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ABSTRACT
Goal-based agents respond to environments and adjust behaviour

accordingly to reach objectives. Understanding incentives of in-

teracting agents from observed behaviour is a core problem in

multi-agent systems. Inverse reinforcement learning (IRL) solves

this problem, which infers underlying reward functions by observ-

ing the behaviour of rational agents. Despite IRL being principled,

it becomes intractable when the number of agents grows because of

the curse of dimensionality and the explosion of agent interactions.

The formalism of Mean field games (MFGs) has gained momentum

as a mathematically tractable paradigm for studying large-scale

multi-agent systems. By grounding IRL in MFGs, recent research at-

tempts to push the limits of the agent number in IRL. However, the

study of IRL for MFGs is far from being mature as existing methods

assume strong rationality, while real-world agents often exhibit

bounded rationality due to the limited cognitive or computational

capacity. Towards a more general and practical IRL framework for

MFGs, this paper proposes Mean-Field Adversarial IRL, a novel

framework capable of tolerating bounded rationality. We build it

upon the maximum entropy principle, adversarial learning, and

a new equilibrium concept for MFGs. We evaluate our machin-

ery on simulated tasks with imperfect demonstrations resulting

from bounded rationality. Experimental results demonstrate the

superiority of MF-AIRL over existing methods in reward recovery.
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1 INTRODUCTION
Game theory provides a general framework for predicting the strate-

gic behaviours of interacting agents [11]. It concerns itself with a
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set of reward (or utility) functions and understands the behaviours

of rational agents, i.e., the equilibrium, to be the outcome of utility-

maximising strategies. An inverse problem naturally arises from

this setting: how to infer the reward functions from observed be-

haviours? This problem is known as multi-agent inverse reinforce-
ment learning (MAIRL) [36]. More precisely, it seeks to find domain

parameters for reward functions that induce observed behaviours

of rational decision-makers.

The recent surge in the scale of real-world multi-agent systems

(MAS) [13, 27, 45] has raised the need for solving MAIRL in the

presence of a large number of agents. In fact, we can identify at

least two motivations for MAIRL in large-scale MAS. A straightfor-

ward one is as its name implies – we wish to detect and understand

the behaviour of a population of agents by modelling them using

reward functions. Examples include modelling infection spread

[24], discovering pricing strategies in large-scale markets [37] and

understanding the mechanism of social-norm emergence in a large

population [26]. A second motivation is for the sake of designing

environments for large-scale MAS so that the expected behaviour

emerges if agents are rational. The behaviour of a MAS is uncertain,

and unexpected behaviour is likely to arise; the growing size of the

system will further exacerbate this. If one is able to pinpoint the

causal relations between rewards and rational behaviours, he can

manipulate the system’s behaviour by tuning the reward functions.

Contrary to the examples above, applications here can be control-

ling and restraining infection spread, making pricing strategies in

large-scale markets, and even guiding and shaping the emergence

of social norms in communities, all in a data-driven manner.

However, MAIRL is notoriously intractable in the face of a large

number of agents. This is because MAIRL typically takes stochastic
games [25] as the mathematical model, where a (Nash) equilibrium

is computationally intractable when the number of agents scales to

tens or hundreds [6]. To accommodate the need for MAIRL in large-

scale MAS, we thus ask for a mathematically tractable substitute

model. The recent paradigm of mean field games (MFGs) [22, 23]

achieves tractability by borrowing the idea of mean field approx-

imation from statistical physics to simplify agent interactions. It

takes the limit as the number of agents approaches infinity and

reduces the whole-system interactions to those between a single

individual agent and the mean field, a virtual agent that represents
aggregated behaviour of the population at large. This dual-view

interplay gives rise to mean field Nash equilibrium (MFNE), which
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stipulates bidirectional constraints between the two sides: every

agent’s policy maximises its rewards given the mean field and, in

turn, the mean field is uniquely resulted by all agents’ policies. Im-

portantly, MFNE is shown to be an approximate Nash equilibrium

in the corresponding finite-agent stochastic games [34]. To break

through the limitation of agent number in MAIRL, it is thereby

promising to transfer the concept of IRL to MFGs.

Unfortunately, IRL remains largely unexplored in MFGs, albeit

there are two recent attempts. Yang et al. [41] first proposed a

centralised IRL method for MFGs by showing that an MFG can

be reduced to a Markov decision process (MDP) that describes the

population’s collective behaviour and average rewards; they thus

applied single-agent IRL methods on top of this MDP. Subsequently,

Chen et al. [4] revealed that this reduction holds only if the MFNE

is socially optimal, i.e., it maximises the population’s average re-

wards; they thus framed the problem at the decentralised setting, i.e.,
inferring the reward function for an individual agent from the ob-

served individual behaviour rather than the population behaviour.

They put forwardMean Field IRL (MFIRL), a more general approach

effective for both socially optimal and ordinary MFNE.

However, both methods above are still limited in terms of practi-

cal use. First, due to limited cognitive or computational capability,

an agent often has bounded rationality in real life, i.e., choosing

satisfactory rather than optimal actions [19]. Consequently, the

resulting behaviour possesses uncertainties in general. For exam-

ple, a customer in a restaurant orders an acceptable dish which

is not necessarily his favourite as he is rush in time. These two

methods cannot reason about such uncertainties as agents in MFNE

are assumed never to take suboptimal behaviour. This makes both

methods unsuitable for situations where the agents are bounded

rational. Then, since an MFNE is not unique in general [5], the

observed behaviour may be insufficient for us to learn a reward

function that determines a unique policy. In this sense, from an

application standpoint, the existing methods are also not useful for

environment design for large-scale MAS.

Towards a more general and practical IRL method for MFGs, we

invoke the idea of Maximum Entropy IRL (MaxEnt IRL) [46, 47],

which provides a general probabilistic framework to tackle bounded-

rational behaviour. It is state-action trajectory-centric and assumes

the observed trajectories follow a distribution (in terms of rewards)

with the maximum entropy. It thus allows us to find a reward func-

tion that rationalises observed behaviour with the least commitment.
Moreover, since a policy leading to the maximum entropy trajectory

distribution is unique given a reward function, MaxEnt IRL is more

useful for environment design. However, extending MaxEnt IRL to

MFGs is challenging. First, since MFNE assumes agents never take

suboptimal behaviour, it is incompatible with MaxEnt IRL in the

sense that it cannot provide a trajectory distribution that can be

used for the probabilistic reward inference. Second, since in MFGs,

the individual and population dynamics are intertwined (the policy

and mean field are interdependent), the trajectory distribution is

intractable to express in terms of rewards, which would prevent us

from performing probabilistic inference for reward functions.

The primary contribution of this paper lies in the proposal of a

new probabilistic IRL framework, Mean-Field Adversarial IRL (MF-

AIRL), for MFGs. MF-AIRL integrates ideas from decentralised IRL

for MFGs, MaxEnt IRL, and adversarial learning [15] into a unified

probabilistic model for reward inferences in large-scale MAS. We

summarise specific contributions as follows: (1) We build MF-AIRL

upon a new equilibrium concept termed entropy-regularised MFNE
(ERMFNE) (see Sec. 3). We show that ERMFNE can characterise an

individual’s trajectory distribution induced by a reward function

in a principled way (see Theorem 1). (2) Taking ERMFNE as the

solution concept, we extend MaxEnt IRL to MFGs (see Sec. 4). We

decouple individual and population dynamics by deriving the em-

pirical value of the mean field from the observed behaviour (see

Theorem 2). (3) By using adversarial learning to solve MaxEnt IRL

in MFGs efficiently, we develop the practical MF-AIRL framework

(see Sec. 5). (4) We evaluate MF-AIRL on tasks that simulate sce-

narios of marketing strategy making, virus propagation modelling

and social norm emergence, all on a large scale (see Sec. 7). Results

demonstrate the outperformance of MF-AIRL over existing methods

in reward recovery.

2 PRELIMINARIES
This section introducesmean field games (MFGs) and themaximum
entropy inverse reinforcement learning (MaxEnt IRL) framework.

The marriage of the two gives rise to our proposed multi-agent IRL

approach dedicated to large-scale multi-agent systems.

2.1 Mean Field Games
Following the conventional MFG model in the learning setting, we

focus on MFGs with finite state and action spaces and, more gen-

erally, a finite time horizon [8]. Consider an 𝑁 -player symmetric

game, i.e., all agents share the same local state space S, action space
A, and a reward function that is invariant under the permutation

of identities of agents without changing their states and actions.

Let (𝑠1, . . . , 𝑠𝑁 ) ∈ S𝑁
denote a joint state, where 𝑠𝑖 ∈ S is the state

of the 𝑖th agent. As 𝑁 grows large, the game becomes intractable to

analyse due to the curse of dimensionality. MFGs achieve tractabil-

ity by considering the asymptotic limit when 𝑁 approaches infinity.

Formally, take the limit as 𝑁 → ∞. Due to the homogeneity of

agents, MFGs use an empirical distribution ` ∈ P(S), called amean
field, to represent the statistical information of the joint state:

` (𝑠) ≜ lim

𝑁→∞
1

𝑁

𝑁∑︁
𝑖=1

1{𝑠𝑖=𝑠 } .

Here, P(S) represents the set all probability measures over S and

1 denotes the indicator function, i.e., 1𝑥 = 1 if 𝑥 is true and 0

otherwise. The transition function 𝑃 : S×A×P(S)×P(S) → [0, 1]
specifies how states evolve, i.e., an agent transits to the next state

𝑠𝑡+1 with the probability 𝑃 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 , `𝑡 ). Let𝑇 ∈ N+ denote a finite
time horizon. Amean field flow (MF flow for short) thus consists of a

sequence of𝑇 + 1mean fields 𝝁 ≜ {`𝑡 }𝑇𝑡=0. The initial mean field `0
is given. The running reward at each step is determined by a bounded

reward function 𝑟 : S×A×P(S) → R. Let 𝜏 ≜ {(𝑠𝑡 , 𝑎𝑡 )}𝑇𝑡=0 denote
a state-action trajectory of an agent. We write an agent’s long-term

reward under a given MF flow 𝝁 as R(𝜏) ≜ ∑𝑇−1
𝑡=0 𝑟 (𝑠𝑡 , 𝑎𝑡 , `𝑡 ).1 In

summary, an MFG is defined as a tuple (S,A, 𝑃, `0, 𝑟 ).
A time-varying stochastic policy 𝝅 ≜ {𝜋𝑡 }𝑇𝑡=0 is adopted to

characterise a strategic agent, where each 𝜋𝑡 : S → P(A) is the

1
Following the convention [4, 8, 41], we set the reward at the last step (𝑡 = 𝑇 ) as 0.
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per-step policy, i.e., an agent chooses actions following 𝑎𝑡 ∼ 𝜋𝑡 (·|𝑠).
Given an MF flow 𝝁 and a policy 𝝅 , an agent’s expected return
(cumulative rewards) is written as

𝐽 (𝝁, 𝝅) ≜ E𝜏∼(𝝁,𝝅 ) [R(𝜏)] , (1)

where 𝑠0 ∼ `0, 𝑎𝑡 ∼ 𝜋𝑡 (·|𝑠𝑡 ), 𝑠𝑡+1 ∼ 𝑃 (·|𝑠𝑡 , 𝑎𝑡 , `𝑡 ) .

2.2 Mean Field Nash Equilibrium
Fixing an MF flow 𝝁, a policy 𝝅 is called a best response to 𝝁 if it

maximises 𝐽 (𝝁, 𝝅). We denote the set of all best-response policies to

𝝁 by Ψ(𝝁) ≜ argmax𝝅 𝐽 (𝝁, 𝝅). However, since all agents optimise

their policies simultaneously, the MF flow would shift. Thus, the

solution must consider how a policy at the individual level affects

the MF flow at the population level. Due to the homogeneity of

agents, everyone would follow the same policy at optimality. The

dynamics of theMF flow can thus be governed by the (discrete-time)

McKean-Vlasov (MKV) equation [3]:

`𝑡+1 (𝑠′) =
∑︁
𝑠∈S

`𝑡 (𝑠)
∑︁
𝑎∈A

𝜋𝑡 (𝑎 |𝑠) 𝑃 (𝑠′ |𝑠, 𝑎, `𝑡 ) . (2)

Given a policy 𝝅 , denote 𝝁 = Φ(𝝅) as the MF flow that fulfils MKV

equation. We say 𝝁 is consistent with 𝝅 if 𝝁 = Φ(𝝅). This consis-
tency guarantees that a single agent’s state marginal distribution

flow matches the MF flow at the population level. The conventional

solution concept for MFGs is the mean field Nash equilibrium.

Definition 1. A pair (𝝁★, 𝝅★) is called a mean field Nash equi-

librium (MFNE) if it satisfies:
(1) Agent rationality: 𝝅★ ∈ Ψ(𝝁★);
(2) Population consistency: 𝝁★ = Φ(𝝅★).

Computing an MFNE typically requires a fixed-point iteration

procedure for the MF flow [16]. Formally, through defining any

mapping Ψ̂ : 𝝁 ↦→ 𝝅 that identifies a best response in Ψ(𝝁), we
obtain a fixed point iteration for 𝝁 by alternating between 𝝅 = Ψ̂(𝝁)
and 𝝁 = Φ(𝝅). The assumption for the uniqueness of MFNE is that

the fixed-point iteration will converge to a unique 𝝁 [16]. However,

the fixed-point iteration is not guaranteed to converge to a unique

𝝁, and multiple MFNE can coexist [5].

2.3 Maximum Entropy IRL
We next give an overview of MaxEnt IRL [46, 47] in the context of

a Markov decision process (MDP) defined by a tuple (S,A, 𝑃, 𝜌, 𝑟 ),
where 𝑟 (𝑠, 𝑎) is the reward function, and the environment dynamics

is determined by the transition function 𝑃 (𝑠′ |𝑠, 𝑎) and initial state

distribution 𝜌 (𝑠). In (forward) reinforcement learning (RL), an opti-

mal policy may not exist uniquely. MaxEnt RL solves this ambiguity

by augmenting the expected return with a causal entropy 2
[46]

regularisation term H(𝜋) ≜ E𝜋 [− log𝜋 (𝑎 |𝑠)], i.e., the objective is
to find a (stationary) policy 𝜋★ such that

𝜋★ = argmax

𝜋
E𝜏∼𝜋

[
𝑇−1∑︁
𝑡=0

𝑟 (𝑠𝑡 , 𝑎𝑡 ) + 𝛽H(𝜋 (·|𝑠𝑡 ))
]
,

where 𝜏 is a state-action trajectory sampled via 𝑠0 ∼ 𝜌0,𝑎𝑡 ∼ 𝜋 (·|𝑠𝑡 ),
𝑠𝑡+1 ∼ 𝑃 (·|𝑠𝑡 , 𝑎𝑡 ) and 𝛽 > 0 controls the relative importance of

reward and entropy.

2
Throughout the rest of the paper, we refer to the term entropy as the causal entropy.

Suppose we have no access to the reward function but have a set

of observed trajectories sampled from an unknown expert policy

𝜋𝐸 obtained by the above MaxEnt RL procedure. MaxEnt IRL aims

to infer a reward function that rationalises the observed behaviour,

which reduces to the following maximum likelihood estimation

(MLE) problem (assume 𝛽 = 1 [44]):

𝑝𝜔 (𝜏) ∝ 𝜌 (𝑠0) ·
𝑇−1∏
𝑡=0

𝑃 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ) · 𝑒𝑅𝜔 (𝜏 ) , (3)

max

𝜔
E𝜏∼𝜋𝐸 [log 𝑝𝜔 (𝜏)] = E𝜏∼𝜋𝐸 [𝑅(𝜏)] − log𝑍𝜔 . (4)

Here, 𝑅𝜔 (𝜏) ≜ ∑𝑇−1
𝑡=0 𝑟𝜔 (𝑠𝑡 , 𝑎𝑡 ) where 𝑟𝜔 is an 𝜔-parameterised

reward function, and 𝑍𝜔 ≜
∑
𝜏∼𝜋𝐸 𝑒𝑅𝜔 (𝜏 )

is the partition function
of the distribution defined in Eq. (3), i.e., a summation over all

feasible trajectories. Exactly computing 𝑍𝜔 is intractable if the

state-action space is large.

Adversarial IRL (AIRL)was proposed by [9] as an efficient sampling-

based approximation to MaxEnt IRL, which reframes Eq. (4) as

optimising a generative adversarial network [15]. It uses a discrimi-

nator 𝐷𝜔 (a binary classifier) and a adaptive sampler 𝜋\ (a policy).

Particularly, the discriminator takes the following form:

𝐷𝜔 (𝑠, 𝑎) = 𝑒 𝑓𝜔 (𝑠,𝑎)

𝑒 𝑓𝜔 (𝑠,𝑎)+𝜋\ (𝑎 |𝑠 )
,

where 𝑓𝜔 serves as the parameterised reward function. The update

of 𝐷𝜔 is interleaved with the update of 𝜋\ : 𝐷𝜔 is trained to update

the reward function by distinguishing between the trajectories

sampled from the expert and the adaptive sampler; while 𝜋\ is

trained to maximise

E𝜏∼𝜋\

[
𝑇−1∑︁
𝑡=0

log𝐷𝜔 (𝑠𝑡 , 𝑎𝑡 ) − log(1 − 𝐷𝜔 (𝑠𝑡 , 𝑎𝑡 ))
]
.

IRL faces the ambiguity of reward shaping [29], i.e., multiple

reward functions can induce the same optimal policy. To mitigate

this ambiguity, Fu et al. [9] further restrict the parameterised reward

in 𝐷𝜔 to a specific structure by supplying a state-only potential-
based reward shaping function ℎ𝜙 : S → R:

𝑓𝜔,𝜙 (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) = 𝑟𝜔 (𝑠𝑡 , 𝑎𝑡 ) + ℎ𝜙 (𝑠𝑡+1) − ℎ𝜙 (𝑠𝑡 ) .
Shown in [9], under certain conditions, 𝑟𝜔 (𝑠, 𝑎) +ℎ𝜙 (𝑠) will recover
the ground-truth reward function up to a constant.

2.4 IRL for MFGs
We adopt the general decentralised IRL setting for MFGs as in

[4], which aims to infer the individual reward function from ob-

served individual behaviour. More formally, let (S,A, 𝑃, `0, 𝑟 ) be
an MFG. Suppose we do not know 𝑟 (𝑠, 𝑎, `) but have a set of 𝑀

observed expert behaviour D𝐸 = {𝜏 𝑗 }𝑀𝑗=1 sampled from an un-

known equilibrium (𝝁𝐸 , 𝝅𝐸 ), where each 𝜏 = {(𝑠𝑡 , 𝑎𝑡 )}𝑇𝑡=0 is an

individual agent’s state-action trajectory sampled via 𝑠0 ∼ `0,

𝑎𝑡 ∼ 𝜋𝑡 (·|𝑠𝑡 ), 𝑠𝑡+1 ∼ 𝑃 (·|𝑠𝑡 , 𝑎𝑡 , `𝑡 ). IRL for MFG asks for a reward

function 𝑟 (𝑠, 𝑎, `) under which (𝝁𝐸 , 𝝅𝐸 ) constitutes an equilibrium.

3 ENTROPY-REGULARISED MFNE
This section introduces and justifies a new solution concept for

MFGs, which allows us to characterise the bounded rationality of

agents and thereby extend MaxEnt IRL to MFGs.
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3.1 A New Equilibrium Concept for MFGs
To extend MaxEnt IRL to MFGs, we need to characterise the trajec-

tory induced by a reward function with a particular distribution

as analogous to Eq. (3). However, MFNE cannot explicitly define a

tractable trajectory distribution as it requires agents never to take

suboptimal actions, whereas, in MaxEnt IRL, an agent can take

sub-optimal actions with certain low probabilities. To bridge the

gap between MFGs and MaxEnt IRL, we need a “soft” equilibrium

concept that can characterise uncertainties in observed behaviour

as against MFNE being a “hard” equilibrium. To this end, a natural

way in game theory is to incorporate policy entropy into rewards

[12, 31], which enables bounded rationality, i.e., agents can take sat-

isfactory rather than optimal actions. This inspires a new solution

concept – entropy-regularised MFNE (ERMFNE) – where an agent

aims to maximise the entropy-regularised rewards:

𝐽 (𝝁, 𝝅) ≜ E𝜏∼(𝝁,𝝅 )

[
𝑇−1∑︁
𝑡=0

𝑟 (𝑠𝑡 , 𝑎𝑡 , `𝑡 ) + 𝛽H(𝜋𝑡 (·|𝑠𝑡 )
]
.

Definition 2. A pair of MF flow and policy (�̃�★, �̃�★) is called an
entropy-regularised MFNE (ERMFNE) if it satisfies:

(1) Agent bounded rationality: 𝐽 (�̃�★, �̃�★) = max𝝅 𝐽 (�̃�★, 𝝅);
(2) Population consistency: �̃�★ = Φ(�̃�★).

Despite the entropy-regularised MFGs have been studied in the

literature [1, 5, 17], existing work is motivated from a computational

perspective, that is, entropy regularisation can improve the stability

and the convergence of algorithms for computing an equilibrium.

Particularly, Cui and Koeppl [5] independently proposed a similar

solution concept and showed that entropy regularisation relaxes

the condition for uniqueness as opposed to the unregularised case:

(1)With entropy regularisation, the best-response policy �̃� to an

MF flow 𝝁 exists uniquely; 3 (2) ERMFNE exists for any 𝛽 > 0

if 𝑟 (𝑠, 𝑎, `) and 𝑃 (𝑠′ |𝑠, 𝑎, `) are continuous. Using �̃� = Ψ̃(𝝁) to
denote the unique best-response policy to 𝝁, we obtain the the

fixed point iteration for ERMFNE by alternating between 𝝅 = Ψ̃(𝝁)
and 𝝁 = Φ(𝝅). The fixed point iteration converges to a unique MF

flow if 𝛽 is large (according to the reward function scale), thereby

implying a unique ERMFNE.

Note that in ERMFNE, we recover optimality (MFNE) if 𝛽 = 0.

Although the optimality and uniqueness are approached respec-

tively at two extremes of 𝛽 , in this paper, we prioritise the property

of uniqueness to ensure the well-definedness of IRL for MFGs, i.e.,

we assume trajectories are observed from a unique ERMFNE (with

a suitable 𝛽) so that the observed behaviour can be interpreted with

a unique equilibrium. Since we can adjust the relative importance

between rewards and entropy by scaling reward functions, follow-

ing the convention in MaxEnt IRL [9, 43, 44] and without loss of

generality, we assume 𝛽 = 1 in the remainder of the analysis.

3.2 Trajectory Distributions under ERMFNE
Besides uniqueness, in this paper, we take a step further to show that

the entropy regularisation endows ERMFNE with the capability of

reasoning about uncertainties in observed behaviour in a principled

way. Specifically, we show that trajectory distributions induced

3
Hereafter, we will slightly abuse the term “best response” to denote the policy that

maximises the entropy-regularised rewards.

HighLow
Reward
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t

Probability
HighLow

Figure 1: Illustration for the trajectory distribution induced
by ERMFNE. A group of agents (dots) drift in a grid world
over three time steps. Each grid represents a specific state.
The distribution of agents represents themeanfield. A darker
grey background denotes a higher reward associated with a
state. Two individual agents marked with “★” and “+” start
at the same state. The solid arrows denote the trajectory
of ★, which can be observed with an exponentially higher
probability than the trajectory of + depicted using dashed
arrows. Note that the rewards of states change over time
because of the evolution of mean fields.

by ERMFNE can be characterised by an energy-based model, i.e.,
trajectories with high expected cumulative rewards are generated

with exponentially high probabilities, as is illustrated in Fig. 1. It

can thus be used for the probabilistic reward inference.

Theorem 1. Let (�̃�★, �̃�★) be the ERMFNE for an MFG (S,A, 𝑃,

`0, 𝑟 ), and 𝐷KL denote the Kullback-Leibler (KL) divergence. Then,
(�̃�★, �̃�★) is the optimal solution to the following constrained optimi-
sation problem:

min

𝝁,𝝅
𝐷KL (𝑝1 (𝜏) ∥ 𝑝2 (𝜏)) s.t. 𝝁 = Φ(𝝅)

𝑝1 (𝜏) = `0 (𝑠0) ·
𝑇−1∏
𝑡=0

𝑃 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 , `𝑡 ) ·
𝑇∏
𝑡=0

𝜋𝑡 (𝑎𝑡 |𝑠𝑡 )

𝑝2 (𝜏) ∝ `0 (𝑠0) ·
𝑇−1∏
𝑡=0

𝑃 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 , `𝑡 ) · 𝑒R(𝜏 )
(5)

Proof. See Appendix A. □

4 EXTENDING MAXENT IRL TO MFGS
From now on, we assume that observed trajectories are sampled

from a unique ERMFNE (𝝁𝐸 , 𝝅𝐸 ). Let 𝑟𝜔 (𝑠, 𝑎, `) be an 𝜔- parame-

terised reward function and (𝝁𝜔 , 𝝅𝜔 ) denote the ERMFNE induced

by 𝜔 . Then, recovering the underlying reward function reduces to

tuning 𝜔 . The probability of a trajectory 𝜏 = {(𝑠𝑡 , 𝑎𝑡 )}𝑇𝑡=1 induced
by ERMFNE with 𝑟𝜔 is defined by the following generative process:

𝑝𝜔 (𝜏) = `0 (𝑠0) · 𝑃 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 , `𝜔𝑡 ) ·
𝑇∏
𝑡=0

𝜋𝜔𝑡 (𝑎𝑡 |𝑠𝑡 ) . (6)
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In the spirit of MaxEnt IRL, we should tune 𝜔 by maximising the

likelihood of the observed trajectories concerning the distribution

defined in Eq. (6). By Theorem 1, we can instead optimise the likeli-

hood with respect to the distribution defined in Eq. (5) as a varia-

tional approximation:

max

𝜔
L(𝜔 ) ≜ E𝜏∼(𝝁𝐸 ,𝝅𝐸 )

[
R𝜔 (𝜏 ) +

𝑇 −1∑︁
𝑡=0

log𝑃 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 , `𝜔𝑡 )
]
− logZ𝜔 ,

(7)

where Z𝜔 is the partition function of the distribution defined in

Eq. (5), i.e., a summation over all feasible trajectories:

Z𝜔 ≜
∑︁
𝜏

𝑒𝑅𝜔 (𝜏 )
𝑇−1∏
𝑡=0

log 𝑃 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 , `𝜔𝑡 ) . (8)

However, directly optimising the likelihood objective in Eq. (7)

is intractable because we cannot analytically derive the MF flow

𝝁𝜔 . This problem arises from the nature of MFGs that the policy

and MF flow in ERMFNE are interdependent because �̃�★ = Ψ̃(�̃�★)
and in turn �̃�★ = Φ(�̃�★). This issue poses the main challenge for

extending MaxEnt IRL to MFGs. Worse yet, the transition function

𝑃 also depends on 𝝁𝜔 , posing an extra layer of complexity as the

environment dynamics is generally unknown in practice.

While, notice that if we have access to an “oracle” (known a

priori) MF flow that determines the shape of the observed MF flow

𝝁𝐸 , an individual would be decoupled from the population. Inspired

by this fact, we sidestep this problem by substituting 𝝁𝜔 with

the empirical value of 𝝁𝐸 , denoted by 𝝁𝐸 ≜ {`𝐸𝑡 }𝑇𝑡=0, estimated

from observations D𝐸 = {𝜏 𝑗 }𝑀𝑗=1 by calculating the occurrence

frequencies of states:

ˆ̀
𝐸
𝑡 (𝑠) ≜

1

𝑀

𝑀∑︁
𝑗=1

1{𝑠𝑖
𝑗,𝑡
=𝑠 } .

Since the population consistency condition in ERMFNE guarantees

that the state marginal distribution of a single agent matches the

mean field at each time step, 𝝁𝐸 achieves an unbiased estimator of

𝝁𝐸 . Meanwhile, by substituting 𝝁𝐸 for 𝝁𝜔 , the transition function

𝑃 (𝑠𝑡 , 𝑎𝑡 , ˆ̀𝐸𝑡 ) is decoupled the from the reward parameter 𝜔 as 𝝁𝐸

does not depend on 𝜔 , and henceforth being omitted in the likeli-

hood function. Finally, with this substitution, we obtain a tractable

version of the original MLE objective in Eq. (7):

max

𝜔
ˆL
(
𝜔 ; 𝝁𝐸

)
≜ E𝜏∼D𝐸

[
ˆR𝜔 (𝜏)

]
− log

ˆZ𝜔 , (9)

which resembles the formulation of the MLE objective of MaxEnt

IRL as given in Eq. (4). Here,
ˆR𝜔 (𝜏) ≜ ∑𝑇−1

𝑡=0 𝑟𝜔 (𝑠𝑡 , 𝑎𝑡 , ˆ̀𝐸𝑡 ) and
ˆZ𝜔 ≜

∑
𝜏∈D𝐸

𝑒
ˆR𝜔 (𝜏 )

denotes the simplified partition function in

Eq. (8).

Statistically, Eq. (9) can be interpreted as that we use a likelihood

function of a “mis-specified” model that treats the policy and MF

flow as being independent and replaces the MF flow with its em-

pirical value. In this manner, we estimate the optimal solution to

the original MLE problem by maximising a simplified form of the

actual likelihood function defined in Eq. (7). Although we sacrifice

the accuracy for achieving tractability due to the estimation error of

𝝁𝐸 , we show that Eq. (9) preserves the property of the asymptotic

consistency, as 𝝁𝐸 converges almost surely to 𝝁𝐸 as the number of

samples tends to infinity due to the law of large numbers.

Theorem 2. Let the observed trajectories in D𝐸 = {𝜏 𝑗 }𝑀𝑗=1 be
independent and identically distributed and sampled from a unique
ERMFNE induced by an unknown parameterised reward function.
Suppose for all 𝑠 ∈ S, 𝑎 ∈ A and ` ∈ P(S), 𝑟𝜔 (𝑠, 𝑎, `) is differ-
entiable w.r.t. 𝜔 . Then, with probability 1 as the number of samples

𝑀 → ∞, the equation ∇𝜔
ˆL
(
𝜔 ; 𝝁𝐸

)
= 0 has a root �̂� such that �̂� is

a maximiser of the likelihood objective L(𝜔) in Eq. (7).

Proof. The gradient of
ˆL concerning 𝜔 is given by:

∇𝜔
ˆL
(
𝜔 ; 𝝁𝐸

)
=
1

𝑀

𝑀∑︁
𝑗=1

∇𝜔
ˆR𝜔 (𝜏 𝑗 ) − ∇𝜔 log

ˆZ𝜔

=
1

𝑀

𝑀∑︁
𝑗=1

∇𝜔
ˆR𝜔 (𝜏 𝑗 ) −

1

ˆZ𝜔

∇𝜔
ˆZ𝜔

=
1

𝑀

𝑀∑︁
𝑗=1

∇𝜔
ˆR𝜔 (𝜏 𝑗 ) −

𝑀∑︁
𝑗=1

𝑒
ˆR𝜔 (𝜏 𝑗 )

ˆZ𝜔

∇𝜔
ˆR𝜔 (𝜏 𝑗 ) .

(10)

Let PrD𝐸
(𝜏) ≜ 1

𝑀

∑𝑀
𝑗=1 1{𝜏 𝑗=𝜏 } denote the empirical trajectory

distribution, then Eq. (10) is equivalent to

∇𝜔
ˆL
(
𝜔 ; 𝝁𝐸

)
=

𝑀∑︁
𝑗=1

PrD𝐸
(𝜏 𝑗 )∇𝜔

ˆR𝜔 (𝜏 𝑗 ) −
𝑀∑︁
𝑗=1

𝑒
ˆR𝜔 (𝜏 𝑗 )

ˆZ𝜔

∇𝜔
ˆR𝜔 (𝜏 𝑗 )

(11)

=

𝑀∑︁
𝑗=1

(
PrD𝐸

(𝜏 𝑗 ) −
𝑒
ˆR𝜔 (𝜏 𝑗 )

ˆZ𝜔

)
∇𝜔

ˆR𝜔 (𝜏 𝑗 ) .

When the number of samples 𝑀 → ∞, PrD𝐸
(𝜏) tends to the

true trajectory distribution 𝑝 (𝜏) (see Eq. (5)) induced by ERMFNE.

Meanwhile, according to the law of large numbers, 𝝁 → 𝝁𝐸 with

probability one as the number of samples 𝑀 → ∞. Let 𝜔★
be a

maximiser of the likelihood objective in Eq. (7). Taking the limit as

𝑀 → ∞ and the optimality 𝜔 = 𝜔★
, we have:

𝑒R𝜔★ (𝜏 𝑗 )

ˆZ𝜔★

=
𝑒R𝜔★ (𝜏 𝑗 )∑𝑀
𝑗=1 𝑒

R𝜔★ (𝜏 𝑗 )
= Pr(𝜏 𝑗 ) = PrD𝐸

(𝜏 𝑗 ).

Therefore, the gradient in Eq. (11) will be zero. □

5 MEAN FIELD ADVERSARIAL IRL
Theorem 2 bridges the gap between optimising the original in-

tractable MLE objective in Eq. (7) and the tractable empirical MLE

objective in Eq. (9). However, as mentioned in Sec. 2.3, exactly com-

puting the partition function 𝑍𝜔 is generally difficult. Similar to

AIRL [9], we adopt importance sampling to estimate 𝑍𝜔 with adap-
tive samplers. Since policies are time-varying in MFGs, we use a set

of𝑇 adaptive samplers 𝝅𝜽 ≜ (𝜋\0 , 𝜋\1 , . . . , 𝜋\𝑇 −1 ), where each 𝜋\𝑡

serves as the parameterised per-step policy.

Now, we are ready to present to our Mean-Field Adversarial IRL
(MF-AIRL) framework, which trains a discriminator

�̂�𝜔 (𝑠𝑡 , 𝑎𝑡 ) ≜
𝑒 𝑓𝜔 (𝑠𝑡 ,𝑎𝑡 , ˆ̀𝐸𝑡 )

𝑒 𝑓𝜔 (𝑠𝑡 ,𝑎𝑡 , ˆ̀𝐸𝑡 )+𝜋\𝑡 (𝑎𝑡 |𝑠𝑡 )
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as

max

𝜔
E𝜏∼D𝐸

[
𝑇−1∑︁
𝑡=0

log �̂�𝜔 (𝑠𝑡 , 𝑎𝑡 )
]
+ E𝜏∼𝝅𝜽

[
𝑇−1∑︁
𝑡=0

log(1 − �̂�𝜔 (𝑠𝑡 , 𝑎𝑡 ))
]
,

(12)

and trains adaptive importance samplers 𝝅𝜽
as

max

𝜽
E𝜏∼𝝅𝜽

[
𝑇−1∑︁
𝑡=0

log �̂�𝜔 (𝑠𝑡 , 𝑎𝑡 ) − log(1 − �̂�𝜔 (𝑠𝑡 , 𝑎𝑡 ))
]

=E𝜏∼𝝅𝜽

[
𝑇−1∑︁
𝑡=0

𝑓𝜔 (𝑠𝑡 , 𝑎𝑡 , ˆ̀𝐸𝑡 ) − log𝜋\𝑡 (𝑎𝑡 |𝑠𝑡 )
]
.

(13)

The update of policy parameters 𝜽 is interleaved with the update

of the reward parameter 𝜔 . Intuitively, tuning 𝝅𝜽
can be viewed

as a policy optimisation procedure, which is to find the ERMFNE

policy induced by the current reward parameter in order to min-

imise the variance of importance sampling; 𝑓𝜔 is trained to estimate

the reward function by distinguishing between the observed tra-

jectories and those generated by the current adaptive samplers

𝝅𝜽
. We can use backward induction to train 𝝅𝜽

, i.e., tuning 𝜋\𝑡

based on 𝜋\𝑡+1 , . . . , 𝜋\𝑇 −1
that are already tuned.

4
At optimality, 𝑓𝜔

will approximate the underlying reward function for the observed

ERMFNE and 𝝅𝜽
will approximate the observed policy.

5.1 Reward Shaping in MFGs
As mentioned in Sec. 2.3, IRL faces reward ambiguity. This issue

is called the effect of reward shaping [29], i.e., there is a class of

reward transformations that induce the same set of optimal poli-

cies, where IRL cannot identify the ground-truth one without prior

knowledge of environments. It is shown that for any state-only

potential function ℎ : S → R, the reward transformation

𝑟 ′ (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) = 𝑟 (𝑠𝑡 , 𝑎𝑡 ) + ℎ(𝑠𝑡+1) − ℎ(𝑠𝑡 )
is the sufficient and necessary condition to ensure policy invariance

for bothMDPs and stochastic games [7].We show that a similar idea

can be extended toMFGs: for any potential function𝑔 : S×P(S) →
R, the potential-based reward shaping can ensure the invariance of

both ERMFNE and MFNE. The detailed justification and proofs are

deferred until Appendix B.

To mitigate the effect of reward shaping, similar to AIRL [9],

we assume that the parameterised reward function 𝑓𝜔 is in the

following structure:

𝑓𝜔,𝜙 (𝑠𝑡 , 𝑎𝑡 , `𝑡 , 𝑠𝑡+1, `𝑡+1) = 𝑟𝜔 (𝑠𝑡 , 𝑎𝑡 , `𝑡 )+
𝑔𝜙 (𝑠𝑡+1, `𝑡+1) − 𝑔𝜙 (𝑠𝑡 , `𝑡 ).

Here, 𝑔𝜙 is the 𝜙-parameterised potential function for MFGs. To

summarise, we present the pseudocode in Alg. 1.

6 RELATEDWORK
We continue from the introduction to relate our work to the existing

literature. MFGs were pioneered by [22, 23] in the continuous set-

ting of stochastic differential games. The discrete MFG model was

then proposed in [14], which was adopted in the learning setting.

Recently, learning MFG has attracted significant attention [2], and

4
Since the reward at 𝑡 = 𝑇 is 0, 𝜋𝑇 always selects actions with ties broken arbitrarily

to maximise the policy entropy.

Algorithm 1 Mean-Field Adversarial IRL

1: Input: MFG with parameters (S,A, 𝑃, `0) and observed tra-

jectories D𝐸 = {𝜏 𝑗 }𝑀𝑗=1.
2: Initialisation: reward parameter 𝜔 , adaptive samplers 𝜽 and

potential function parameter 𝜙 .

3: Estimate the empirical expert MF flow 𝝁𝐸 from D𝐸 .

4: for each iteration do
5: Sample a set of trajectories D𝝅 = {𝜏 𝑗 } from 𝝅𝜽

via 𝑠0 ∼ `0,

𝑎𝑡 ∼ 𝜋\𝑡 (·|𝑠𝑡 ), 𝑠𝑡+1 ∼ 𝑃 (·|𝑠𝑡 , 𝑎𝑡 , `𝑡 ).
6: Sample subsets X𝐸 ,X𝝅 from D𝐸 ,D𝝅 .

7: Update 𝜔,𝜙 using X𝐸 ,X𝝅 according to Eq. (12).

8: for 𝑡 = 𝑇 − 1, . . . , 0 do
9: Update \𝑡 with respect to the reward estimate 𝑟𝜔 (𝑠, 𝑎, `) +

𝑔𝜙 (𝑠, `) according to Eq. (13).

10: end for
11: end for
12: Output: Learned reward function 𝑟𝜔 .

most methods are based on reinforcement learning [5, 16, 37, 42],

fictitious play [2, 8, 40], or a combination of the two [32]. While

these methods require a well-designed reward function that is chal-

lenging to hand-tune in practice. In contrast, our method recovers

a reward function from the observed behaviour.

IRL was introduced by [30] in the single-agent setting. Early

IRL methods were based on margin optimisation [33], which makes

IRL ill-defined. Maximum entropy (MaxEnt) IRL [46, 47] addresses

this issue by providing a probabilistic approach to find a most non-

committal reward function whose induced state-action trajectory

distribution has the MaxEnt among those matching the reward

expectation of the observed behaviour. However, it is only suit-

able for small and discrete problems since MaxEnt IRL requires

iteratively solving an RL problem while tuning a reward function.

Adversarial IRL (AIRL) [9] was later proposed, which scales MaxEnt

IRL to high-dimensional or continuous domains. It implements a

sampling-based approximation to MaxEnt IRL by drawing an anal-

ogy between generative adversarial networks [15] and MaxEnt IRL,

thereby being able to partially solve each RL problem associated

with reward tuning.

Another line of work extends ILR to the multi-agent setting,

where the problem is cast to finding individual reward functions of

stochastic games. They typically take a specific equilibrium concept,

such as the conventional Nash equilibrium [10], logistic stochastic

best response equilibrium [43] and equilibrium for the cooperative

setting [28], and assume the equilibrium exists uniquely in order

to guarantee the well-definedness (as we assumed in this paper).

However, these methods scale poorly to large-scale scenarios due to

the exponential growth of state-action spaces and agent interactions.

By extending MaxEnt IRL to MFGs, our method realises an effective

IRL framework for large-scale scenarios.

7 EXPERIMENTS
We seek to answer the following fundamental question via exper-

iments: Can MF-AIRL effectively and efficiently recover a suitable
reward function of an MFG by observing bounded rational behaviour?
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Figure 2: Results for numerical tasks. The line and shade are the median and variance over 10 independent runs.

To that end, we evaluate MF-AIRL on a series of simulated tasks mo-

tivated by real-world applications, where the observed behaviour

is sampled from an ERMFNE.

7.1 Experimental Setup
7.1.1 Tasks. We adopt five MFG tasks: investment in product qual-
ity (INVEST for short), malware spread (MALWARE), virus infection
(VIRUS), Rock-Paper-Scissors (RPS) and Left-Right (LR), which sim-

ulate a series of large-scale multi-agent scenarios in the contexts

of marketing, virus propagation modelling and norm emergence.

These tasks were originally studied in [5, 20, 21, 37, 39] and adapted

by [4]. Detailed descriptions and settings are in Appendix C.

7.1.2 Baselines. We compare MF-AIRL against the two IRL meth-

ods above for MFGs: (1) The centralised method [41] relies on the

reduction from MFG to MDP. Since it aims to recover the popu-

lation’s average rewards, we call it population-level IRL (PLIRL).
Shown by [4], PLIRL is only compatible with socially optimal equi-

libria that maximise the population’s average rewards; otherwise, it

can result in biased reward inference. (2) The decentralised method,

Mean Field IRL (MFIRL) [4], is based on margin optimisation, i.e.,

finding a reward function by minimising the margin (in terms of

expected return) between the observed equilibrium and every other

equilibrium; it is able to recover the ground-truth reward function

with no bias, regardless of whether the observed equilibrium is

socially optimal or not.

7.1.3 Performance Metrics. The quality of a learned reward func-

tion 𝑟𝜔 can be evaluated by the difference between its induced

best-response policy to 𝝁𝐸 , denoted by 𝝅𝜔
, and 𝝅𝐸

, because a

best-response policy is unique under the entropy regularisation.

We adopt the following two metrics that measure the difference

between 𝝅𝜔
and 𝝅𝐸

reflected in the statistical distance and the

expected return, respectively:

(1) Policy Deviation (Pol. Dev). We use the cumulative KL- diver-

gence,

𝑇−1∑︁
𝑡=0

∑︁
𝑠∈S

𝐷KL

(
𝜋𝐸𝑡 (·|𝑠) ∥ 𝜋𝜔𝑡 (·|𝑠)

)
,

to measure the statistical distance between two policies.

(2) Expected return (Exp. Ret). The difference between two ex-

pected returns 𝐽 (𝝁𝐸 , 𝝅𝜔 ) and 𝐽 (𝝁𝐸 , 𝝅𝐸 ) under the ground-
truth reward function.

Table 1: Results for new environment dynamics. Mean
and variance are taken across 10 independent runs.

Task Metric

Algorithm

MF-AIRL PLIRL MFIRL

INVEST
Pol. Dev 0.24 (0.02) 1.06 (0.21) 0.78 (0.18)

Exp. Ret -35.19 (0.51) -37.73 (2.76) -35.92 (0.98)

MALWARE
Pol. Dev 0.52 (0.01) 1.54 (1.20) 0.73 (0.14)

Exp. Ret -18.49 (0.14) -19.59 (0.29) -18.82 (0.05)

VIRUS
Pol. Dev 1.48 (0.01) 1.76 (0.18) 1.55 (0.03)

Exp. Ret -1.71 (0.02) -2.66 (0.14) -2.16 (0.06)

RPS
Pol. Dev 6.11 (0.46) 6.47 (0.98) 6.56 (0.82)

Exp. Ret 93.36 (2.51) 91.99 (0.44) 91.28 (2.15)

LR
Pol. Dev 0.57 (0.04) 0.62 (0.22) 0.71 (0.07)

Exp. Ret -1.70 (0.01) -2.67 (1.01) -1.93 (0.06)

Note: The Exp. Ret of the observed behaviour for five tasks are -35.87,

-18.90, -1.24, 93.16 and -0.64, respectively.

7.1.4 Training Procedures. In all tasks, we have access to the ground-
truth reward functions and environment dynamics, which allows

us to numerically compute an ERMFNE through the fixed point

iteration as introduced in Sec. 3. Unless specified otherwise, we set

the entropy regularisation coefficient 𝛽 = 1. After obtaining the

ERMFNE, we sample trajectories from them, each with a length of

50 time steps, the same as the number used in [4, 36, 43]. We use

one-hot encoding to represent states and actions. All three algo-

rithms share the same neural network architecture as the reward

model: two hidden layers of 64 leaky rectified linear units each.

Implementation details are given in Appendix D.

7.2 Reward Recovery with Fixed Dynamics
The first experiment tests the capability of reward recovery with

fixed environment dynamics. Results are depicted in Fig. 2. On all

tasks, MF-AIRL achieves the closest performance to the observed

behaviour with the same number of trajectories and the fastest con-

vergence with the number of trajectories increases, suggesting that

among all three algorithms, MF-AIRL is the most effective and effi-

cient for bounded-rational agents. MFIRL shows larger deviations

even if the number of trajectories is large. This may be because

MFIRL takes MFNE as the solution concept, thereby lacking the
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Table 2: Comparisons between MF-AIRL and MFIRL on vary-
ing entropy regularisation strength 𝛽 .

Task 𝛽 Metric

Algorithm

OBSERVED MF-AIRL MFIRL

INVEST

0

Pol. Dev – 0.45 (0.03) 0.44 (0.02)
Exp. Ret -35.05 -35.92 (0.68) -35.54 (2.55)

0.1
Pol. Dev – 0.31 (0.02) 0.39 (0.04)

Exp. Ret -36.37 -37.08 (0.71) -37.40 (1.08)

MALWARE

0

Pol. Dev – 0.39 (0.07) 0.38 (0.07)

Exp. Ret -18.06 -19.15 (0.25) -18.52 (0.51)

0.1
Pol. Dev – 0.41 (0.03) 0.50 (0.10)

Exp. Ret -19.36 -19.84 (0.22) -20.39 (0.69)

VIRUS

0

Pol. Dev – 1.50 (0.04) 1.34 (0.09)

Exp. Ret -1.17 -2.55 (0.04) -1.61 (0.17)

0.1
Pol. Dev – 1.54 (0.01) 1.80 (0.07)

Exp. Ret -2.15 -2.61 (0.06) -2.98 (0.43)

RPS

0

Pol. Dev – 9.71 (0.24) 9.36 (0.40)

Exp. Ret 94.27 93.21 (0.49) 93.58 (2.51)

0.1
Pol. Dev – 7.09 (0.54) 8.40 (0.40)

Exp. Ret 91.43 90.43 (3.09) 89.40 (0.96)

LR

0

Pol. Dev – 0.45 (0.07) 0.37 (0.08)

Exp. Ret -0.52 -2.60 (0.08) -1.70 (1.08)

0.1
Pol. Dev – 0.68 (0.04) 0.70 (0.04)

Exp. Ret -0.64 -0.81 (0.04) -0.96 (0.71)

ability to tolerate suboptimal behaviours. PLIRL shows the largest

deviation and variance. This is as expected because PLIRL is only

suitable for socially optimal equilibria, while an ERMFNE is not so-

cially optimal as it captures bounded rationality. Therefore, biased

reward inferences occur when applying PLIRL to these tasks.

7.3 Policy Transfer across Varying Dynamics
The second experiment investigates the robustness against chang-

ing environment dynamics. We change the transition function

(see Appendix C for details), recompute an ERMFNE (𝝁𝐸𝑛𝑒𝑤 , 𝝅𝐸
𝑛𝑒𝑤)

induced by the ground-truth reward function, compute the best-

response policy 𝝅𝜔
𝑛𝑒𝑤 to 𝝁𝐸𝑛𝑒𝑤 under the learned reward function

(trained with 100 demonstrated trajectories), and calculate two met-

rics again. Results are summarised in Tab. 1. Consistently, MF-AIRL

outperforms two baselines on all tasks. We attribute the high ro-

bustness of MF-AIRL to the following reasons: (1) MF-AIRL uses a

potential function to mitigate the effect of reward shaping while

two baselines do not; (2) The issue of biased inference in PLIRL can

be exacerbated by the changing dynamics, as is argued in [4]. To

summarise, MF-AIRL can recover ground-truth reward functions

with high robustness to changing dynamics.

7.4 Weak Entropy Regularisation
Suppose the entropy regularisation in ERMFNE is too strong. In that

case, it becomes easy and trivial to perform MaxEnt IRL as the pol-

icy tends to select actions uniformly due to the maximum entropy

principle. Our third experiment thus investigates the performance

under weak entropy regularisation. Since PLIRL is known to lead

to biased reward inference if the demonstrated equilibrium is not

socially optimal, we eliminate it here and only compare two decen-

tralised methods. To weaken the entropy regularisation, we set the

coefficient 𝛽 in the observed ERMFNE to 0 and 0.1, respectively and

sample 100 demonstrated trajectories from each. The environment

dynamic is fixed. Results are summarised in Tab. 2. Note that an

ERMFNE is recovered to an MFNE if 𝛽 = 0; this complements the

above two experiments where all trajectories are sampled from an

ERMFNE with 𝛽 = 1. It also enables a fair comparison between

MF-AIRL and MFIRL as, technically, they are designed under two

prescribed equilibrium concepts.

With trajectories sampled from an MFNE (𝛽 = 0), MF-AIRL

shows a more significant deviation from the observed behaviour

than MFIRL, but its variance is lower on average. This fact can

be attributed to the reason that a best-response policy in MFNE

does not exist uniquely, though MFIRL is unbiased under MFNE.

In contrast, MF-AIRL can always recover a unique best-response

policy from a learned reward function, though with bias under

MFNE. This result again validates our argument that by taking

MFNE as the solution concept, MFIRL fails to elicit a unique policy

from the learned reward function. While, even with a positive yet

small strength of entropy regularisation (𝛽 = 0.1), our MF-AIRL

quickly outperforms MFIRL in terms of both accuracy and variance.

This suggests that our MF-AIRL can handle imperfect behaviours

resulting from bounded rationality, even with minor uncertainties.

8 CONCLUDING REMARKS
In this paper, we propose MF-AIRL, the first probabilistic IRL frame-

work effective for MFGs with bounded-rational agents. We first

extend MaxEnt IRL to MFGs based on the solution concept termed

ERMFNE, which allows us to characterise uncertainties in observed

behaviour using the maximum entropy principle. We then develop

the practical MF-AIRL framework using an adversarial learning

approach to solve MaxEnt IRL for MFGs efficiently. Experimen-

tal results on simulated tasks demonstrate the effectiveness and

efficiency of MF-AIRL against existing IRL methods for MFGs.

We argue that MF-AIRL is worth following generalisations: (1)
Continuous states and actions. The arguments in this paper still hold

for continuous state-action spaces, except that some techniques

(e.g., 𝜖-net [16]) are needed to discretise a mean field because it

turns to a probability density function if states are continuous. (2)
Infinite time horizon. When the time horizon tends to infinity, the

mean field is shown to converge almost surely to a constant limit,

resulting in the stationary MFNE [37]. MF-AIRL is compatible with

infinite time horizons because non-stationary equilibria recover sta-

tionary ones as special cases. (3)Generalised mean fields. Some work

[16] generalises the mean field ` ∈ P(S) to (`, 𝛼) ∈ P(S × A) by
additionally considering population’s average action 𝛼 ∈ P(A).
MF-AIRL is adaptive to generalised mean fields by incorporating

the marginal distribution 𝛼 in all mean field arguments. (4) Het-
erogeneous agents. A large-scale heterogeneous multi-agent system

can be converted to a homogeneous system by considering the

type of the agent as a component of states [38]. Our MF-AIRL is,

therefore, compatible with heterogeneous agents.
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