—no refinement, refine-

ment with intermediate regret check, refinement with no regret

check—are evaluated on the same 100 additive sine games with

5 strategies and 50 to 100 players. For each refinement iteration

we run replicator dynamics on 100 random mixtures per instance

(5100 mixtures total). All three models are trained on approximately

55,000 payoff samples each. The model without refinement is given

all training data at once; the two refined models are given 44,000

initial payoff samples. One refined model uses a maximum regret

of 0.1 to filter approximate equilibria, with 200 neighborhood sam-

ples per equilibrium. The other refined model does not apply a

maximum regret filter, and generates 100 neighborhood samples

per distinct mixture resulting from replicator dynamics. The regret

error is measured as the mean absolute error of regret, normalized

to the payoff scale, for all candidate equilibria across all instances

for each iteration. As in previous experiments, we compute 95%

confidence intervals around the average regret error.

Session 3D: Learning in Games

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1049

Figure 3 shows that each iteration of targeted model refinement

reduces approximate equilibrium regret error, and both refinement

approaches significantly outperform the model with the same total

training data but no refinement. In Appendix C, Figure ?? validates
that this trend is consistent across instances. With no clear dif-

ference between the two refinement variations, we cannot draw

any conclusions about the effectiveness of the intermediate regret

threshold. We believe an analyst with more specific domain knowl-

edge may be able to make an appropriate choice about whether to

include a maximum regret filter for refinement.

(a)

(b)

Figure 4: (a) VPL still outperforms FPL on random games
with 100 function nodes and with Erdős-Renyi threshold
varied from 0 to 1. (b) For the three models with different
player-count range widths, the deviation payoff errors are
roughly the same.

5.3 VPL Scalability Validation
5.3.1 Variable Erdős-Rényi Threshold. We assess VPL model scala-

bility on random additive polynomial-sine game families with an

Edős-Rényi threshold ranging from 0.01 to 1. These random games

have 5 strategies, 100 players, and 100 function nodes — the most

complex random games out of all our experiments. Figure 4a com-

pares a single VPL model against 100 FPL models (one per game

instance) when trained on 100k total training examples. Not only

does the VPL model still outperform the collection of FPL models,

but the overall VPL deviation payoff error across the entire range

is comparable to the best overall VPL deviation payoff error in

Figure 2b where the games had half as many function nodes!

5.3.2 Variable Number of Players. To further evaluate the scalabil-

ity of our model for discrete parameters we investigate whether

increasing the width of the parameter range affects the deviation

payoff error, given the same amount of total training data. In this ex-

periment we evaluate VPL models with player-count range widths

equal to 10, 25 and 50 on the same set of 100 random 5-strategy,

5-function additive polynomial-sine games for different amounts of

total training data. To account for varied deviation payoff function

complexities associated with different magnitudes of player counts,

we evaluate each model’s performance by averaging deviation pay-

off error on game instances with 50, 60, . . . , 100 players. This means

that we evaluate one VPL model with range width equal to 50

(50 ≤ 𝑝 ≤ 100 players), two VPL models with range width equal to

25 (50 ≤ 𝑝 ≤ 75 and 75 ≤ 𝑝 ≤ 100 players), and three VPL models

with range width equal to 10 (50 ≤ 𝑝 ≤ 60, 70 ≤ 𝑝 ≤ 80, and

90 ≤ 𝑝 ≤ 100 players); each VPL model receives the same amount

of training data. We compute the average normalized deviation

payoff MAE across all strategies for 495 mixtures per instance, per

game. Once again the magnitude of the confidence intervals is too

small to see in the plot.

Figure 4b shows that increasing the total amount of training

data improves performance regardless of parameter range size.

Further, our results show no notable difference in performance

between the models with differing player-count range widths, given

the same amount of training data. This suggests that for wider

parameter ranges, a single VPL model is still the better approach to

learning the deviation payoff function for a parameterized family of

games. Additionally, VPL is appealing for wider parameter ranges

because it is far less tedious to train and refine a single neural

network compared to 51 different FPL neural networks, and far

more informative than just two snapshots at, say, 50 and 100 players.

6 PARAMETERIZED GAME FAMILY ANALYSIS
A limitation of work that studies a small number of separate game

instances is that the analysis may not adequately depict trends for

the entire parameter space. As a result, the relationship between the

environment parameter and incentives in the game often remains

understudied. Our single learned model allows for more tractable

and complete analysis of the parameter space, and also enables sev-

eral new types of analysis. We now present two possible avenues

to help characterize the relationship between environment parame-

ters and incentives. We emphasize that these are just a glimpse into

the many new varieties of analysis that variable-parameter models

will enable.

6.1 Robust Equilibria
Because a Nash equilibrium is only defined for a game instance

with fixed environment parameters, in a parameterized game family

𝛾 (𝑉) any function of equilibrium, such as regret, price of anarchy or

social welfare, is also parameterized by𝑉 . In some cases, an analyst

with uncertainty about a parameter’s true value might want to

identify robust equilibria. We can compute any statistic of the given

function of equilibrium, and use the resulting value as a measure

Session 3D: Learning in Games

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1050

(a) (b)

Figure 5: Comparison of two robustness metrics on a ran-
domly generated 3-strategy game: (a) average regret metric,
(b) Y-equilibrium frequency metric.

of the robustness of the equilibrium. For example, an analyst might

evaluate average or max regret across all game instances for a given

profile, and label the profile as a robust equilibrium if the regret

statistic is below some threshold.

6.1.1 Example. Figure 5 compares robust equilibria found by two

robustness metrics in a randomly generated 3-strategy multiplica-

tive polynomial-sine game with 50 to 100 players using calculated

regrets. Each point in the simplex corresponds to a symmetric mixed

strategy. In Figure 5a, the color shows the mean regret of the cor-

responding profile across all game instances. Note that the white

points correspond to profiles in which mean regret was greater

than Y. In Figure 5b, the color shows how many times each mixture

was an approximate equilibrium (for a fixed Y). In this plot, the

white points correspond to profiles that were never approximate

equilibria. In both plots, the brighter points correspond to profiles

that are considered more robust. The similarities between these

plots are typical for variable-parameter games we explored—in our

experiments we have found that various robustness metrics tend

to identify broadly similar sets of profiles as robust equilibria.

6.2 Parameter Sensitivity Analysis
For a given parameterized game family 𝛾 (𝑉), one important ques-

tion an analyst might want to investigate is: As the parameter 𝑉 is

varied, how do the incentives in the game family change? One pos-

sible avenue to answer this question is to look at which strategies

appear in the support of candidate equilibria across game instances.

Strategies which appear in the support for many approximate equi-

libria across game instances may be less sensitive to changes in

𝑉 and vice versa. Clustering instances which have (or lack) simi-

lar equilibria and then reasoning why the instances are clustered

together based on domain-specific knowledge may provide addi-

tional insight. Finally, identifying equilibrium basins of attraction

under a particular search algorithm may help describe how approx-

imate Nash equilibria “move" in the simplex as the environment

parameter is varied.

6.2.1 Example. Figure 6 shows howone Y-equilibrium varies across

the player parameter space in a random multiplicative polynomial-

sine game family with 5 strategies and 50 to 100 players. For each

game instance, we ran replicator dynamics with a uniform initial

Figure 6: Approximate equilibrium probabilities for each
strategy plotted as a function of the number of players for a
randommultiplicative polynomial-sine game family. This
game family demonstrates the importance of parameter sen-
sitivity analysis across the full parameter space to better
understand the incentives in the game.

mixture and plotted the equilibrium probabilities for each strategy.

Note that for the entire game family this Y-equilibrium has an aver-

age regret of 0.03 and a maximum regret of 0.15. If an analyst selects

“representative" player count values 50, 75, and 100 and then con-

structs and analyzes separate game models for each game instance,

they would have an incomplete view of how this Y-equilibrium

varies across the parameter space, particularly between game in-

stances with 50 and 75 players. Thus this game family demonstrates

the importance of analyzing the entire parameter space to better

understand an environment’s equilibria.

7 CONCLUSION
Our new approach to learning deviation payoff functions that gen-

eralize over parameterized game families demonstrates clear ad-

vantages over existing techniques for simulation-based games. Our

experiments show that in the common case where analysts want

to explore multiple settings for certain environment parameters,

learning a single variable-parameter model can produce more accu-

rate analysis from a smaller data set than previous state-of-the-art

methods that rely on analyzing each game instance independently.

This variable-parameter learning technique allows for more com-

plete analysis of both continuous and discrete parameter spaces,

and enables new types of robustness and sensitivity analysis that

previously would have been intractable in simulation-based games.

ACKNOWLEDGMENTS
This work was supported in part by funding from the US Army

Research Office (MURI grant W911NF-18-1-0208).

REFERENCES
[1] Enrique Areyan Viqueira, Cyrus Cousins, and Amy Greenwald. 2020. Improved

Algorithms for Learning Equilibria in Simulation-Based Games. In AAMAS.
79–87.

[2] Pranav Dandekar, Ashish Goel, Michael P. Wellman, and Bryce Wiedenbeck.

2015. Strategic Formation of Credit Networks. ACM Transactions on Internet

Session 3D: Learning in Games

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1051

Technology 15, 1 (2015), 3:1–3:41.

[3] Quang Duong, Yevgeniy Vorobeychik, Satinder Singh, and Michael P. Wellman.

2009. Learning Graphical Game Models. In IJCAI.
[4] Shaheen Fatima. 2006. Sequential versus Simultaneous Auctions: A Case Study.

In EC. 82–91.
[5] Sevan G. Ficici, David C. Parkes, and Avi Pfeffer. 2008. Learning and Solving

Many-Player Games through a Cluster-Based Representation. In UAI. 187–195.
[6] Nobuyuki Hanaki and Juliette Rouchier. 2013. If You Are So Rich, Why Aren’t

You Smart?. InWinter Simulation Conference (WSC). 1731–1741.
[7] Steven Jecmen, Arunesh Sinha, Zun Li, and Long Tran-Thanh. 2020. Bounding

Regret in Empirical Games. In AAAI, Vol. 34. 4280–4287.
[8] Patrick R Jordan, L Julian Schvartzman, and Michael P Wellman. 2010. Strategy

Exploration in Empirical Games. In AAMAS. 1131–1138.
[9] Patrick R. Jordan, Michael P. Wellman, and Guha Balakrishnan. 2010. Strategy

and Mechanism Lessons from the First Ad Auctions Trading Agent Competition.

In EC. 287–296.
[10] Zun Li and Michael P. Wellman. 2020. Structure Learning for Approximate

Solution of Many-Player Games. In AAAI. 2119–2127.
[11] Chun Kai Ling, Fei Fang, and J. Zico Kolter. 2018. What Game are We Playing?

End-to-end Learning in Normal and Extensive Form Games. In IJCAI. 396–402.
[12] Brandon A. Mayer, Eric Sodomka, Amy Greenwald, and Michael P. Wellman.

2013. Accounting for Price Dependencies in Simultaneous Sealed-Bid Auctions.

In EC. 679–696.
[13] Katherine Mayo and Michael P. Wellman. 2021. A Strategic Analysis of Portfolio

Compression. In ICAIF. Article 20, 8 pages.
[14] Sam Sokota, Caleb Ho, and Bryce Wiedenbeck. 2019. Learning Deviation Payoffs

in Simulation-Based Games. In AAAI, Vol. 33. 2173–2180.
[15] Peter D. Taylor and Leo B. Jonker. 1978. Evolutionary Stable Strategies and Game

Dynamics. Mathematical Biosciences 40, 1-2, 145–156.
[16] David R.M. Thompson, Omer Lev, Kevin Leyton-Brown, and Jeffrey Rosenschein.

2013. Empirical Analysis of Plurality Election Equilibria. In AAMAS. 391–398.

[17] Bruno Tuffin and Patrick Maillé. 2006. How Many Parallel TCP Sessions to Open:

A Pricing Perspective. In ICQT Workshop: Performability Has its Price. Springer,
2–12.

[18] Yevgeniy Vorobeychik, Michael P. Wellman, and Satinder Singh. 2007. Learning

Payoff Functions in Infinite Games. Machine Learning 67 (05 2007), 145–168.

[19] Elaine Wah, Dylan Hurd, and Michael P. Wellman. 2016. Strategic Market Choice:

Frequent Call Markets vs. Continuous Double Auctions for Fast and Slow Traders.

EAI Endorsed Transactions on Serious Games 3, 10 (2016).
[20] Elaine Wah and Michael P. Wellman. 2016. Latency arbitrage in fragmented

markets: A strategic agent-based analysis. Algorithmic Finance 5, 3-4, 69–93.
[21] Michael P. Wellman. 2006. Methods for empirical game-theoretic analysis (ex-

tended abstract). In AAAI. 1152–1155.
[22] Michael P. Wellman. 2020. Economic Reasoning from Simulation-Based Game

Models. Œconomia. History, Methodology, Philosophy 2, 10 (2020), 257–278.

[23] Michael P. Wellman, Tae Hyung Kim, and Quang Duong. 2013. Analyzing Incen-

tives for Protocol Compliance in Complex Domains: A Case Study of Introduction-

Based Routing. InWorkshop on the Economics of Information Security.
[24] Michael P. Wellman, Daniel M. Reeves, Kevin M. Lochner, Shih-Fen Cheng,

and Rahul Suri. 2005. Approximate Strategic Reasoning through Hierarchical

Reduction of Large Symmetric Games. In AAAI. 502–508.
[25] Bryce Wiedenbeck, Ben-Alexander Cassell, and Michael P. Wellman. 2014. Boot-

strap Statistics for Empirical Games. In AAMAS. 597–604.
[26] Bryce Wiedenbeck and Michael P. Wellman. 2012. Scaling Simulation-Based

Game Analysis through Deviation-Preserving Reduction. In AAMAS. 931–938.
[27] Bryce Wiedenbeck, Fengjun Yang, and Michael P. Wellman. 2018. A Regression

Approach for Modeling Games with Many Symmetric Players. In AAAI. 1266–
1273.

[28] Brian Zhang and Tuomas Sandholm. 2021. Finding and Certifying (Near-)Optimal

Strategies in Black-Box Extensive-Form Games. In AAAI.

Session 3D: Learning in Games

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1052

	Abstract
	1 Introduction
	2 Related Work
	2.1 Simulation-Based Games
	2.2 Varying Environment Parameters
	2.3 Methods for Simulation-Based Games

	3 Background
	3.1 New Terminology

	4 Learning Game Families
	4.1 Approximating Deviation Payoffs

	5 Experiments
	5.1 Comparison to Existing Work
	5.2 Model Refinement Validation
	5.3 VPL Scalability Validation

	6 Parameterized Game Family Analysis
	6.1 Robust Equilibria
	6.2 Parameter Sensitivity Analysis

	7 Conclusion
	Acknowledgments
	References

