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ABSTRACT

Cost functions are commonly employed in Safe Deep Reinforce-
ment Learning (DRL). However, the cost is typically encoded as an
indicator function due to the difficulty of quantifying the risk of
policy decisions in the state space. Such an encoding requires the
agent to visit numerous unsafe states to learn a cost-value function
to drive the learning process toward safety. Hence, increasing the
number of unsafe interactions and decreasing sample efficiency. In
this paper, we investigate an alternative approach that uses domain
knowledge to quantify the risk in the proximity of such states by
defining a violation metric. This metric is computed by verifying
task-level properties, shaped as input-output conditions, and it is
used as a penalty to bias the policy away from unsafe states without
learning an additional value function. We investigate the benefits
of using the violation metric in standard Safe DRL benchmarks
and robotic mapless navigation tasks. The navigation experiments
bridge the gap between Safe DRL and robotics, introducing a frame-
work that allows rapid testing on real robots. Our experiments
show that policies trained with the violation penalty achieve higher
performance over Safe DRL baselines and significantly reduce the
number of visited unsafe states.
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1 INTRODUCTION

Safe Deep Reinforcement Learning (DRL) approaches typically fos-
ter safety by limiting the accumulation of costs caused by unsafe
interactions [12]. Defining informative cost functions, however, has
the same issues as designing rewards [13] due to the difficulty of
quantifying the risk around unsafe states. For this reason, recent
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works rely on indicator functions, where a positive value deems
a state unsafe [22]. In detail, the cost refers to a state-action pair
(s, a), and it is backed up to propagate safety information and esti-
mate a cost-value function. The cost metric and its value estimation
have been used to drive the learning process towards safety using
penalties [33, 43], cumulative or instantaneous constraints [21, 41].
However, the learned value functions have poor estimates and end
up in local optima [14, 25], limiting their efficacy in fostering safety.
We argue that the cost’s sparse nature is another key issue that
hinders safety and sample efficiency. A sparse definition of the cost
requires the agent to visit unsafe states to learn good estimates from
the sparse feedback. These issues are pivotal in a safety context
where we aim to minimize the number of visited unsafe states.

In this direction, we note that the indicator costs do not carry
information about areas around s where it is risky to perform the
action that led to deeming s unsafe. For example, consider a naviga-
tion scenario where a policy chooses the robot’s velocity, given its
position. In this context, prior works trigger a positive cost when
colliding in a state s (Figure 1 on the left) and need to visit similar
unsafe interactions around s to learn the cost-value function that
drives the learning process toward safety [7, 21, 41]. In contrast, it
is possible to exploit high-level system specifications (e.g., robots’
size and velocity) to define an area of size € around s where perform-
ing the action a that led to collision would result in other unsafe
interactions (Figure 1 on the right). We can then compute a safety
value based on the policy’s decisions, avoiding visiting such an
unsafe area to learn a cost-value function. Hence, the idea is to
replace indicator costs and the learning of cost-value functions by
quantifying the states in the unsafe area where the policy chooses
a and use it as a penalty to discourage unsafe decisions [1, 19]. Our
hypothesis is that this procedure can significantly improve sample
efficiency and reduce the number of visited hazardous states.

To this end, we propose an approximate violation metric as a
penalty that uses system specifications to quantify how safe policy
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Figure 1: Indicator cost function (left). Unsafe interactions,
caused by the same action, around the unsafe state (right).
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decisions are around s. Following recent literature [20, 26, 36], we
encode whether a policy chooses specific actions (outputs) in a
subspace of the state space (inputs) as input-output conditional
statements, commonly referred to as task-level properties (or state-
action mappings). Formal Verification (FV) approaches for Deep
Neural Networks (DNNs) have been used to formally check all the
states where the policy violates such properties [45]. In particular,
[10] introduced a formal violation metric by provably quantifying
how well the policy respects the properties. Such a formal violation
naturally addresses the limitation of indicator cost functions but
has not been previously investigated to foster safety in DRL, as FV
has two main issues. (i) It is a NP-Complete problem [17] that makes
it intractable to compute the formal violation metric at training
time without a prohibitive overhead. (ii) The state-action mappings
are hard-coded, which could be unfeasible in tasks with complex
or unknown specifications. Against this background, we make the
following contributions to the state-of-the-art:

e We replace FV with a sample-based approach that approx-
imates the violation metric with forward propagations of
the agent’s network on the sampled states. Such an approxi-
mation empirically shows a negligible error over the value
computed with FV in a fraction of the computation time.

e We generate an additional state-action mapping when per-
forming an unsafe interaction during the training, using a
fixed-size area around the visited unsafe state and the action
that led to such interaction.

o We show the advantages of using our approximate violation
as a penalty in existing DRL algorithms and employ FV [10]
on the trained policies to show that our approach allows
learning safer behaviors (i.e., lower violations).

Our empirical evaluation considers a set of Unity [15] robotic map-
less navigation tasks [29, 42, 51]. In contrast to Safe DRL bench-
marks (e.g., SafeMuJoCo [21]), our scenarios allow transferring
policies directly on the robot to foster the development of Safe DRL
approaches in realistic applications. We also evaluate violation-
based approaches in standard SafeMuJoCo tasks. In all scenarios,
we compare with unconstrained DRL baselines augmented with
a cost penalty [39, 47], and constrained DRL [41]. Our evaluation
shows that cost-based algorithms have higher costs and higher vio-
lations, confirming the lack of information provided by indicator
cost functions. In contrast, the approximate violation-based penalty
drastically reduces unsafe behaviors (i.e., lower cost and violation)
while preserving good returns during and after training.

2 PRELIMINARIES

A DRL problem is typically modeled as a Markov Decision Process
(MDP), described by a tuple < S, A, P,r,y > where S is the state
space, A is the action space, P : S X A — S is the state transition
function, r : S X A — R is a reward function, and y € [0, 1) is the
discount factor. In particular, given a policy 7 € II := {n(als) :
s € S,a € A}, the agent aims to maximize the expected discounted
return for each trajectory 7 = (so, ag, ro, - - - ):
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A common approach to fostering safety is adding a penalty to
the reward to learn how to avoid unsafe interactions character-
ized by lower payoffs [12]. Otherwise, MDPs can be extended to
Constrained MDPs (CMDPs) to incorporate a set of constraints C
definedonCy,__ ¢ : SXA — R cost functions (where ¢ is the number
of constraints) and their thresholds o ¢ [3]. A C;-return is defined
as ]gi =Brn[ 252, y!Ci(st, a;)]. Constraint-satisfying (feasible)
policies I, and optimal policies 7* are thus defined as:

max JI
melle

Il¢c :={7r€H:]giSti, Vielo,...,c]}, =«* 2)

Constrained DRL algorithms aim at maximizing the expected return
JF while maintaining costs under hard-coded thresholds t:

s.t.

®)

max J7
well””

JE <t
Such a constrained optimization problem is usually transformed
into an equivalent unconstrained one using the Lagrangian method
[35, 38, 41], resembling a penalty-based approach. Recently, Tessler
et al. [43] also argued that constrained DRL has significant limi-
tations as it requires a parametrization of the policy (i.e., it does
not work with value-based DRL), a propagation of the constraint
violation over trajectories and works with limited types of con-
straints (e.g., cumulative, instantaneous). For these reasons, the
authors show the efficacy of integrating a penalty signal into the
reward function. This motivates our choice of using penalty-based
approaches to evaluate the benefits of incorporating the proposed
approximate violation as a penalty to foster safety.

2.1 Properties and Violation

From FV literature [20], a property P is hard-coded using task-
level knowledge as a pre-condition R and a post-condition Q (i.e.,
P :=(R,Q)). In a DRL context, R is the domain of the property (i.e.,
the area around s), and Q is the co-domain (i.e., an action). Broadly
speaking, given a DNN N with y;__p outputs, R is defined with an
interval €; for each input i of N, which we refer to as e-area, and
Q represents different desiderata on the output [4]. For example,
in a value-based setup where the policy selects the action with
the highest value, the post-condition Q of a property designed for
safety models never select the action corresponding to the output
Yk € y1,..n. Formally, Q checks the following inequality:
Y < yi Vi€ [1n] - {k} ©)
that extends to continuous actions as shown in prior work [20, 45].
Recent works introduced a violation metric to quantify the num-
ber of violations in the domain of the property using verification
techniques [10, 31]. In more detail, the violation is defined as the
ratio between the size of R C R where the post-condition is vio-
lated (i.e., the inequality does not hold and yy is selected) and R.
Such a provable violation carries the task-level information of the
properties and quantifies how often a property is violated. Hence,
when using properties to model safety specifications, which we
refer to as safety properties, the violation represents a locally-aware
cost function.
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3 METHODS

We aim to investigate the benefits of combining a reward and a
violation-based penalty value into an MDP. Following prior penalty-
based approaches [12, 43], we maximize the following objective:

(o]
malgl( ;’Tc =Eron Z )/tr(St, ar) = Z(*) (5)
e =

where Z(-) is a generic penalty function. For example, a violation-
penalty is Z (s; + €), indicating that the violation depends on the
policy decisions in a proximity € of the state (i.e., the e-area, or
R). Equation 5 has two core benefits over other Safe DRL methods
based on constraints: (i) penalty objectives potentially maintain the
same optimal policy of the underlying MDP as they do not constrain
exploration nor reduce the space of feasible policies as constrained
approaches [34].! (i) Constrained DRL typically estimates an ad-
vantage function to propagate cost information, hindering their
application with values that strictly depend on the current policy.
Moreover, this requires visiting unsafe states to learn effective esti-
mates for the sparse cost values. In contrast, penalty-based methods
do not require a separate advantage estimate. In addition, various
DRL algorithms, such as Proximal Policy Optimization (PPO) [39],
provide significant empirical evidence of the benefits of using penal-
ties instead of constraints [43].

3.1 Approximate Violation

A violation metric computed on a safety property quantifies the
number of unsafe policy decisions over an area of the state space
around the state s. Such a local component and the task-level
knowledge inherited by the safety properties naturally address
the indicator cost functions’ lack of information. However, the NP-
Completeness of FV [17] makes the provable violation computation
intractable during the training due to the significant overhead of ver-
ification tools [18]. Hence, we address the computational demands
of FV by proposing a novel sample-based method to approximate
the violation.

Given a DNN N that parameterizes a policy, a list of properties
P = (R, Q), and the current state s, we aim at checking whether
yr < y; Vi € [1,n] — {k} (where y := [y1,.. n] are the outputs of
N given s as input). The general flow of our method is presented
in Algorithm 1: first, we embed the condition (4) in the network
architecture by concatenating a new output layer that implements
yi—yx Vi € [1, n] (line 1). We refer to this augmented network as N”’.
If s is contained in one or more pre-condition (i.e., it is deemed risky
according to the properties), we consider such a subset of properties
P’ C P to compute the approximate violation (line 2). Hence, we
randomly sample a set of states I from the pre-conditions R € P’
(line 3). Finally, after propagating I through N’, we enumerate
the outputs N’ (I) < 0, which are the ones that do not satisfy the
post-conditions (line 4). Finally, our approximate violation is the
ratio between the number of such outputs over the total sampled
points (line 5), which closely resembles how the formal violation is
computed in [10].

Similarly to the formal violation, our approximation can be in-
terpreted as a locally-aware cost because it is computed using the

IThis is not the case for navigation tasks as safe policies avoid obstacles.
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Algorithm 1 Computing the Approximate Violation

Given N with outputs y;, 5, the current state s, properties
(R, Q), and size m of states to sample.
: N’ « add a layer with n outputs to AV that implements (4)
P —(ROYIfsNR#9, V(R Q) e (R Q) >ie,sisunsafe
: 1 « Sample m points from p[R] Vp € P/
: violation = Count max[N’(I)] €0 VI €I 1 considering yi
from p[Q] Vp € P’
5. return violation / (m |P’|)

[ S Y

information in a local region around a state. Moreover, our approx-
imate violation:

o Includes safety information of areas of interest due to the
state-action mappings (i.e., properties).

e Approximates how often a property violation might occur,
having a similar role to Lagrangian multipliers but without
requiring additional gradient steps or value estimators.

o It does not require additional environment interactions, dras-
tically reducing the number of visited unsafe states.

Finally, prior verification works only rely on hard-coded proper-
ties [10, 46, 48]. Still, it is not uncommon to experience an unsafe
state not included in the pre-conditions due to design issues, i.e.,
sNR =9V R € R. Hence, we generate an additional property upon
experiencing an unsafe state s using a fixed-size area around s as
R and the performed action as Q. However, hard-coded properties
are still crucial as there could be corner cases with more than one
action to avoid.

3.1.1  Visual Example. We further detail the approximate violation
computation using a visual example. In particular, Figure 2 shows
an illustrative example of a DNN and a property Pr (following
Section 4.2 formalization). For the sake of simplicity, we show the
process assuming to use only m = 1 sample from the property
pre-condition. Following Algorithm 1, we show N’ on the right of
Figure 2, consisting of a new output that implements y; — yy Vi €
[1,n], where y; with k = 1 is the node that represents the action
we are interested in avoiding. Considering the example in Figure
1, xo,..3 are the current position, orientation, and distance from

N N
[0, 1]
@ @ @ @ @ n'=n-n
.1 (x) .
0. 051 (@) @ => ® [ @ v'= 0
1,11 @ @ @ @ @ ¥ =y-m

Input layer Hidden layers  Output layer Input layer Hidden layers New output layer

[Prixo; €00, 11 Ax; €[0,05] Axse [-1, 1] =>a # 0

I «[[0.3, 0.7, 0.1, -0.5]]

N =1[y1=3 y=1y3=2]
= =0y =-2 y'=-1]

max(N'(I)) = 0 < 0? yes = wviolation!

Figure 2: Example of computing the approximate violation.
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the goal for the robot. We want to avoid the action with index 0
(i-e., y1), a forward movement at velocity . We sample the m = 1
point from the property pre-condition, obtaining i € I that is then
forward propagated through the network N’ (I). Such propagation
returns y; = 3,y2 = 1,y3 = 2 in the original output layer, and
y; =0, y; = =2, y; = —1linthe output of N”. Finally, we enumerate
the states € I where the maximum of N’ (I) is less than or equal to
0, which means that y; will be chosen, leading to a violation.

3.2 Limitations

The violation requires hard-coded properties, which are challeng-
ing to design when considering agents with unknown dynamics.
Our generated property does not consider scenarios where multiple
actions are unsafe for the same state, so it remains unclear how
to collect and refine properties during the training to model safe
behaviors. Hence, as in FV literature [20], we assume having access
to task-level knowledge to design the hard-coded properties. In
safety-critical contexts, this assumption typically holds. Consid-
ering different input types (e.g., images) is conceptually feasible
but would require further research and empirical evaluation. To
this end, model-based DRL would allow using the model to design
the unsafe area. Finally, it is unclear how to provide guarantees in
model-free Safe DRL approaches, including our work, constrained
DRL [2, 21, 49], and several other approaches summarized in Garcia
and Fernandez [12]. As discussed in Ilyas et al. [14], using DNNs
for approximating policies and values makes the method diverge
from the underlying theoretical framework. Nonetheless, we start
addressing such key issues by employing existing FV approaches
to check the trained policy decisions over the properties of interest.

4 EXPERIMENTS

First, we introduce a set of Turtlebot3-based safety mapless navi-
gation tasks to enable rapid testing of policies in realistic contexts.
Our environments rely on Unity [15] as it allows rapid prototyp-
ing, Gym compatibility, and interface with the Robotic Operating
System (ROS). Mapless navigation is a well-known problem in
model-free DRL [42, 51], prior Safe DRL literature [27, 37], and
multi-agent DRL [29, 30]. While standard navigation planners use
a map of the environment and exhaustive information from the
sensors, DRL setups consider more challenging conditions, such as
not having a map and relying only on sparse local sensing. We use
a similar encoding to prior work [6, 28, 32, 42, 51]: 11 sparse laser
scans with a limited range and two values for the target relative
position (i.e., distance and heading) as observations. Discrete ac-
tions encode angular and linear velocities to reduce training times
while maintaining good navigation skills [28].2 At step ¢, the agent
receives a reward:

1 if goal reached
r =
! A(di-1,d;) — p  otherwise
The agent thus obtains a dense reward given by the distance (d)
difference (A) from the goal in two consecutive steps, with a per-

step —f to incentive shorter paths. Each collision returns a posi-
tive cost signal that can be used to compute the desired penalty

(©)

2Qur environments also support continuous actions and different domain ran-
domization of the tasks and physical properties through the Unity editor.
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(e.g., violation), enabling a straightforward application to different
penalty-based objectives (as in Equation 5) or constraints.

We introduce four training and one testing environment with
different obstacles, namely Fixed_obs_{T, NT}, Dynamic_obs_{T, NT},
and Evaluation_NT depicted in Figure 3. Such a variety of conditions
serve to provide different settings for evaluating Safe DRL algo-
rithms in robotic navigation. The environments inherit several char-
acteristics from known benchmarks such as SafetyGym [37] and dif-
fer from each other as the obstacles that can be Fixed (parallelepiped-
shaped static objects) or Dynamic (cylindrical-shaped objects that
move to random positions at a constant velocity). Moreover, obsta-
cles can be Terminal (T) if they end an episode upon collision, or
Non-Terminal (NT) if the agent can navigate through them.

4.1 Environment Descriptions

Our scenarios share a 4m X 4m size (6m X 6m for the testing one),
randomly generated obstacle-free goals, and a timeout at 500 steps.
A list of environments and their other main features follows:

e Fixed obs_T has fixed terminal (T) obstacles. With terminal,
we intend that the episode ends upon collision.
Fixed_obs_NT differs from the previous one for the non-
terminal (NT) obstacles. The environment returns a signal
upon each collision that can be used to model cost functions
or other penalties. Non-terminal obstacles are visible to the
lidars but non-tangible, i.e., the Turtlebot3 can pass through
them. This class of obstacles represents the main challenge
to designing safe DRL solutions, as the robot could get more
positive rewards by crossing an obstacle at the expense of a
higher number of unsafe behaviors.

Dynamics_obs_T has cylindrical-shaped dynamic terminal
(T) obstacles. Such obstacles move toward random positions
at a constant velocity, representing a harder challenge. The
obstacles can travel on the robot’s goal, so the agent must
learn a wider variety of behaviors (e.g., react to an approach-
ing obstacle, stand still to wait for the goal to clear).
Dynamics_obs_NT: differs from the previous one for the
non-terminal (NT) obstacles.

Evaluation_NT: we use this evaluation environment to test
the generalization abilities of trained policies to new situ-
ations. This scenario is wider and contains both fixed and
dynamic non-terminal obstacles of different shapes.

Agent

’ Goal
[]

Dynamic
obstacle

-l -

[
Agents Lidar  pgent

Evaluation NT

ixed obstacle

Fixed obstacle

Goal
| -

Dynamic obstacle
Non Terminal

Fixed_obs_T Dynamic_obs_NT
Figure 3: Fixed, Dynamic, Evaluation tasks with different
obstacles. Terminal obstacles (T) reset the environment upon
collision. Non-terminal ones (NT) allow the robot to cross
them, experiencing more unsafe states. The evaluation envi-
ronment has fixed and dynamic non-terminal obstacles.


www.ros.org
www.ros.org

Session 4E: Robotics

AAMAS 2023, May 29-June 2, 2023, London, United Kingdom

Table 1: Average violation (%), and computation time for properties p; _ _, calculated using ProVe[10], and our approximation

with 100, 1.000, and 10000 samples.

Property ProVe Estimation 100 Estimation 1k Estimation 10k
P 81.48 +£1.2 81.0 £ 0.6 81.1+0.8 81.17 £ 0.5
P 73.9+0.8 73.5+0.2 73.63 £ 0.2 73.65+ 0.3
pP— 74.2+ 0.3 73.6 £ 0.1 73.67 £ 0.1 73.68 + 0.1
Mean violation: 76.53 76.00 76.13 76.17
Mean computation time: ~2m37s ~0.053s %~ 0.056s ~0.060s

4.2 Properties for Mapless Navigation

Our properties shape rational, safe behaviors for mapless navigation
and are used to compute the approximate violation. Moreover, we
consider an online generated property described in Section 3.1. A
natural language description of the main hard-coded properties
follows:

e pq: There is an obstacle close in front = Do not go forward

o p: There is an obstacle close to the left = Do not turn left

o p_,: There is an obstacle close to the right = Do not turn right
We use the maximum agent velocity to determine the size of the
area around the (unsafe) states of interest (i.e., the e-area). For
example, a formal definition for pr is:

Pp i X0,...,%X4 € [0,1] A x5 € [0,0.05] A xg, ..

x12 € [-1,1]] = a#4

5 x10 € [0,1] A xyq,

where xq, ..., x10 are the 11 lidar values, x11, x12 is the relative
position of the goal (i.e., distance and heading), and action a = 4
corresponds to a forward movement. Crucially, each input x; po-
tentially considers a different interval to model the area of interest.
Hence, p1 checks the policy’s decisions when there is an obstacle
close to the front (i.e., x5 € [0,0.05]) under any possible target posi-
tion (x11, x12 € [—1,1]).3 The approximate violation computed over
these properties thus contains information about a specific unsafe
situation under a general goal configuration (i.e., x11, x12 € [—1, 1]).

To assess how good our approximate violation is over the prov-
able one, we compare it with the violation computed by a FV frame-
work. In particular, the formal violation and our approximate one
are computed using the above properties. They are averaged over
the same ten models collected at random steps during the train-
ing. Table 1 shows the violation values for each property py . _,
computed by ProVe [10], and our approximation using 100, 1000,
and 10000 samples. Our approximation shows an average 0.69%
error over the formal violation even when using only 100 samples.
Such an error further decreases to 0.47% by using 10000 samples.
By exploiting parallelism and batch computation of modern Deep
Learning Frameworks, the increase in computation time for the
approximate violation with 100 or 10000 samples is comparable.
Conversely, as discussed in Section 3.1, ProVe’s average computa-
tion time is orders of magnitude higher with respect to our approach
(i.e., 0.06 over 157 seconds). However, our approximate methodol-
ogy does not formally guarantee the policy behaviors due to its

3We measured that a minimum normalized distance of 0.05 is required for the
robot to turn at max speed and avoid obstacles in front.
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sample-based nature. For this reason, the next section uses stan-
dard FV frameworks on the trained policies to show the provable
violation results.

4.3 Empirical Evaluation
Our evaluation aims at showing the following:

o The benefits of integrating reward and safety specifications
into a single MDP.

e The advantages of using our violation over indicator cost
functions. To assess our claims, we plot the following values
averaged over the last 1000 steps: (i) success (i.e., the number
of goals reached), (ii) cost, (iii) and the violation at different
stages of the training.

Data are collected on an i7-9700k and consider the mean and
standard deviation of ten independent runs [9]. We consider the cost
and violation penalty objective (5) in a value-based (Dueling Double
Deep Q-Network (DuelDDQN) [47]) and policy-based (PPO [39])
baselines, referring to the resultant algorithms as Due]IDDQN_{cost,
violation} and PPO_{cost, violation}. We compare with Lagrangian
PPO (LPPO) [41] as it is a widely adopted Constrained DRL baseline
and achieves state-of-the-art performance in similar SafetyGym
navigation-based tasks.* According to the literature, the value-
based and policy-gradient baselines should achieve the highest
rewards and costs (having no penalty information) [37]. Conversely,
LPPO should show a significant trade-off between average cost and
reward or fail at maintaining the cost threshold when set to low
values [21, 27, 37]. In contrast, we expect the penalty-based methods
to achieve promising returns while significantly reducing the cost
and the number of violations during the training.

Terminal Results. Our results are shown in the Appendix. The
information carried by the violation results in a significant perfor-
mance advantage, maintaining similar or higher successes over non-
violation-based approaches. Moreover, the policy-based algorithms
show superior performance over the value-based implementations.

Non-Terminal Results. Given the higher performance of policy-
based algorithms, the following experiments omit value-based ones.
Figure 4 show the results of (NT) tasks. As in the previous eval-
uation, PPO achieves a higher number of successes and a higher
cost. In contrast, LPPO satisfies the constraint most of the time but
achieves the lowest successes and does not learn effective naviga-
tion behaviors in Dynamic_obs_NT, confirming the performance

“For a fair comparison, we set the cost threshold of LPPO to the average cost
obtained by PPO_cost. The Appendices detail our hyper-parameters and are accessible
at the following link: shorturl.at/crSX6
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=" LPPO 3¢ PPO_cost

Fixed_obs_NT

. /\_/ T e A Mean Violation
5 \
2 / L Step 100k 300k 700k
S | S | PPO 788497 9124126 885+119
| o T\ *PPO_cost 73407 76463 31419
5 s A
g° / ) 220 *PPO_violation  74+14  30£05  09£02
o Lt . o LPPO 24407 48+08 76432
100k 200k 300k 400k 500k 600k 100k 200k )0k
Step
T - 0.~ A~ Mean Violation
ﬁ 80 Step 500k ™ 2M
g | B S« PPO 1051452 1067+32 1274+00
E | i § w0 | *PPO_cost  15+21 121420 118+16
5 | \
2| =, N ‘ *PPO_violation 17531  9.0+16 72407
. L T - et LPPO 146+21 105+£21 8719
500k M 1.5M !
Step Step

Figure 4: The two rows show average success, cost, and violation in the (NT) environments for PPO, the cost and violation
penalty versions PPO_{cost, violation}, and LPPO. * indicates penalty-based algorithms.

Table 2: Average formal violation for the models at convergence in NT environment. Our violation-based penalty algorithm is
the safest overall, as a lower violation value translates into fewer collisions.

Fixed_obs NT

Dynamic_obs NT

PPO *PPO_cost *PPQ_violation LPPO PPO *PPO_cost *PPQ_violation LPPO
)22 0.25+0.07  0.27+0.15 0.2310.09 0.194+0.0 0.24+00 0.3240.23 0.2240.15 0.08+0.07
D 0.49+0.12 0.5+0.14 0.46+0.1 0.431+0.35 0.36+£0.0  0.0440.02 0.0540.04 0.1140.08
22N 0.5+0.16 0.4440.33 0.4210.14 055+0.12 0.440.0 0.08+0.08 0.041-0.04 0.18+0.16
Sum: 124 121 111 1.21 1.0 044 031 0.37

trade-off in complex scenarios [27, 37]. Moreover, PPO_violation
achieves better or comparable successes and cost values over PPO_cost
but significantly reduces the violations during the training. At
convergence, PPO_violation shows a ~ 2.2% and = 4.6% improve-
ment over the cost counterparts, corresponding to 1320 and 2760
fewer unsafe policy decisions. In general, non-terminal tasks allow
experiencing more unsafe situations in a trajectory, making the
performance advantage in terms of the safety of violation-based
algorithms more evident.

In addition, we use FV [10] on the trained models of NT environ-
ments to provably guarantee the number of unsafe policy decisions
over our safety properties. Table 2 shows the average violations of
the main properties for the models at the convergence of each train-
ing seed, which confirms that policies trained with PPO_violation
achieve lower violations, i.e., perform fewer collisions. The Appen-
dix shows the same results for the T environments.

Evaluation Results. Table 3 reports the average success, cost,
and violation for the best model at the convergence of each training
seed in the evaluation task of Figure 3. The evaluation in a previ-
ously unseen scenario is used to test the generalization skills of the
trained policies. In our experiments, the violation-based algorithm
confirms superior navigation skills, achieving more success while
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Table 3: Performance of the best-trained models in the testing
environment Evaluation NT.

Mean Success Mean Cost Mean Violation
PPO 10.0 £ 04 52.0 + 4.8 63.7 £ 11.3
PPO_cost 6.4+ 1.8 255+83 29.2+95
PPO_violation 7.7 £0.2 179 £ 1.2 18.8 £ 1.7
LPPO 25+03 18.2 £ 25 19.5+ 0.9

being safer than LPPO and the cost counterpart.

Real-Robot Testing. The core motivation for introducing our Safe
DRL environments is the lack of benchmarks that allow testing the
policies directly on real robots. In contrast, Unity environments
enable the transfer of policies trained in simulation on ROS-enabled
platforms. We report a video with the real-world experiments of
the policies trained in our environments here: shorturl.at/ijmFV,
while Figure 5 shows our actual setup with the Turtlebot3.

4.4 Additional Experiments

We performed several additional experiments in the Fixed_obs_NT
task to highlight the impact of the different components presented


shorturl.at/ijmFV
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Figure 5: Overview of real-world experiments.

in this paper using: (i) different sizes for the pre-conditions, (ii) the
online property.® (iii) We show the results of our violation-based
penalty method in standard safe locomotion benchmarks to further
confirm the performance improvement of the proposed approach.

Different Sizes for Pre-Conditions. Figure 6 shows the results
of two PPO_violation versions: one that uses a constant € for the
size of the pre-conditions, and one that has different € values for
each input. The latter considers all the possible target positions as
in previous experiments. As detailed in Section 4.2, using wider
ranges for the inputs that shape environment configurations allows
the violation to contain details about the unsafe behavior in general
target initialization, resulting in higher performance. Crucially, the
PPO_violation with a constant € also returns better performance
over PPO_cost, confirming the importance of having locally-aware
information in the penalty value. This is particularly important as
it may not be possible to shape detailed pre-conditions in setups
where accurate task-level knowledge is lacking.

Online Property. As detailed in Section 3.1, we generate an
additional property upon experiencing an unsafe state s because it
is not uncommon to experience an unsafe transition not included
in the pre-conditions (due to the limitation of hard-coding prop-
erties). Figure 8 shows the size of the set P/ during the training
for PPO_violation under two implementations. The first adds an
online-generated property, and the second uses only the hard-coded
properties. Results for the latter show an average size of P’ < 1, con-
firming our hypothesis and the limitations of the properties’ design
of Section 3.2. In contrast, the generated property implementation
ensures having at least one input-output mapping for each unsafe
state. This allows the violation to correctly shapes information
about undesired situations, which biases the policy toward safer
regions. Moreover, the growth in the size of P’ over the training
indicates that the policy experiences unsafe states in rare corner
cases captured by the intersection of multiple properties (i.e., some
complex situations require not choosing more than one action to
avoid collisions).

Standard Safe DRL Tasks. We performed additional experi-
ments in the standard Safe-DroneRun task to consider a different
simulated robot, task, and safety specifications. Our goal is to con-
firm further our framework’s results and the benefits of using the

5 A regularization term can module the importance of the penalty over the training.
We perform additional experiments with it in the Appendix.
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violation as a penalty in a different domain known in the litera-
ture.® In more detail, we consider the same hyperparameters of
our navigation experiments. Moreover, given the challenges of
hand-writing properties for the drone, we rely only on the online
generated property, considering a fixed e-area of size 0.05 where
we want to avoid a similar action that led to the unsafe state, up
to decimal precision. The following results consider the average
reward, cost, and violation collected over ten runs with different
random seeds.

Figure 7 shows the results Safe-DroneRun. These results confirm
the behavior of previous experiments (we omitted the PPO results
to maintain the plot scale for better visualization), where LPPO
struggles to keep the cost threshold set to 20 and results in lower
performance compared to the penalty-based approaches. In con-
trast, the violation-based PPO maintains the best trade-off between
reward and cost.

5 RELATED WORK

Garcia and Fernandez [12] presents an exhaustive taxonomy of the
main families of approaches for Safe DRL, analyzing the pros and
cons of each category. For example, model-based DRL approaches
have been investigated in constrained and unconstrained settings
[16, 52]. However, having access to or approximating a model is
not always possible. Similarly, using barrier functions effectively
fosters safety but requires an accurate system model [44].

In contrast, we focus on model-free learning. In this context,
shielding approaches typically synthesize a shield (i.e., an automa-
ton) to enforce safety specifications. However, this is usually un-
feasible in complex setups due to the exponential growth in the
size of the automaton. Hence, most DRL shielding approaches rely
on simple grid-world domains [5, 11]. Although providing safety
guarantees, it is unclear how to scale shielding approaches in com-
plex, realistic applications. In contrast, constrained DRL has been
used as a natural way to address Safe DRL [2, 8, 41, 49, 53]. In
detail, CPO [2] is characterized by strongly constrained satisfac-
tion at the expense of possibly infeasible updates that requires
demanding second-order recovery steps. Similarly, PCPO [49] uses
second-order derivatives and has mixed improvements over CPO
[53]. Moreover, Lyapunov-based algorithms [8] combine a projec-
tion step with action-layer interventions to address safety. However,
the cardinality of Lyapunov constraints equals the number of states,
resulting in a significant implementation effort. Despite the variety
of constrained literature, we compare with Lagrangian methods
[41] as they reduce the complexity of prior approaches and show
promising constraints satisfaction. However, constrained DRL has
several drawbacks. For example, incorrect threshold tuning leads
to algorithms being too permissive or, conversely, too restrictive
[12]. Moreover, the guarantees of such approaches rely on strong
assumptions that can not be satisfied in DRL, such as having an op-
timal policy. Constrained DRL is thus not devoid of short-term fatal
behaviors as it can fail at satisfying the constraints [27]. Moreover,
constraints naturally limit exploration, causing getting stuck in
local optima or failing to learn desired behaviors properly [13, 24].

®We refer to the original works for more details about the environments and the
shaped cost functions [2], github.com/SvenGronauer/Bullet-Safety-Gym
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Figure 8: Mean size of P’ over the training for PPO_violation
with an online generated property (red), and with only the
hard-coded properties (green).

We note that our Equation 5 falls under the category of reward
engineering, which has been proved effective by several works [1,
12, 19, 40]. For example, IPO [21] uses a penalty function based on
constraints, giving a zero penalty when constraints are satisfied and
a negative infinity upon violation. However, tuning both the barrier
parameter and the constraint threshold has sub-optimal solutions
over Lagrangian methods [27]. Finally, Statistical Verification (SV)
has been recently employed on learning systems [50] to deal with
the computational demands of FV. In these approaches, desired
specifications are defined as Signal Temporal Logic [23], which
closely resembles the properties used by FV literature. However, a

1473

distinctive feature of our method is the use of the violation value,
which can not be directly computed by using SV.

6 DISCUSSION

We present an unconstrained DRL framework that leverages local
violations of input-output conditions to foster safety. We discussed
the limitations of using cost functions as in Safe DRL [12] present-
ing: (i) a sample-based approach to approximate a violation metric
and use it as a penalty in DRL algorithms. Such a violation intro-
duces task-level safety specifications into the optimization, address-
ing the cost’s lack of information. (ii) The influence of generating
properties to cope with the limitations of hard-coded conditions.
(iii) We argued the importance of developing real-world environ-
ments for broader applications of DRL in practical scenarios. To
this end, we presented an initial suite of robotic navigation tasks
that allow rapid testing on ROS-based robots.

This work paves the way for several research directions, includ-
ing extending our task suite to create a general safe DRL benchmark.
Such extension is possible due to the rapid prototyping benefits of
Unity [15]. Moreover, studying the effects of different time horizons
would be interesting to separate the importance given to rewards
and safety values. It would also be interesting to design a shield to
avoid unsafe behaviors at deployment, leveraging the information
from FV. Finally, our insights on the violation could be used to
model desired behaviors in single and multi-agent applications to
improve performance and sample efficiency.
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