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ABSTRACT
The classical house allocation problem involves assigning 𝑛 houses

(or items) to𝑛 agents according to their preferences. A key criteria in

such problems is satisfying some fairness constraints such as envy-

freeness. We consider a generalization of this problem wherein the

agents are placed along the vertices of a graph (corresponding to a

social network), and each agent can only experience envy towards

its neighbors. Our goal is to minimize the aggregate envy among

the agents as a natural fairness objective, i.e., the sum of the envy

value over all edges in a social graph.

When agents have identical and evenly-spaced valuations, our

problem reduces to the well-studied problem of linear arrangements.

For identical valuations with possibly uneven spacing, we show

a number of deep and surprising ways in which our setting is a

departure from this classical problem. More broadly, we contribute

several structural and computational results for various classes of

graphs, including NP-hardness results for disjoint unions of paths,

cycles, stars, or cliques; we also obtain fixed-parameter tractable

(and, in some cases, polynomial-time) algorithms for paths, cycles,

stars, cliques, and their disjoint unions.

Additionally, a conceptual contribution of our work is the for-

mulation of a structural property for disconnected graphs that we

call separability which results in efficient parameterized algorithms

for finding optimal allocations.
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1 INTRODUCTION
The house allocation problem has attracted interest from the com-

puter science and multiagent systems communities for a long time.

The classical problem deals with assigning a set of 𝑛 houses to

𝑛 agents with (possibly) different valuations over the houses. It

is often desirable to find assignments that satisfy some economic

property of interest. In this work, we focus on the well-motivated
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economic notion of fairness, and in particular, study the objective

of minimizing the aggregate envy among the agents.

Despite the historical interest in this problem, to the best of

our knowledge, the house allocation problem has not been studied

thoroughly over graphs, a setting in which the agents are placed on

the vertices of an undirected graph 𝐺 and each agent’s potential

envy is only towards its neighbors in 𝐺 [4, 25].

Incorporating the social structure over a graph enables us to

capture the underlying restrictions of dealing with partial infor-

mation, which is representative of constraints in many real-world

applications. Thus, the classical house allocation problem is the

special case of our problem when the underlying graph is complete.

Our work is in line with recent literature on examining various

problems in computational social choice on social networks, includ-

ing voting [10, 16, 32], fair division [2, 7], and hedonic games [18,

27]. By focusing on graphs, we aim to gain insights into how the

structure of the social network impacts fairness in house allocation.

We focus on identical valuation functions and show that even under

this seemingly strong restriction, the problem is computationally

hard, yet structurally rich. We provide a series of observations and

insights about graph structures that help identify, and in some cases

overcome, these computational bottlenecks.

1.1 Overview and Our Contributions
We assume that the agents are placed at the vertices of a graph

representing a social network, and that they have identical valuation

functions over the houses. Our objective is to find an allocation

of the houses among the agents to minimize the total envy in the

graph. We call this the graphical house allocation problem.

This is a beautiful combinatorial problem in its own right, as it

can be restated as the problem where, given an undirected graph

and a multiset of nonnegative numbers, the numbers need to be

placed on the vertices in a way that minimizes the sum of the

edgewise absolute differences.

In Section 2, we present the formal model and set up some pre-

liminaries, including the connection between the graphical house

allocation problem and the minimum linear arrangement problem,

which has several notable similarities and differences.

In Section 3, we present computational lower bounds and inap-

proximability results for the problem, even for very simple graphs.

In particular, we show NP-hardness even when the graph is a dis-

joint union of paths, cycles, stars, or cliques, which all have known

polynomial-time algorithms for linear arrangements.
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In Section 4, we focus on connected graphs and completely char-

acterize optimal allocations when the graph is a path, cycle, star, or

a complete bipartite graph. We also prove a technically involved

structural result for rooted binary trees, and discuss general trees.

In Section 5, we focus on disconnected graphs, starting with a

fundamental difference between graphical house allocation and lin-

ear arrangements, motivating our definitions of separable, strongly

separable, and inseparable disconnected graphs. We employ these

characterizations to prove algorithmic results for a variety of graphs.

In particular, we show that disjoint unions of paths, cycles, stars,

and equal-sized cliques are strongly separable and develop natural

fixed parameter tractable algorithms for these graphs. Moreover,

we show that disjoint unions of arbitrary cliques satisfy separabil-

ity (but not strong separability) and admit XP algorithms.

In the interest of space, we mainly provide proof sketches and

defer the details to the full version of the paper [17].

1.2 Related Work
House allocation has been traditionally studied in the economics

literature under the housing market model, where agents enter the

market with a house (or an endowment) each and are allowed to

engage in cyclic exchanges [30]. This model has found important

practical applications, most notably in kidney exchange [1, 28].

While the initial work on house allocation focused on the eco-

nomic notions of core and strategyproofness [31], subsequent work

has explored fairness issues. Gan et al. [13] study the house alloca-

tion problem under ordinal preferences (specifically, weak rankings)

and provide a polynomial-time algorithm for determining the exis-

tence of an envy-free allocation. By contrast, the problem becomes

NP-hard when agents’ preferences are specified as a set of pair-

wise comparisons [21]. Kamiyama et al. [22] study house allocation

under cardinal preferences (similar to our work) and examine the

complexity of finding a “fair” assignment for various notions of

fairness such as proportionality, equitability, and maximizing the

number of envy-free agents (they do not consider aggregate envy).

They show that the latter problem is hard to approximate under

general valuations, and remains NP-hard even for the restricted case

of binary valuations. For binary valuations, the problem of finding

the largest envy-free partial matching has also been studied [3].

Recent studies have considered graphical aspects of house al-

location (similar to our work), though with different objectives.

Massand and Simon [25] consider house allocation under externali-

ties and study various kinds of stability-based objectives. Beynier

et al. [4] study local envy-freeness in house allocation, which entails

checking the existence of an allocation with no envy along any

edge of the graph. Their work is close to ours, but their model

involves agents with possibly distinct ordinal preferences and only

the zero-envy condition.

There is also a growing literature on fair allocation of indivisi-

ble objects among agents who are part of a social network. Bred-

ereck et al. [7] present fixed-parameter tractability results, mainly

parametrized by the number of agents, though they leave results

using graph structure to future work. Eiben et al. [11] extend these

results, showing a number of parametrized complexity results relat-

ing the treewidth, cliquewidth, number of agent types, and number

of item types to the complexity of determining if an envy-free allo-

cation exists on a graph. This line of work again focuses on deciding

if envy-free allocations exist, rather than minimizing envy. Other

works seek to obtain envy-free allocations, maximum welfare allo-

cations, or other objectives by swapping objects along a graphical

structure [5, 15, 19, 24].

2 PRELIMINARIES
We use [𝑡] to denote the set {1, 2, . . . , 𝑡}. There is a set of 𝑛 agents

𝑁 = [𝑛] and 𝑛 houses𝐻 = {ℎ1, ℎ2, . . . , ℎ𝑛} (often called items). Each

agent 𝑖 has a valuation function 𝑣𝑖 : 𝐻 → R≥0; 𝑣𝑖 (ℎ) indicates agent
𝑖’s value for house ℎ ∈ 𝐻 .

An allocation 𝜋 is a bijective mapping from agents to houses.

For each 𝑖 ∈ 𝑁 , 𝜋 (𝑖) is the house allocated to agent 𝑖 under the

allocation 𝜋 , and 𝑣𝑖 (𝜋 (𝑖)) is its utility.
Given a problem instance consisting of agents and houses, our

goal is to generate an allocation 𝜋 that is “fair” to all the agents,

for some reasonable definition of fairness. A natural way to define

fairness is using envy. An agent 𝑖 is said to envy agent 𝑗 under

allocation 𝜋 if 𝑣𝑖 (𝜋 (𝑖)) < 𝑣𝑖 (𝜋 ( 𝑗)). While we would ideally like

to find envy-free allocations, this may not always be possible —

consider a simple example with two agents and two houses but

(exactly) one of the houses is valued at 0 by both agents. Therefore,

we instead focus on the magnitude of envy that agent 𝑖 has towards

agent 𝑗 , for a fixed allocation 𝜋 . This is defined as envy𝑖 (𝜋, 𝑗) :=
max{𝑣𝑖 (𝜋 ( 𝑗)) − 𝑣𝑖 (𝜋 (𝑖)), 0}.

We define an undirected graph𝐺 = (𝑁, 𝐸) over the set of agents,
which represents the underlying social network. Our goal is to

compute an allocation that minimizes the total envy along the

edges of the graph, defined as Envy(𝜋,𝐺) := ∑
(𝑖, 𝑗) ∈𝐸 (envy𝑖 (𝜋, 𝑗) +

envy𝑗 (𝜋, 𝑖)); note that edges are undirected. An allocation 𝜋∗ that
minimizes the total envy is referred to as aminimum envy allocation.

When there are multiple minimum envy allocations, we abuse

notation slightly and use 𝜋∗ to denote any of them.

When the graph𝐺 is a complete graph 𝐾𝑛 , a minimum envy allo-

cation can be computed in polynomial time by means of a reduction

to a bipartite minimum-weight matching problem (proved in the

full version [17]). However, it is known that for several other simple

graphs like paths and matchings, computing a minimum envy allo-

cation is NP-complete [4]. Given this computational intractability,

we therefore explore a natural restriction of the problem, when all

agents have identical valuations, to gain insights into the computa-

tional and structural aspects of fairness in social networks. More

formally, we assume that there is a fixed valuation function 𝑣 such

that 𝑣𝑖 = 𝑣 for all 𝑖 ∈ 𝑁 . Identical valuations capture a natural

aspect of real-world housing markets, where the house values are

independent of agents.

When all agents have the same valuation function 𝑣 , the total

envy of an allocation 𝜋 along the edges of a graph 𝐺 = (𝑁, 𝐸)
can be written as Envy(𝜋,𝐺) = ∑

(𝑖, 𝑗) ∈𝐸 |𝑣 (𝜋 (𝑖)) − 𝑣 (𝜋 ( 𝑗)) |. This
formulation also yields a new expression for envy along an edge

𝑒 = (𝑖, 𝑗) ∈ 𝐸 as envy𝑒 (𝜋) = |𝑣 (𝜋 (𝑖)) − 𝑣 (𝜋 ( 𝑗)) |. This value equals
envy𝑖 (𝜋, 𝑗) + envy𝑗 (𝜋, 𝑖), as one of those terms is zero under iden-

tical valuations.

When 𝐺 is 𝐾𝑛 , under identical valuations, an optimal allocation

is trivially computable, as all allocations are equivalent.
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For the rest of this paper, we will assume without loss of general-

ity that the house values are all distinct (refer to the full version [17]

for a formal justification). In particular, every agent’s valuation func-

tion (denoted by 𝑣) gives each house a unique nonnegative value,

with 𝑣 (ℎ1) < 𝑣 (ℎ2) < · · · < 𝑣 (ℎ𝑛). We will say ℎ1 ≺ ℎ2 to mean

𝑣 (ℎ1) < 𝑣 (ℎ2).
For an allocation 𝜋 and a subset 𝑁 ′ ⊆ 𝑁 , we will refer to the

set of houses received by 𝑁 ′
as 𝜋 (𝑁 ′). If𝐺 ′

is a subgraph of𝐺 , we

will use 𝜋 (𝐺 ′) in the same way.

We will use 𝐺1 +𝐺2 to mean the disjoint union of 𝐺1 and 𝐺2.

Definition 2.1. For an instance of the graphical house allocation

problem, the valuation interval is defined as the closed interval

[𝑣 (ℎ1), 𝑣 (ℎ𝑛)] ⊂ R≥0 with each 𝑣 (ℎ𝑘 ) marked.

The motivation for Definition 2.1 is as follows. For an arbitrary

allocation 𝜋 , for each edge 𝑒 = (𝑖, 𝑗) ∈ 𝐸, we can draw a line

segment from 𝑣 (𝜋 (𝑖)) to 𝑣 (𝜋 ( 𝑗)). This line segment has length

|𝑣 (𝜋 (𝑖)) − 𝑣 (𝜋 ( 𝑗)) | = envy𝑒 (𝜋). It follows that Envy(𝜋,𝐺) is the
sum of the lengths of all such line segments. An optimal allocation

𝜋∗ is any allocation that attains this minimum sum. See Figure 1 for

an example of a valuation interval, together with a graph 𝐺 , and a

particular allocation on 𝐺 depicted under the valuation interval.

ℎ1 ℎ4 ℎ2

ℎ5ℎ3

ℎ1 ℎ2 ℎ3 ℎ4 ℎ5

1 2 4 5 6

Envy=15

Figure 1: (Left) A graph 𝐺 on five agents along with a partic-
ular allocation 𝜋 . The valuations are identical and are given
by ®𝑣 = (1, 2, 4, 5, 6). (Right) The valuation interval is shown via
the thick horizontal line in black. The five line segments in
red denote the envy along the five edges of the graph 𝐺 . The
total length of these line segments is Envy(𝜋,𝐺) = 15.

A subset of houses 𝐻 ′ = {ℎ𝑖1 , . . . , ℎ𝑖𝑘 } ⊆ 𝐻 with ℎ𝑖1 ≺ . . . ≺
ℎ𝑖𝑘 is called contiguous if there is no house ℎ′ ∈ 𝐻 \ 𝐻 ′

with

ℎ𝑖1 ≺ ℎ′ ≺ ℎ𝑖𝑘 . Geometrically, the values in 𝐻 ′
form an uninter-

rupted sub-interval of the valuation interval, with no value outside

of 𝐻 ′
appearing inside that sub-interval. In Figure 1 above, the

subsets {ℎ1, ℎ2, ℎ3} and {ℎ5} are contiguous, whereas the subsets
{ℎ1, ℎ2, ℎ5} and {ℎ3, ℎ5} are not.

For simplicity, we will interchangeably talk about allocating ℎ𝑖
and allocating 𝑣 (ℎ𝑖 ) to an agent, and we will also sometimes refer

to houses as being marked points on the valuation interval.

2.1 Connection to the Linear Arrangement
Problem

The minimum linear arrangement problem is the problem where,

given an undirected 𝑛-vertex graph 𝐺 = (𝑉 , 𝐸), we want to find a

bijective function 𝜋 : 𝑉 → [𝑛] that minimizes

∑
(𝑖, 𝑗) ∈𝐸 |𝜋 (𝑖)−𝜋 ( 𝑗) |.

The minimum linear arrangement problem is a special case of the

graphical house allocation problem where the valuation interval

has evenly spaced values (𝐻 = [𝑛]).

We may assume without loss of generality that the underlying

graph 𝐺 in any instance of the minimum linear arrangement prob-

lem is connected. This is a consequence of the following folklore

observation, whose proof we omit (see, for instance, [29]).

Proposition 2.2 (Seidvasser [29]). If 𝐺 is any instance of the lin-

ear arrangement problem, then at least one optimal solution assigns

contiguous subsets of [𝑛] to the connected components of 𝐺 .

We will see in Section 5 that in the graphical house allocation

problem, it no longer suffices to only consider connected graphs.

Finding a minimum linear arrangement is NP-hard for general

graphs [14], with a best known run-time of 𝑂 (2𝑛𝑚), where |𝑉 | =
𝑛, |𝐸 | =𝑚. The problem remains NP-hard even for bipartite graphs

[12]. However, the minimum linear arrangement problem can be

solved in polynomial time on paths, cycles, stars, wheels, and trees.

Minimum linear arrangement on trees takes time 𝑂 (𝑛log2 3) [9].
One of the fundamental difficulties with the minimum linear

arrangement problem is that there are no natural approaches to

prove lower bounds on the objective: the best known general lower

bounds are trivial ones based on degrees or edge counts. All other

known lower bounds are graph-specific and not easy to generalize.

3 HARDNESS AND LOWER BOUNDS
In this section, we prove lower bounds on the general graphical

house allocation problem.

Our problem is NP-complete (for arbitrary graphs and valua-

tions), because the special case of minimum linear arrangements is

already NP-complete, as stated in Section 2.

A different NP-completeness proof, reducing from theMinimum

Bisection Problem, results in inapproximability results as well.

Definition 3.1. The Minimum Bisection Problem asks, for an

𝑛-vertex graph 𝐺 and a natural number 𝑘 , if there is a partition of

𝑉 (𝐺) into two parts of size 𝑛/2, with at most 𝑘 edges crossing the cut.

TheMinimumBisection Problem is a knownNP-complete prob-

lem [14]. Furthermore, it is also known to be hard to approximate

efficiently, a fact that is useful in light of the following observation.

Theorem 3.2. There is a linear time reduction from the Minimum

Bisection Problem to the graphical house allocation problem with

identical valuations.

Proof Sketch. Given an instance ⟨𝐺,𝑘⟩ of Minimum Bisec-

tion, we construct an instance of the house allocation problem by

creating a cluster of 𝑛/2 values concentrated around 0, and a cluster
of𝑛/2 values concentrated around 1 on the valuation interval. Then,
𝐺 has an allocation with total envy at most 𝑘 + 𝜖 (for sufficiently

small 𝜖) if and only if ⟨𝐺,𝑘⟩ ∈ Minimum Bisection. This reduction

is clearly linear time. □

It follows immediately that the inapproximability results for

minimum bisection carry over to the graphical house allocation

problem. In particular, for any fixed constant 𝜖 > 0, unless P = NP,

there is no polynomial-time algorithm that can approximate the

optimal total envy under the house allocation problem within an

additive term of 𝑛2−𝜖 (𝑣 (ℎ𝑛) − 𝑣 (ℎ1)) [8]. Additionally, the house
allocation problem has no PTAS unless NP has randomized algo-

rithms in subexponential time [23]. Thus our problem is hard to

approximate even with identical valuations.
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Finally, we show that graphical house allocation is NP-complete

even on simple instances of graphs which are solvable in linear

time in the case of linear arrangements, such as disjoint unions of

paths, cycles, cliques, or stars (and any combinations of them).

Theorem 3.3 (Hardness of Disjoint Unions). Let A be any

collection of connected graphs, such that there is a polynomial time

one-to-one mapping from each nonnegative integer 𝑡 (given in unary)

to a graph in A of size 𝑡 . Let G be the class of graphs whose members

are the finite sub-multisets of A (as connected components). Then,

finding a minimum envy house allocation is NP-hard on the class G.

Proof Sketch. We reduce from Unary Bin Packing, which

asks, given a finite set 𝐼 of items with sizes 𝑠 (𝑖) for 𝑖 ∈ 𝐼 , a bin

capacity 𝐵, and an integer 𝑘 , all given in unary, whether there

exists a packing of all the items into at most 𝑘 bins. This problem is

known to be NP-complete (see, for instance, [20]).

Given an arbitrary instance of Unary Bin Packing, we create

an instance of graphical house allocation by having 𝑘 equispaced

clusters of width 𝜖 separated by intervals of size 𝐶 (for sufficiently

large 𝐶 and small 𝜖), with each cluster containing 𝐵 values. Our

graph 𝐺 is a disjoint union of the graphs in A that form the image

of the sizes 𝑠 (𝑖) over all 𝑖 ∈ 𝐼 . Note that 𝐺 ∈ G. Then, the given
instance is in Unary Bin Packing if and only if the graphical house

allocation instance has an allocation with envy less than 𝐶 . □

Corollary 3.4. The house allocation problem under identical val-

uations is NP-complete on: (a) disjoint unions of arbitrary paths,

(b) disjoint unions of arbitrary cycles, (c) disjoint unions of arbitrary

stars, and (d) disjoint unions of arbitrary cliques.

In Section 5 we show that despite the hardness suggested by

Corollary 3.4, it is possible to exploit a structural property to develop

FPT algorithms for the first three problems.

4 CONNECTED GRAPHS
In this section, we characterize optimal house allocations when the

underlying graph 𝐺 is a star, path, cycle, complete bipartite graph,

or rooted binary tree. We also provide some observations when 𝐺

is any (arbitrary) tree.

4.1 Stars
Consider the star graph 𝐾1,𝑛−1, which has a single central node and

𝑛 − 1 “spokes” connected to the central node but not to each other.

Theorem 4.1. If 𝐺 is the star 𝐾1,𝑛−1, then the minimum envy

allocation 𝜋∗ under identical valuations corresponds to:

• for odd 𝑛, putting the unique median value in the center of the

star, and all the houses on the spokes in any order; the value of

the envy is

∑
𝑖> (𝑛−1)/2+1 𝑣 (ℎ𝑖 ) −

∑
𝑖≤(𝑛−1)/2 𝑣 (ℎ𝑖 ).

• for even𝑛, putting either of the medians in the center of the star,

and all other houses on the spokes in any order; the value of the

envy for either median is

∑
𝑖> (𝑛+1)/2 𝑣 (ℎ𝑖 )−

∑
𝑖< (𝑛+1)/2 𝑣 (ℎ𝑖 ).

Proof. The proof is a restatement of the well-known fact that

in any multiset of real numbers, the sum of the 𝐿1-distances is

minimized by the median of the multiset. It is easy to verify that

for even 𝑛, both medians yield the same value. □

4.2 Paths
Consider the path graph 𝑃𝑛 .

Theorem 4.2. If 𝐺 is the path graph 𝑃𝑛 , then the minimum envy

allocation 𝜋∗ under identical valuations attains a total envy of 𝑣 (ℎ𝑛)−
𝑣 (ℎ1), is unique (up to reversing the values along the path), and

corresponds to placing the houses in sorted order along 𝑃𝑛 .

Proof Sketch. The houses ℎ1 and ℎ𝑛 have to go to two of the

vertices. The subpath between these two vertices must have envy

at least 𝑣 (ℎ𝑛) − 𝑣 (ℎ1). The rest follows. □

4.3 Cycles
Now, consider the cycle graph 𝐶𝑛 .

Theorem 4.3. If 𝐺 is the cycle graph 𝐶𝑛 , then any minimum

envy allocation 𝜋∗ under identical valuations attains a total envy

of 2(𝑣 (ℎ𝑛) − 𝑣 (ℎ1)), and corresponds to the following: place ℎ1 and
ℎ𝑛 arbitrarily on any two vertices of the cycle, and then place the

remaining houses so that each of the two paths from ℎ1 to ℎ𝑛 along

the cycle consists of houses in sorted order.

Proof Sketch. In any allocation, there are two internally vertex-

disjoint subpaths from ℎ1 to ℎ𝑛 on a cycle. Each of those subpaths

has an envy of at least 𝑣 (ℎ𝑛) − 𝑣 (ℎ1). □

Corollary 4.4. For 𝑛 ≥ 3, the number of optimal allocations along

the cycle 𝐶𝑛 is 2
𝑛−3

, up to rotations and reversals.

Perhaps slightly non-obviously, the proofs of Theorems 4.2 and

4.3 can be seen as purely geometric arguments using the valuation

interval. To see this, consider the path 𝑃𝑛 , and take any alloca-

tion 𝜋 that does not satisfy the form stated in Theorem 4.2, and

consider how the allocation looks on the valuation interval. First,

observe that every sub-interval of the valuation interval between

consecutive houses needs to be covered by some line segment from

the allocation. Otherwise, there would be no edge with a house

from the left to a house from the right of the sub-interval, which is

impossible, as 𝑃𝑛 is connected. But the only way to meet this lower

bound of one line segment for each sub-interval of the valuation

interval is to sort the houses along the path. The allocation looks

as follows on the valuation interval.

The geometric argument for cycles is similar (with an allocation

illustrated below).

4.4 Complete Bipartite graphs
Let us start with the complete bipartite graph 𝐾𝑟,𝑟 (𝑟 ≥ 1) where
both parts have equal size.
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(a) The star 𝐾1,5 (b) The path 𝑃7 (c) The cycle𝐶5 (d) The graph 𝐾3,3

Figure 2: Examples of characterized connected graphs

Theorem 4.5. When𝐺 is the graph 𝐾𝑟,𝑟 , the minimum envy al-

location 𝜋∗ has the following property: for every 𝑖 ∈ [𝑟 ] the houses
{ℎ2𝑖−1, ℎ2𝑖 } cannot be allocated to agents in the same side of the bi-

partite graph. Moreover, all allocations which satisfy this property

have the same (optimal) envy.

Proof Sketch. Consider an allocation 𝜋 where the stated prop-

erty does not hold and consider the smallest 𝑖 where the property

is violated. In this case we can find a simple swap that can improve

envy. Assume ℎ2𝑖−1 and ℎ2𝑖 are allocated to one part. If 𝑘 is the

least index greater than 2𝑖 such that ℎ𝑘 is not allocated to an agent

in the same part, then swapping ℎ𝑘 and ℎ𝑘−1 leads to a reduction

in envy. The exact calculation is quite technical; see the full version

of the paper [17]. □

This also implies a straightforward linear-time algorithm to com-

pute a minimum envy allocation for the graph 𝐾𝑟,𝑟 .

We can now generalize this result to complete bipartite graphs

where the two parts have unequal size. Due to the similarity of the

two proofs, we omit the proof sketch.

Theorem 4.6. When 𝐺 is the graph 𝐾𝑟,𝑠 (𝑟 > 𝑠), the minimum

envy allocation 𝜋∗ has the following property:

• If 𝑟 − 𝑠 =: 2𝑚 is even, then the first and last 𝑚 houses are

allocated to the larger part, and for all 𝑖 ∈ [𝑠], the houses
ℎ𝑚+2𝑖−1 and ℎ𝑚+2𝑖 are allocated to different parts.

• If 𝑟 − 𝑠 =: 2𝑚 + 1 is odd, then the first𝑚 and last𝑚 + 1 houses

are allocated to the larger part. For all 𝑖 ∈ [𝑠], the houses
ℎ𝑚+2𝑖−1 and ℎ𝑚+2𝑖 are allocated to the larger and smaller

parts respectively.

Moreover, all allocations which satisfy this property have the same

(optimal) envy.

Corollary 4.7. For any complete bipartite graph 𝐾𝑟,𝑠 (𝑟 ≥ 𝑠),
• If 𝑟 − 𝑠 is even, there are 2𝑠 optimal allocations;

• If 𝑟 − 𝑠 is odd, there is exactly one optimal allocation,

up to permutations over allocations to the same side of the graph.

It is easy to see that our linear time algorithm generalizes to

general complete bipartite graphs as well. Theorem 4.6 generalizes

Theorem 4.1. When the number of spokes in the star is odd, there

are two possible houses that can be allocated to the center in an

optimal allocation. However, when the number of spokes is even,

any optimal allocation allocates a unique house to the central node.

4.5 Rooted Binary Trees
In this section, we consider binary trees. A binary tree 𝑇 is defined

as a rooted tree where each node has either 0 or 2 children.

Our main result is a structural property characterizing at least

one of the optimal allocations for any instance where the graph 𝐺

corresponds to a binary tree. We call this the local median property.

Definition 4.8 (Local Median Property). An allocation on a binary

tree satisfies the local median property if, for any internal node, exactly

one of its children is allocated a house with value less than that of the

node. In other words, the value allocated to any internal node is the

median of the set containing the node and its children.

The proofs in this section will use the following lemma. We

define the inverse of a valuation function 𝑣 as a valuation function

𝑣 inv such that 𝑣 inv (ℎ) = −𝑣 (ℎ) for all ℎ ∈ 𝐻 (appropriately shifted

so that all values are nonnegative). We note that any allocation

has the same envy along any edge with respect to the inverted

valuation and the original valuation, whose straightforward proof

we relegate to the full version [17].

Lemma 4.9. The envy along any edge of the graph 𝐺 under an

allocation 𝜋 with respect to the valuation 𝑣 is equal to the envy along

the same edge of the graph 𝐺 under the allocation 𝜋 with respect to

the valuation 𝑣 inv.

We will now show that at least one minimum envy allocation

satisfies the local median property. More formally, we show the

following: given a binary tree 𝑇 and any allocation 𝜋 , there exists

an allocation that satisfies the local median property and has equal

or lower total envy. The proof relies on the following lemma.

Lemma 4.10. Given a binary tree 𝑇 and an allocation 𝜋 , let 𝑖 be

some internal node which does not satisfy the local median property.

Then, there exists an allocation 𝜋 ′ such that

(a) For the subtree 𝑇 ′
rooted at 𝑖 , we have that Envy(𝜋 (𝑇 ′),𝑇 ′) >

Envy(𝜋 ′(𝑇 ′),𝑇 ′);
(b) For any other subtree 𝑇 ′′

not contained by 𝑇 ′
, we have that

Envy(𝜋 (𝑇 ′′),𝑇 ′′) ≥ Envy(𝜋 ′(𝑇 ′′),𝑇 ′′).

Proof Sketch. Consider an internal vertex not satisfying the

local median property; by Lemma 4.9, it suffices to consider the

case when this violating vertex has a value that is less than both

its children. We can now “push” the value allocated to this vertex

down the tree by a series of swaps until that value reaches a leaf or

satisfies the local median property. It can be shown that the total

envy at the end satisfies the two criteria stated. A full proof is given

in the full version [17]. □

Lemma 4.10 immediately gives rise to the following corollary,

which we state as a theorem.

Session 1C: Fair Allocations
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

165



Theorem 4.11. For any binary tree𝑇 , at least one minimum envy

allocation satisfies the local median property.

Unfortunately, the local median property is too weak to exploit

for a polynomial-time algorithm. Ideally, we would like to use the

property to show that some minimum envy allocation satisfies an

even stronger property called the global median property.

Definition 4.12 (Global Median Property). An allocation on a

binary tree satisfies the global median property if, for every internal

node, all the houses in one subtree of the node have value less than

the house allocated to the node, and all the houses in the other subtree

have value greater than the house allocated to the node.

Empirically, it seems like minimum envy allocations on rooted

binary trees do indeed satisfy the global median property. If this

turned out to be true, we would be able to devise an algorithm that

would significantly reduce the search space for a minimum envy

allocation from Θ(𝑛!) to Θ(2𝑑 ), for a tree 𝑇 of maximum depth 𝑑 .

This would give us an 𝑂 (2𝑑 ) algorithm for computing minimum

envy allocations on such rooted binary trees.

Conjecture 4.13. There is an algorithm that computes an optimal

allocation on a rooted binary tree of maximum depth 𝑑 in time𝑂 (2𝑑 ).
In particular, this algorithm runs in polynomial time on (nearly)

balanced trees.

4.6 General Trees
How do we take the approaches for rooted binary trees and build

towards arbitrary trees? Note that one consequence of Theorem

4.11 is that in an optimal allocation on a rooted binary tree, the

minimum and the maximum must both appear on leaves.

In the minimum linear arrangement problem, it is known [29]

that when the underlying graph is a tree, some optimal allocation

assigns both the minimum and maximum values to leaves, and

furthermore, the (unique) path from this minimum to the maximum

consists of monotonically increasing values. This characterization

is used crucially in designing the polynomial time algorithm on

trees [9].

Empirically, this same property for trees seems to hold for non-

uniformly spaced values as well. The proof technique used in [29]

does not extend to our setting, but testing the problem on 200

randomly generated trees and uniformly random values on the

interval [0, 100] always gave us both these properties on trees:

the minimum and maximum values both end up on leaves, with a

monotonic path between them.

We believe that graphical house allocation, unlike minimum

linear arrangements, is NP-hard on trees. It would be remarkable

if the structural characterization holds for our problem, but the

polynomial-time algorithm does not work. We relegate answering

this to future work.

5 DISCONNECTED GRAPHS
In this section, we consider disconnected graphs, starting with a

structural characterization, and then using that to obtain upper

bounds for several natural classes of disconnected graphs that all

had lower bounds in Section 3.

Figure 3: For the valuation interval on top, the optimal allo-
cation to 𝑃2 +𝐶3 is to give the two low-valued houses to the
edge, and to give the three high-valued houses to the triangle.
This is the only allocation where the envy is negligible. For
the valuation interval on the bottom, the optimal allocation
to 𝑃2 + 𝐶3 is to give the two extreme-valued houses to the
edge, and the cluster in the middle to the triangle. Any other
allocation has to count one of the long halves of the interval
multiple times, and is therefore strictly suboptimal. This is
an instance where we see one of the connected components
being “split” by another in the valuation interval.

5.1 A Structural Characterization
We start by remarking that Proposition 2.2 is false in our setting,

and so we can no longer assume our graph is connected without

loss of generality. For instance, consider an instance when the

underlying graph 𝐺 is a disjoint union of an edge and a triangle.

The two valuation intervals in Figure 3 yield very different optimal

structures for this same instance.

We remark that this is a major departure from the linear arrange-

ment problem, as the spacing of the values along the valuation

interval becomes a key factor in the structure of optimal allocations.

Recall from Proposition 2.2 that in the minimum linear arrangement

problem, in an optimal allocation, the connected components of a

graph take the houses in contiguous subsets along the valuation

interval. The example in Figure 3 shows that this is not necessarily

true in our problem, and therefore serves as a motivation to classify

disconnected graphs according to whether they have this property

or not. We call the relevant property separability, defined as follows.

Definition 5.1 (Splitting). Let 𝐺1 = (𝑁1, 𝐸1) and 𝐺2 = (𝑁2, 𝐸2) be
two of the connected components of 𝐺 = (𝑁, 𝐸), and fix an arbitrary

allocation 𝜋 . We say 𝐺1 splits 𝐺2 in 𝜋 if the values of 𝜋 (𝐺1) form a

contiguous subset of the values in 𝜋 (𝐺1) ∪ 𝜋 (𝐺2).

Definition 5.2 (Separability). Let 𝐺 be a disconnected graph with

connected components 𝐺1, . . . ,𝐺𝑘 . Then,

(1) 𝐺 is separable if there exists an ordering𝐺1, . . . ,𝐺𝑘 of the com-

ponents where, for all valuation intervals, there is an optimal

allocation where for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 , 𝐺𝑖 splits 𝐺 𝑗 .
(2) 𝐺 is strongly separable if, in addition, 𝐺 𝑗 also splits 𝐺𝑖 . Note

that this is only possible if an optimal allocation assigns con-

tiguous subsets of values to all connected components.

(3) 𝐺 is inseparable if there is a valuation interval where for each

optimal allocation 𝜋 , there are components 𝐺1 and 𝐺2 with

𝑢,𝑢 ′ ∈ 𝜋 (𝐺1) and 𝑣, 𝑣 ′ ∈ 𝜋 (𝐺2) such that 𝑢 ≺ 𝑣 ≺ 𝑢 ′ ≺ 𝑣 ′.
A class A of graphs is separable (resp. strongly separable) if every

graph in it is separable (resp. strongly separable). Conversely, A is

inseparable if it contains an inseparable graph.
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We note that a graph 𝐺 is inseparable if and only if it is not

separable. Furthermore, it is strongly separable only if it is separable.

For minimum linear arrangements, all disconnected graphs are

strongly separable, by Proposition 2.2. In contrast, for our problem,

Figure 3 already provides an example of a graph that is not separa-

ble. We discuss several examples of strongly separable graphs in

our problem in Section 5.2; in particular, disjoint unions of paths

(respectively, cycles or stars) satisfy strong separability.

Our formulation of separability and strong separability has an

immediate algorithmic consequence.

Proposition 5.3. Suppose 𝐺 is strongly separable and has 𝑘 con-

nected components. If we can find a minimum envy allocation for

each component in time 𝑂 (poly(𝑛)), then we can find a minimum

envy allocation on 𝐺 in time 𝑂 (poly(𝑛) · 𝑘!). If 𝐺 is separable, and

we can find a minimum envy allocation for each component in time

𝑂 (poly(𝑛)), then we can find a minimum envy allocation on 𝐺 in

time 𝑛𝑂 (𝑘) ).

The proof follows straightforwardly from the definitions of

(strong) separability.

It is not immediately obvious that there are separable graphs

that are not strongly separable. Figure 3 shows an example of such

a graph (Theorem 5.15 proves separability). We will see more exam-

ples of this later, but we remark that there are even separable forests

that are not strongly separable (Figure 4). We state this formally

here, relegating the proof once again to the full version [17].

Proposition 5.4. There exists a separable forest that is not strongly

separable.

Figure 4: Example of a separable forest that is not strongly
separable. The forest is trivially separable. For the bottom val-
uation line, an optimal allocation must allocate the extreme
clusters in the interval to the larger connected component.
See the full version [17] for a detailed proof.

Less obviously, inseparable forests exist, as shown by the follow-

ing proposition (and Figure 5), whose proof is in the full version [17].

Proposition 5.5. There exists an inseparable forest.

5.2 Disjoint Unions of Paths, Cycles, and Stars
We now move on to algorithmic approaches and characterizations

of minimum envy allocations, and start with the setting where𝐺 is

a disjoint union of paths. Suppose 𝐺 = 𝑃𝑛1 + . . . + 𝑃𝑛𝑟 . What does

an optimal allocation on 𝐺 look like?

.

.

.

𝑠1

.

.

.

𝑠3

.

.

.

𝑠2

.

.

.

𝑠4

𝑠1 + 1 𝑠2 + 1 𝑠3 + 1 𝑠4 + 1

Figure 5: Example of an inseparable forest. Suppose 𝑠1 < 𝑠2 <

𝑠3 < 𝑠4, and they satisfy for all 𝑖, 𝑗 , |𝑠𝑖 −𝑠 𝑗 | ≥ 3, and for all 𝑖, 𝑗, 𝑘 ,
𝑠𝑖 + 𝑠 𝑗 > 𝑠𝑘 + 2. Then, an optimal allocation on this instance
must allocate the entire cluster of size 𝑠𝑖 + 1 on the valuation
interval to the corresponding star-like cluster of the given
forest. See the full version [17] for a detailed proof.

Theorem 5.6. Let 𝐺 be a disjoint union of paths, 𝑃𝑛1 + . . . + 𝑃𝑛𝑟 .
Then,𝐺 is strongly separable. Furthermore, in any optimal allocation,

within each path, the houses appear in sorted order.

Proof Sketch. In any allocation 𝜋 , we may assume by Theorem

4.2 that the houses allocated to each path appear in sorted order

along that path. Next, in an allocation 𝜋 , if there is any overlap

between two of the paths, then we can remove the overlap by

reassigning the houses among just those two paths, and obtain an

allocation with strictly less envy. □

The following corollary shows an FPT algorithm on the disjoint

union of paths, parameterized by the number of different paths.

Corollary 5.7. We can find an optimal allocation for an instance

on an undirected 𝑛-agent graph 𝐺 that is the disjoint union of paths

in time 𝑂 (𝑛𝑟 !), where 𝑟 is the number of paths.

Proof Sketch. By Theorem 5.6, it suffices to find the optimal

ordering of the paths. There are 𝑟 ! such orderings, and for each, we

can test the envy in linear time. □

If 𝐺 is a disjoint union of cycles, say 𝐺 = 𝐶𝑛1 + . . . + 𝐶𝑛𝑟 , the
same theorems characterizing optimal allocations go through, using

Theorem 4.3. We omit the proofs, but state the results formally.

Theorem 5.8. Let 𝐺 be a disjoint union of cycles, 𝐶𝑛1 + . . . +𝐶𝑛𝑟 .
Then 𝐺 is strongly separable. Furthermore, in any optimal allocation,

within each cycle, the houses appear in the form characterized in

Theorem 4.3.

Corollary 5.9. We can find an optimal house allocation for an

instance on an undirected 𝑛-agent graph 𝐺 that is the disjoint union

of cycles in time 𝑂 (𝑛𝑟 !), where 𝑟 is the number of cycles.

We remark here that if 𝑡 is the number of different path (or cycle)

lengths, then a dynamic programming algorithm (details in the

full version [17]) computes the minimum envy allocation in time

𝑂 (𝑛𝑡+1). Therefore, combining the two approaches, we have a time

complexity of 𝑂 (min(𝑛𝑟 !, 𝑛𝑡+1)). An immediate application of this

dynamic programming algorithm is for graphs with degree at most

Session 1C: Fair Allocations
 

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

167



one. These graphs are special case of the disjoint union of paths

where the path length can either be 0 or 1.

Corollary 5.10. We can find an optimal house allocation for an

instance on an undirected 𝑛-agent graph 𝐺 with maximum degree 1

in time 𝑂 (𝑛3).

Perhaps remarkably, there is no particularly elegant character-

ization when the underlying graph 𝐺 is a disjoint union of paths

and cycles, even when there is only one path and one cycle. This is

a consequence of Figure 3.

Finally, a similar result holds for disjoint unions of stars, though

the proof is somewhat different. We omit the proof of Corollary 5.12,

which follows from Theorem 5.11.

Theorem 5.11. Let𝐺 be a disjoint union of stars,𝐾1,𝑛1 + . . .+𝐾1,𝑛𝑟 .
Then 𝐺 is strongly separable. Furthermore, in any optimal allocation,

within each star, the houses appear in the form characterized in

Theorem 4.1.

Proof Sketch. We can “separate” any two stars while improv-

ing our objective. Given any allocation 𝜋 , suppose two of the stars

𝐾1,𝑛1 and 𝐾1,𝑛2 overlap in their allocated values. Suppose their cen-

ters receive houses ℎ𝑖 ≺ ℎ 𝑗 respectively. We show that exchanging

𝐾1,𝑛1 ’s most-valuable house for 𝐾1,𝑛2 ’s least-valuable house strictly

decreases envy. We apply this repeatedly until the two stars split

each other. We apply Theorem 4.1 to every star at the beginning

of the process and after every swap to maintain the invariant that

each star has a median house at its center. □

Corollary 5.12. We can find an optimal house allocation for an

instance on an undirected 𝑛-agent graph 𝐺 that is the disjoint union

of stars in time 𝑂 (𝑛𝑟 !), where 𝑟 is the number of stars.

5.3 Disjoint Unions of Cliques
We now turn our attention to disjoint unions of cliques. We first

demonstrate that when all cliques have the same size, we maintain

strong separability.

Theorem 5.13. Let 𝐺 be a disjoint union of cliques with equal

sizes, 𝐾1

𝑛/𝑟 + . . . + 𝐾
𝑟
𝑛/𝑟 . Then, 𝐺 is strongly separable.

Proof Sketch. Without loss of generality, consider two cliques,

say 𝐾 and 𝐾 ′
, on 𝑛/2 vertices each, and consider an arbitrary in-

stance with 𝑛 values. Suppose in some allocation 𝜋 , 𝐾 receives

𝐴 ∪ 𝐴′
and 𝐾 ′

receives 𝐵 ∪ 𝐵′, where 𝐴 ∪ 𝐵 form the 𝑛/2 lower-
valued houses, and 𝐴′ ∪ 𝐵′ form the 𝑛/2 higher-valued houses. We

can show that we improve the envy by assigning them 𝐴 ∪ 𝐵 and

𝐴′ ∪ 𝐵′ respectively. □

Because the cliques are all of equal sizes and agents have identical

valuations, Theorem 5.13 implies that there is a trivial algorithm

for assigning houses to agents. We can assign the first 𝑛/𝑟 houses
to one clique, the next 𝑛/𝑟 houses to the next clique, and so on.

Corollary 5.14. We can find an optimal house allocation for an

instance on an undirected 𝑛-agent graph 𝐺 that is the disjoint union

of equal-sized cliques in time 𝑂 (𝑛).

We now turn our attention to the case when the cliques are not

all of the same size.

As we saw in Figure 3, strong separability must be ruled out

when cliques have different sizes. We will show that separability

still holds. We show further that the largest clique splits all other

cliques, the second largest clique splits all cliques except possibly

the largest one, and so on. The proof is heavily technical, and we

relegate the casework and details to the full version [17].

Theorem 5.15. Let 𝐺 be a disjoint union of cliques with arbitrary

sizes, 𝐾𝑛1 + . . . +𝐾𝑛𝑟 , where 𝑛1 ≥ . . . ≥ 𝑛𝑟 . Then,𝐺 is separable (but

not strongly separable if the 𝑛𝑖 ’s are not all equal). In particular, for

all 1 ≤ 𝑖 < 𝑗 ≤ 𝑟 , in every optimal allocation, 𝐾𝑛𝑖 splits 𝐾𝑛 𝑗
.

Proof Sketch. Without loss of generality, consider two cliques

𝐾 and𝐾 ′
with |𝐾 | > |𝐾 ′ |. Wewill show that𝐾 receives a contiguous

subset among the houses received by 𝐾 ∪𝐾 ′
. The basic approach is

that if there are three values 𝑣 (ℎ𝑖 ) < 𝑣 (ℎ 𝑗 ) < 𝑣 (ℎ𝑘 ) with ℎ 𝑗 going
to 𝐾 ′

but ℎ𝑖 , ℎ𝑘 going to 𝐾 , we can swap houses around and obtain

a better allocation by a counting argument. □

Theorem 5.15 implies an XP algorithm for finding a minimum

envy allocation on unions of cliques.

Corollary 5.16. We can find an optimal house allocation for an

instance on an undirected 𝑛-agent graph 𝐺 that is the disjoint union

of cliques in time 𝑂 (𝑛𝑟+2), where 𝑟 is the number of cliques.

There seems to be a separation between unions of differently-

sized cliques and unions of stars, cycles, and paths. We suspect the

problem may be W[1]-hard for unions of arbitrary cliques.

6 CONCLUSION AND DISCUSSIONS
We investigate a generalization of the classical house allocation

problem where the agents are on the vertices of a graph repre-

senting the underlying social network. We wish to allocate the

houses to the agents so as to minimize the aggregate envy among

neighbors. Even for identical valuations, we show that the problem

is computationally hard and structurally rich. Furthermore, our

structural insights facilitate algorithmic results for several natural

and well-motivated graph classes.

There are a few natural questions for future research. We might

consider other fairness objectives such asminimizing the maximum

envy present on any edge of the graph. For evenly-spaced valu-

ations, this corresponds to the classical graph theoretic property

of bandwidth, which is also known to be NP-complete for general

graphs, and quite hard to approximate as well [6, 26]. It would be

interesting to know whether trees admit polynomial time charac-

terizations of the minimum envy, or—more remarkably—whether

they are NP-complete but admit the structural similarities to the

minimum linear arrangement problem discussed in Section 4.6.

We might hope to completely characterize all strongly separable

graphs in terms of their graph theoretic structure. Another impor-

tant future direction would be to extend some of these results for

non-identical valuations.
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